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Abstract—We revisit link lifetimes in random P2P graphs
under dynamic node failure and create a unifying stochastic
model that generalizes the majority of previous efforts in this
direction. We not only allow non-exponential user lifetimes and
age-dependent neighbor selection, but also cover both active
and passive neighbor-management strategies, model the lifetimes
of incoming and outgoing links, derive churn-related message
volume of the system, and obtain the distribution of transient
in/out degree at each user. We then discuss the impact of design
parameters on overhead and resilience of the network.

I. INTRODUCTION

P2P networks organize end-users into a distributed graph
that is jointly maintained and dynamically restructured by its
participants under churn. Many P2P properties (e.g., message
overhead, resilience to disconnection, and ability to reach other
peers with queries) depend on the behavior of node degree,
which is determined solely by the lifetime of edges in the
graph. Despite the sizeable volume of analytical work on P2P
networks (e.g., [4], [9], [10], [11], [12], [13], [15], [20], [23],
[25], [24], [26]), accurate characterization of link lifetime has
been elusive.

We start by defining terminology and modeling objectives.
Suppose Li is the random lifetime of user i and Ri(t) is its
residual (i.e., remaining) lifetime at time t, conditioned on
i being alive at t. If peer w creates a link (w, v) during its
join into the system or repair of broken edges, we call w the
initiator and v the recipient of the connection. For this link
thrown at time t, there are actually two lifetimes – out-link
duration V = Rv(t), which is how long the connection stays
active from w’s perspective, and in-link duration W = Rw(t),
which is the same from v’s perspective.

In the traditional sense, the link remains active only for
min(V,W ) time units; however, the degree at each user
depends asymmetrically on the individual variables V and W ,
which makes them, rather than min(V,W ), our target in this
paper. It should be noted that links are treated as directional
for the analysis; however, system performance (e.g., query
routing and resilience) is still determined by the combined
in/out degree at each user (i.e., edges are undirected for all
other purposes).

Link lifetimes depend on how peers select their neighbors
during join and replacement of failed edges. If this process
is independent of age (e.g., based on geographical proximity,
random hash function, presence of certain shared content),
then analysis falls under so-called uniform selection, where
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it has been shown [25] that V is the residual of Lv. However,
even under uniform selection, which is the simplest case, the
distribution of in-link lifetime W has remained unexplored.

For age-biased neighbor selection, two methods have been
proposed in the analytical literature. The first one, called max-
age [20], [26], selects m uniformly random peers and then
picks the one with the largest age. The rationale is that under
a heavy-tailed user lifetimes, residuals are stochastically larger
for users with higher age.1 The second method, called age-
proportional [26], selects each user in linear proportion to its
current age. This is implemented using a random walk on the
graph using a Markov chain whose transition probabilities are
functions of current ages of the users adjacent to each link.
For these two specific techniques, the distribution of V has
been derived in [20], [26]; however, extension to more general
preference functions or analysis of W has not been offered.

A. Contributions

To understand the impact of neighbor choice on the degree
of the system and message overhead to maintain the graph,
our first contribution is to propose a novel modeling paradigm
for out-link churn that allows arbitrary age-biased neighbor
selection using a general preference function p(x), where x is
the age of potential neighbors at the time of edge creation. We
provide a set of conditions under which there exists a simple
expression for the asymptotic distribution of V as network
size n → ∞ and explain how to select p(x) to obtain the
three special cases considered in prior work (i.e., uniform,
max-age, and age-proportional).

The new model is flexible enough to cover both active and
passive systems (i.e., with and without neighbor replacement
[10]), which represent the two most commonly modeled
approaches. Since max-age employs a very complex non-linear
p(x) that does not immediately reveal the impact of m on
E[V ], we propose an alternative mechanism that performs
similarly, but allows closed-form tuning of out-link lifetime.

Our second contribution is to analyze the edge-replacement
process and obtain the rate λ at which neighbors are sought in
the system. Since each search may require substantial network
resources (e.g., flooding and/or random walks), minimization
of λ may be beneficial in practice. We show that λ, which

1Variable X is said to be stochastically larger than Y iff P (X > x) ≥
P (Y > x) for all x [16]. We call lifetimes heavy-tailed if P (L > x+y|L >
y) ≥ P (L > x) for all x, y, i.e., given that a user has survived to any positive
age y, the remaining lifetime is stochastically larger than L. If the inequality
is reversed, we call such distributions light-tailed.



depends on the distribution of V and replacement delay S,
can be controlled using p(x) and is automatically minimized
by any P2P system whose V is sufficiently heavy-tailed (e.g.,
Pareto lifetimes with α ≤ 2 and age-proportional selection).

Our third contribution is to develop a novel approach to
modeling the distribution of in-link lifetime W . We show that
under Pareto lifetimes (often observed in real P2P systems
[1], [18], [21]), W is stochastically larger than lifetimes L,
but smaller than residuals R. Interestingly, this indicates that
in-link users are more reliable than new arrivals, but less so
than random live peers in the system. We also observe that
increasing the bias towards nodes with large age, i.e., using a
more aggressive p(x), leads to a surprising reduction in E[W ].
This indicates that there exists an inherent tradeoff between in
and out-edge resilience. As V becomes stochastically larger,
W gets stochastically smaller and eventually converges in
distribution to L. While a somewhat similar result was ob-
served in DHTs [6], [24], the reasons for these phenomena
are completely different as we discuss below.

Our fourth contribution is to show that incoming links in
the proposed framework are delivered to each peer through a
non-homogeneous Poisson process whose rate is determined
by the age-preference function p(x). This allows us to obtain
the transient distribution of in-degree Din(τ), where τ is the
current age of a live peer, extending the result of [22] to
non-uniform selection. We discover that bounded preference
functions (e.g., uniform, max-age) guarantee finite E[Din(τ)]
as the user’s age τ → ∞. On the other hand, unbounded
preference functions (e.g., age-proportional) grow in-degree
to infinity, which inevitably forces popular users to reject
incoming requests after they become overloaded (as often
seen in Gnutella [5]). This not only increases neighbor search
latency and message overhead, but also does not guarantee
eventual connection success in asymptotically large networks.

We finish the paper by studying the combined in/out degree
D(τ) in both passive and active systems, making observations
on the usage of our models to select parameters of the
system to achieve desired performance, which forms our fifth
contribution.

II. OUT-LINK CHURN

To model a P2P system, one requires three underlying as-
sumptions – the churn model, neighbor-replacement behavior
at each peer, and the preference function during link formation.
We outline these next.

A. Active Systems

Consider a network of n participants forming a random P2P
graph, where each node i can be modeled by a stationary
alternating-renewal process representing the user’s ON/OFF
states [23, section III]. To allow for heterogeneity in user
behavior, we assume that peer i randomly draws its lifetime
CDF from some finite pool of available distributions and
maintains ki ≥ 1 outbound links to existing peers in the
graph. Repair of broken connections along out-links incurs
some random delay that is needed to detect the failure and find
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Fig. 1. Active model: connection churn along out-links at user w.

a replacement user. This process is illustrated in Fig. 1, which
shows the status of the first two outgoing links of some user
w. In the figure, the direction of the arrows indicates whether
the link is going up (upon creation) or down (upon failure),
Vij is the remaining lifetime of the j-th neighbor along the
i-th link, and Sij is the corresponding search delay.

Note that inbound links are never repaired as this would
lead to an explosive (snowball) edge-creation process and
eventually a complete graph. As n → ∞, the system described
above is fully equivalent to a homogeneous network with
k := E[ki] initial outbound connections and all users having
the same lifetime CDF FL(x), which is a mixture of all
possible lifetime distributions weighted by the probability that
users select them and the frequency of each user’s appearance
in the system [23, Theorem 1].

B. Passive Systems

An alternative approach [10] is to never replace the failed
links and only restrict neighbor creation to the ki initial
edges during join. This model simplifies operation and reduces
overhead at the expense of seemingly poor resilience and
low branching factor during search. However, the coupling
between the diminishing expected out-degree E[Dout(τ)] and
the increasing expected in-degree E[Din(τ)] as user age
τ → ∞ creates an intriguing possibility that the average
combined degree E[D(τ)] may remain more or less constant!
If so, this allows the user to stay connected with almost no
superfluous activity (e.g., keep-alive messages, flooding of the
graph to find replacement neighbors). As this idea has not been
modeled before, we naturally have to investigate its viability
later in the paper.

C. Age-Dependent Neighbor Selection

The rest of this section presents our first contribution – a
novel modeling framework for out-link churn that subsumes
all previous approaches in this field by allowing arbitrary age-
biased neighbor selection. While the results below typically
require n → ∞, one should not be discouraged by this
assumption since systems with just a few thousand peers match
the developed theory very accurately.

At time t, assume a stationary network with N = N(t) ≤
n live users whose ages A1, . . . , AN form a collection of
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asymptotically iid (independent identically distributed) random
variables with distribution [23]:

FA(x) := P (Ai < x) =
1

E[L]

∫ x

0

F̄L(y)dy, (1)

where F̄L(x) = 1 − FL(x) is the tail CDF of user lifetimes.
For Pareto lifetimes with FL(x) = 1−(1+x/β)−α, it is well-
known [10] that FA(x) = 1 − (1 + x/β)1−α, i.e., the shape
parameter of both age A and residual R is α−1. For our later
results, define the residual of A (or the double residual of L)
to be random variable Z, whose CDF is given by:

FZ(x) := P (Z < x) =
1

E[A]

∫ x

0

F̄A(y)dy, (2)

where α > 2 is assumed if L is Pareto, in which case FZ(x)
is conveniently 1− (1 + x/β)2−α.

Next, suppose cN (v) = P (w → v | A1, . . . , AN−1) is the
probability that w connects to v, assuming the latter is alive
and conditioning on the ages of N−1 live peers other than w.
As n → ∞, selection strategy cN (v) may obtain users with
an unmeasurable distribution of residuals, in which case link
lifetimes will not exist in the limit. To preclude such cases, we
require that cN (v) asymptotically pick each user proportional
to some function of its current age.

Assumption 1: There exists a non-negative weight function
p(x) ≥ 0 with p(x) = 0 for x < 0 and E[p(A)] < ∞, where
A ∼ FA(x), such that:

N∑
v=1

∣∣∣cN (v)− p(Av)

E[p(A)]N

∣∣∣ → 0 (3)

in distribution as n → ∞.
We now fix peer w and deal with the distribution of its

out-link lifetime Vij .
Theorem 1: Assuming (3) holds and n → ∞, the collection

of variables {Vij} is asymptotically iid with tail distribution

F̄V (x) =
E[p(A− x)]

E[p(A)]
=

E[p(A− x)|A ≥ x]

E[p(A)]
F̄A(x) (4)

and mean

E[V ] =
E[p(Z)]

E[p(A)]
E[A]. (5)

Theorem 1 shows that weight p(x) serves as a simple tuning
knob for out-neighbor resilience. Specifically, the tail of V in
(4) is that of age A scaled by a normalization factor E[p(A−
x)|A ≥ x]/E[p(A)]. Under heavy-tailed L, variable A−x for
A ≥ x is stochastically larger than A, which from the second
formula in (4) indicates that V is stochastically larger than
A for non-decreasing p(x) and stochastically smaller for non-
increasing p(x). For light-tailed L, this relationship is reversed.

Similarly, the expected residual E[V ] in (5) is that of
a random live peer (i.e., E[A]) normalized by the ratio of
E[p(Z)] to E[p(A)]. For heavy-tailed lifetimes, where Z is
stochastically larger than A, this leads to E[V ] ≥ E[A] if p(x)
is non-decreasing and E[V ] ≤ E[A] if p(x) is non-increasing.
For light-tailed distributions, this relationship is again reversed
since Z is stochastically smaller than A in those cases.

D. Examples

We next consider selection strategies used in prior literature
and explain how to map them into our new model. In the
first strategy, suppose w finds neighbors in proportion to some
function h(x) applied to peer age:

c1N (v) =
h(Av)∑N
i=1 h(Ai)

, (6)

which produces uniform [10] and age-proportional [26] meth-
ods using h(x) = 1 and h(x) = x, respectively.

In the second strategy, w uniformly randomly selects m ≥ 1
users from the system into a set Γ and then picks the s-th order
statistic (e.g., minimum, maximum, median) of the sampled
ages to identify the best neighbor, where s ≤ m. To obtain
the corresponding cN (v), denote by rv the rank order of Av

among the ages of N live users (from the smallest to the
largest) and observe that this technique exhibits:

c2N (v) =

(
N

m

)−1(
rv − 1

s− 1

)(
N − rv
m− s

)
, (7)

which is the number of ways to select s−1 ages smaller than
Av and m − s ages larger than Av in a system of N users,
normalized by the number of ways to pick m initial peers.
Max-age selection [20], [26] falls under (7) with s = m. Note
that both m and s could depend on N as long as m/N → 0
(almost surely) as n → ∞.

While the above two strategies are seemingly different, they
in fact can be reduced to the same asymptotic model.

Theorem 2: Both (6)-(7) satisfy (3) with respective weights
p1(x) = h(x) and:

p2(x) = m

(
m− 1

s− 1

)
F s−1
A (x)(1− FA(x))

m−s, (8)

where E[p2(A)] = 1.
Besides the two strategies explained above, a much wider

variety of methods can be covered under the umbrella of (3)
as long as w asymptotically selects each live user v with
probability proportional to p(Av). This modeling approach
conveniently decouples analysis from complex summations∑N

i=1 h(Ai) in the first strategy, sets Γ in the second strategy,
and various other details whose contribution in the limit is
insignificant. From this point on, we do not dwell on the exact
details of neighbor selection, but instead assume that it satisfies
(3) and is uniquely described by p(x).

E. Discussion

The max-age p(x) = mFm−1
A (x) is an interesting function

in the sense that it favors older peers, but without becoming
unbounded in x like age-proportional. The main stumbling
block to understanding max-age is the obscure impact of m
on E[V ], even when we have a simple closed-form model
for the double-residual Z. In addition, the complex shape
of max-age’s p(x) makes computation of various metrics
developed below very tedious. To overcome this problem, we
next propose an approximation to the max-age technique that
allows a simple closed-form expression for E[V ]. Also note

3



10
−1

10
0

10
1

10
2

10
310

−6

10
−4

10
−2

10
0

lifetime (hours)

1−
C

D
F

 

 

age−proportional V
step V (x0 = 3.3)
max−age V
residual R

(a) comparison to max-age

10
−1

10
0

10
1

10
210

−4

10
−3

10
−2

10
−1

10
0

lifetime (hours)

1−
C

D
F

 

 

step V (x0 = 10)
age−proportional V
step V (x0 = 3.3)
residual R

(b) different x0

Fig. 2. Tail of V for Pareto L with α = 3, E[L] = 0.5 hours.

that replacing max-age with a directly evaluated function p(x)
in (6), which can be implemented via age-biased random walks
[26], avoids drawing m initial samples and thus scales much
better as m → ∞.

Since multiplying p(x) by a constant does not affect V , we
need to consider only term Fm−1

A (x), which behaves as a step
function – staying near zero for small x, then making a sharp,
almost linear, transition to 1 at some threshold x0, and finally
remaining near 1 for larger x. While a three-segment piece-
wise linear approximation is possible, we find that pstep(x) =
1x≥x0 , where 1X is an indicator of event X , is sufficient for
our examples. To ballpark x0, one needs to solve Fm−1

A (x0) =
c, where c is the desired level (such as 0.5) at which the
transition from 0 to 1 is considered non-negligible.

Using c = 0.35, we construct a step-function to approximate
max-age with m = 20 under Pareto lifetimes with α = 3,
which results in x0 = 3.3 hours. Fig. 2(a) shows the resulting
tail distributions of V , together with those of age-proportional
V and residual R. As x → ∞, the figure shows that the
tails F̄V (x) = P (V > x) under our approximation and max-
age are indistinguishable. As both tails exhibit a linear slope
matching that of R, it can be conjectured that they are Pareto
with shape α− 1. For max-age, verifying this result is rather
tedious, but the step-function readily produces from (4):

P (Vstep > x) =
F̄A(x+ x0)

F̄A(x0)
=

(
1 +

x

x0 + β

)1−α

, (9)

which shows that Vstep is Pareto(α− 1, β + x0).
Going back to Fig. 2(a), observe that the age-proportional

tail is much heavier than the other ones since its V ∼ FZ(x)
is Pareto with α − 2. In fact, the age-proportional scheme
more than doubles E[V ] of max-age with m = 20. While it is
possible to blindly tweak parameter m in max-age to obtain
the same E[V ], we next show that pstep(x) allows a simple
closed-form relationship between x0 and E[V ]. Applying (5):

E[Vstep] =
E[A]P (Z > x0)

P (A > x0)
, (10)

which under Pareto lifetimes becomes:

E[Vstep] = E[A]
(
1 +

x0

β

)
. (11)

For example, with x0 = 10 and the same parameters as in
the figure (i.e., E[A] = 1 hour, β = 1), we achieve E[V ] =

11 hours, which compares favorably to age-proportional’s 8.6.
Fig. 2(b) shows the resulting tails. In contrast, age-proportional
does not have any tuning knobs as all linear functions p(x) =
ax are equivalent when used in (6).

III. MESSAGE OVERHEAD

Our second contribution is to analyze the edge-replacement
process and obtain the rate λ at which neighbors are sought
in the system, which provides a platform for understanding
resilience and message overhead of the system.

A. Edge-Creation Process

In light of Theorem 1, the rest of the paper uses a single
variable V ∼ FV (x) to represent the remaining uptime of an
out-neighbor. Similarly, we assume that search delays are iid
and replace them with S ∼ FS(x), where FS(x) is some CDF
of a non-negative random variable.

Define δ := V + S to be the length of one up/down cycle
in Fig. 1 and let Fδ(x) = (FV ∗ FS)(x) be its CDF, where ∗
denotes convolution. Focusing on a single link, define tj to be
the instance when this link gets its j-th out-neighbor, where
t0 = 0 and tj = tj−1 + δj for j ≥ 1. Then, suppose that
{U(t)}t≥0 is a renewal process whose inter-renewal delays
are distributed according to Fδ(x):

U(t) :=

∞∑
j=0

1tj∈[0,t]. (12)

Note that U(t) counts the number of replacements that
occur in [0, t], where the first renewal always occurs at 0 (i.e.,
U(0) = 1) and U(t) = 0 for t < 0. Then, the expected number
of outbound connections generated along a single out-link of
w in the interval [0, t] is the renewal function u(t) := E[U(t)],
which can be expressed as [16]:

u(t) =

{
1 +

∑∞
r=1 F

∗r
δ (t) t ≥ 0

0 t < 0
, (13)

where F ∗r
δ (t) is the r-fold convolution of Fδ(t).

In passive systems where the failed neighbors are not
replaced, the counting process in (12) reduces to U(t) = 1t≥0.

B. Cost of Active Replacement

First notice that the number of edges generated along
each out-link during the lifetime of a user (i.e., in [0, L])
is a random variable U(L). Thus, the average number of
connections created per join is simply kE[u(L)], which is the
only contributor to the churn-related overhead of the system.
Informally speaking, this term depends on the number of out-
links k, search delay S, and the rate of churn 1/E[V ] in the
out-neighbors.

To understand this better, observe that connections gener-
ated by w during its presence in the system can be either initial
(i.e., during join) or replacement (i.e., during out-link repair).
This difference can be seen in Fig. 1, which shows two initial
and three replacement edges. Denote by

θ := kE[u(L)− 1] (14)
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the expected number of replacement edges thrown by a peer
during its lifetime. Then, the average rate at which out-links
are created by a live user in the system is:

λ =
k + θ

E[L]
=

kE[u(L)]

E[L]
. (15)

Note that the first term k/E[L] is responsible for the initial
edges and cannot be minimized unless k is reduced. The
second term, i.e., θ/E[L], is determined by the resilience of
out-links and may be controlled by either increasing the tail
weight of the lifetime distribution or changing function p(x)
to be more aggressively biased towards older peers.

C. Examples

While the expected search delay E[S] plays a major role
in out-degree resilience models [10], [26] regardless of its
magnitude, it has only a mild impact on link lifetimes and
their churn rate, unless it becomes comparable to E[V ]. Since
measurement studies have shown [21] that E[V ] is at least 1
hour and considering that finding a neighbor should not take
longer than 30 − 60 seconds, examples below often assume
that S is negligible.

Theorem 3: For exponential lifetimes, θ = k holds for
all p(x) and E[L]. For heavy-tailed lifetimes and uniform
selection, θ is always smaller than k, eventually reducing to
0 as R → ∞ in probability. For light-tailed lifetimes and
uniform selection, θ is always larger than k.

This result shows that by providing users with neighbors
whose remaining lifetimes R are stochastically larger than
L, Pareto systems exhibit smaller link-related churn and thus
lower overhead compared to the exponential case. In the best
scenario of α → 1 (i.e., R → ∞ almost surely), the amount
of replacement traffic can be reduced to zero, while the total
number of neighbor searches shrinks by half compared to
exponential lifetimes, i.e., from k + θ = 2k per user join
to k. As measurement studies show α ≈ 1.1 [1], [21] in real
P2P networks, this effect might be achievable in practice.

Under non-uniform selection, conclusion similar to Theo-
rem 3 hold, except the reasoning replaces residuals R with
out-link lifetimes V , i.e., the more heavy-tailed V , the smaller
θ. We can also state that the fraction of all connection requests
that come from initial edges is π = k/(k+θ). If this metric is
above 1/2 (i.e., heavy-tailed lifetimes), the system is driven by
join overhead. If it equals 1/2, then we have the exponential
case where both types of edges are equally likely. Finally, if
π is smaller than 1/2 (i.e., light-tailed L), then the system is
driven by edge failure.

We next compare θ against simulations, which we per-
form throughout the paper by emulating full graphs with
n heterogeneous users, each with its own ON/OFF renewal
process. The number of live peers at any time is approximately
half the system, i.e., E[N(t)] ≈ n/2. Simulations run for
a sufficient amount of time to make the system stationary
and achieve convergence of the metric being measured. Fig.
3 shows that (14) matches simulation results very well for
both uniform and age-proportional neighbor selection, remains
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Fig. 3. Model (14) and simulations of θ under Pareto L with E[L] = 0.5
hours and k = 5 (active system).

bounded by k as predicted in Theorem 3, and decreases as
shape α becomes smaller. Age-proportional maintains lower θ
compared to uniform, achieving θ → 0 as α → 2, which can
be explained by its V = Z = ∞ (almost surely) for α ≤ 2.

D. Passive Systems

When out-neighbor failure is ignored, we have θ = 0 and
thus λ = k/E[L], which represents the optimal case from the
overhead standpoint. On the flipside, passive systems throw
fewer edges for the same value of k and thus grow their
in-degree at a lower rate than active systems. To examine if
E[Din(τ)+Dout(τ)] can in fact stay bounded away from zero,
we first need to analyze in-link lifetime W , whose distribution,
combined with p(x), will eventually determine E[Din(τ)].

IV. IN-LINK CHURN

Our third contribution is to derive the distribution and mean
of in-link lifetime W , shedding light on its relationship to
residuals R of live peers and lifetime L of fresh arrivals. We
now focus on node v receiving edges from a random live
peer w. Unlike earlier analysis, link (w, v) is considered failed
when user w departs, not v.

A. Distribution and Mean

We start with the distribution of W and the average lifetime
of in-neighbors E[W ], the latter of which also allows us to
determine in-link failure rate µ = 1/E[W ].

Theorem 4: The CCDF of in-link lifetime is asymptotically:

F̄W (x) =
E[u(L− x)]

E[u(L)]
=

E[u(L− x)|L ≥ x]

E[u(L)]
F̄L(x) (16)

and its mean is:

E[W ] =
E[u(A)]

E[u(L)]
E[L]. (17)

Interestingly, (16) is very similar to (4), except the tail of W
now depends on that of L instead of A and the normalization
factor is determined by a monotonically increasing function
u(.) instead of p(.). The various cases considered following
Theorem 1 apply here as well, i.e., W is stochastically larger
than L for heavy-tailed lifetimes and smaller for light-tailed.

Consistency between model (16) and simulation results for
Pareto lifetimes is illustrated in Fig. 4. For uniform selection,
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Fig. 4. Comparison of (16) to simulations for Pareto L with α = 3.5, mean
0.5 hours, and k = 5 (active system).

Fig. 4(a) shows that W is stochastically smaller than residuals
R ∼ FA(x), but larger than L ∼ FL(x). This indicates that
peers throwing in-links are less reliable than random live users,
but more reliable than fresh arrivals. More interestingly, Fig.
4(b) shows that the tail of W under age-proportional selection
is lighter than that under uniform selection. This occurs
because of the lower churn rate θ/E[L] in the replacement
links and thus a higher fraction of inbound connections coming
from newly joining peers. Therefore, p(x) reduces message
overhead and increases resilience of out-links at the expense
of lowering resilience of in-links. In the worst case, FW may
“deteriorate” down to FL, which is reminiscent of the situation
occurring in DHTs [24], where it happens due to the arrival
of new users who take over the zones of existing neighbors.

B. Discussion

The distribution of W is rather complex, because in-links
are a combination of initial edges (with lifetime L) created by
joining peers and replacement edges (with some yet-unknown
lifetime Q) thrown by existing users. It was conjectured in
[25] that Q ∼ FA(x) is simply the residual lifetime of w. The
rationale for this was that a failed out-edge occurred equally
likely within the lifetime of w and thus w’s remaining uptime
Q had to follow FA(x).

Since Q is conditioned on the fact that w’s out-link has
failed at least once, we easily obtain that the distribution of Q
is more heavy-tailed than that of W ; however, its relationship
to FA(x) is far from obvious. In our next result, we aim to
address this question.

Theorem 5: As n → ∞, the tail distribution of replacement
in-link lifetime Q converges to:

F̄Q(x) =
E[u(L− x)]− P (L ≥ x)

E[u(L)]− 1
. (18)

Note that this result is meaningful only for active systems
since Q is undefined for networks that do not replace neigh-
bors. It is easy to verify that for exponential L, (18) produces
the usual Q ∼ FL(x); however, for lifetimes that exhibit
memory, we have yet another distribution that does not equal
any of FL(x), FW (x), or FA(x). Fig. 5 shows that the tail
of Q is “sandwiched” right between F̄W (x) and F̄A(x), i.e.,
W <st Q <st R, where <st means stochastically smaller.
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Fig. 5. Comparison of (18) to simulations for Pareto L with mean 0.5 hours
and k = 5 (active system).

While much of related work [8], [9], [10], [20], [26] has
focused on the lifetime of out-links, it turns out that in-links
have a much more interesting and complex behavior. Armed
with the distribution of W , we next obtain the in-degree of
live users.

V. IN-DEGREE

In our fourth contribution, we examine the aggregate edge-
arrival process to a live user v from the rest of the system
and obtain the distribution of its in-degree at different ages
τ . Recall that outbound connections from w increase the in-
degree of other peers in the network; however, this increase
is only temporary as all of the established out-links are
terminated when w fails at the end of its lifetime. Both
active and passive neighbor-replacement models [10], [25]
do not impose any limits on the in-degree (i.e., all inbound
connections are accepted) and rely on the system to be self-
balancing, i.e., higher in-degree means faster combined failure
of in-neighbors, which should lead to eventual stabilization of
in-degree at some finite value. The models developed later in
this section help us answer whether this conjecture is true.

A. In-Link Arrival Process

Recall that λ = (k + θ)/E[L] is the rate at which users
generate outgoing edges. Now, fix a node v and define
{Av(t)}t≥0 to be its age process, which is the time elapsed
since v’s last join into the system (if v is offline at t, then
Av(t) = 0).

Theorem 6: Under Assumption 1, the arrival process of in-
links to user v converges in distribution to a non-homogeneous
Poisson process with local rate λ(Av(t)), where

λ(x) := λ
p(x)

E[p(A)]
; (19)

furthermore, the corresponding in-link lifetimes converge in
distribution to iid random variables with CCDF (16).

Note that Theorem 6 applies to both passive and active
systems, where the only difference arises in parameter θ
(i.e., 0 for passive and (14) for active). We next focus on
understanding whether users can achieve a balance between
arrival of new in-edges and failure of existing ones.
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Fig. 6. Poisson result in Theorem 7 and simulations at τ = 1 hour under
Pareto lifetimes with α = 3, E[L] = 0.5, and k = 8 (active system).

B. In-Degree Distribution

As node connectivity, isolation probability, and routing
performance (e.g., coverage during flooding) rely on transient
properties of node in-degree, we specifically target small age
τ in our analysis.

Theorem 7: For a fixed age τ ≥ 0, in-degree Din(τ) of a
live peer v converges in distribution as n → ∞ to a Poisson
random variable with rate:

ν(τ) =

∫ τ

0

F̄W (x)λ(τ − x)dx. (20)

While this result shows a clear dependence of E[Din(τ)]
on the tail of W , an alternative form will be useful later.
Substituting (16) and (19) into (20), then expanding λ using
(15), yields:

ν(τ) =

∫ τ

0

E[u(L− x)]

E[u(L)]
· kE[u(L)]

E[L]
· p(τ − x)

E[p(A)]
dx

=
k

E[L]E[p(A)]

∫ τ

0

E[u(L− x)]p(τ − x)dx. (21)

In Fig. 6, we plot the distribution of in-degree Din(τ) for
max-age and age-proportional selection along with a Poisson
distribution with the mean in (21). As the figure shows, the
in-degree at given age τ follows the model very well.

C. Examples

The next question relates to our ability to simplify ν(τ).
For exponential lifetimes, the CDF of in-neighbor residuals
remains the same, i.e., FW (x) = FL(x) = 1−e−x/E[L]. From
Theorem 3, we have λ = 2k/E[L] and thus (20) becomes:

ν(τ) =
2k

E[L]E[p(L)]

∫ τ

0

F̄L(x)p(τ − x)dx. (22)

A more captivating case arises when L is not exponential.
To expand ν(τ) for general lifetimes, we need the next result,
which treats p(x) as a signed measure (i.e., difference between
two non-decreasing right-continuous functions). This allows
integrals to be taken with respect to dp(x), without forcing
p(x) to be differentiable or even continuous.

Theorem 8: For n → ∞, the mean in-degree of a live user
v at fixed age τ ≥ 0 is given by the Lebesgue-Stieltjes integral:

ν(τ) =
k

E[p(A)]

∫ τ

0

E[u(A)− u(A− τ + t)] dp(t). (23)
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Fig. 7. Comparison of the model for ν(τ) to simulation results for E[L] =
0.5 hours, α = 3, and k = 8 (active system).

Not surprisingly, max-age does not admit closed-form sim-
plification from any of (20), (21), or (23); however, invoking
Theorem 8 for the other three methods does lead to rather
interesting expressions. Note that renewal functions u(t) below
depend on p(x) and are thus unique to each formula.

Theorem 9: The step-function produces in (23):

νstep(τ) =
kE[u(A)− u(A− τ + x0)]

1− FA(x0)
· 1τ≥x0 , (24)

uniform selection exhibits νunif = kE[u(A)−u(A− τ)], and
age-proportional yields:

νage(τ) = k
(
τ
E[u(A)]

E[A]
− E[u(Z)− u(Z − τ)]

)
. (25)

Fig. 7 shows simulations of ν(τ), leveraging the simplest
available model for each case. The figures demonstrates that
the considered models are indeed very accurate, albeit some-
what sensitive to the size of the graph. Specifically, uniform
and max-age are accurate for n as small as 2K; however, the
age-proportional case (with its E[V ] = ∞ for α = 3) requires
n = 15K to maintain a large-enough pool of long-lived peers
for a sufficiently randomized neighbor selection.

Comparing the exponential and Pareto cases in Fig. 7(a)-
(b), notice that the latter saturates at a higher value (i.e.,
19.1 instead of 2k = 16) and delivers more edges to long-
lived users. This explains its smaller θ and lower overhead
discussed earlier. Interestingly, under uniform selection in (a)-
(b), saturation point ν(∞) = kE[u(A)] = λ/µ is simply the
ratio of the rates at which in-links arrive to a user (i.e., λ)
and at which they fail (i.e., µ = 1/E[W ]). This can be seen
by using x0 = 0 in (24) and letting τ → ∞, followed by
substitutions from (15) and (17).

The max-age strategy in Fig. 7(c) almost completely ignores
short-lived peers, but then starts accumulating in-degree at a
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more healthy pace, surpassing uniform selection by τ ≈ 1.2
hours and reaching 62 neighbors in 10 hours. A similarly in-
teresting case is age-proportional in Fig. 7(d), whose expected
degree also starts slow, gaining just 5.7 neighbors in the first
hour, but then becomes wildly aggressive, hitting 35 neighbors
in 3.7 hours and 112 in 10 hours. Eventually, it transitions to
a linear function proportional to kτE[u(A)]/E[A], reaching
the final point in the figure with 645 neighbors in 2 days.

D. Discussion

From (20) and assuming E[W ] < ∞, uniformly bounded
preference functions, i.e., p(x) ≤ M for some constant M and
all x, lead to finite mean degree ν(∞). Likewise, if p(x) is
allowed to grow in x to infinity, it follows that ν(τ) → ∞ as
τ → ∞. Since the number of connections at each host must
be bounded (e.g., due to shortage of sockets, bandwidth, and
processing power), we arrive at a surprising discovery that age-
proportional may lead to peer overload with traffic, rejected
connections, and possibly unbounded join delays. In fact, our
analysis shows that if selection is made using flooding or
random walks, which find nodes in proportion to their degree
and thus age, these strategies may also experience overload
and potentially be unsuitable for real networks.

VI. COMBINED DEGREE

Our fifth and final contribution is to analyze the behavior of
joint in/out degree, study resilience of the system, and examine
various ways to select preference function p(x).

A. Active Systems

It is not difficult to see that out-degree Dout(τ) is binomial
with parameters k and:

q(τ) = u(τ)− E[u(τ − V )] ≥ E[V ]

E[S] + E[V ]
, (26)

where the lower bound in (26) is the limit of q(τ) as τ → ∞.
For small mean search delays E[S] ≪ E[V ], the out-degree
may be considered virtually constant and equal to k for all τ ,
which means that the combined degree D(τ) in active systems
is that shown in Fig. 7 with k added to each point.

The initial degree k ensures the lowest guaranteed perfor-
mance at each node by keeping D∗ = infτ≥0{E[D(τ)]} ≥
kq(∞) ≈ k, which holds regardless of the neighbor selection
policy or distribution FL(x) as long as E[S] is small. The
expected saturation point E[D(∞)] = kq(∞) + ν(∞) is de-
pendent on p(x) and link lifetimes L. Under uniform selection,
exponential L produces E[D(∞)] = kq(∞) + 2k ≈ 3k,
while for Pareto lifetimes, this is typically only slightly higher
as seen from Fig. 7(b). The total message overhead is 2k
messages per join in the former case and k + θ in the latter.

Making p(x) more aggressive (e.g., by shifting x0 in the
step-function to larger values) makes V more heavy-tailed,
increases resilience of out-links, and reduces their failure rate
θ/E[L], but at the expense of also lowering the resilience of
in-links and increasing the degree of high-age peers. Assuming
the design calls for lower/upper bounds BL and BU on the ex-
pected degree, the parameters may be determined by obtaining
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Fig. 8. Combined expected degree under Pareto lifetimes with α =
3, E[L] = 0.5, and k = 8 (passive system).

k from D∗ ≥ kq(∞) = BL and x0 from ν(∞) = BU − BL.
In this case, the system is guaranteed to have the maximum
resilience and lowest message overhead among all solutions
that keep E[D(τ)] ∈ [BL, BU ].

B. Passive Systems

In this case, the network admits closed-form results that do
not depend on renewal function u(x). Recall that in passive
systems, failure rate θ = 0, in-link lifetimes W ∼ FL(x),
and E[u(X − a)] = P (X > a) for any random variable X .
Rewriting (21) and recalling that p(x) = 0 for x < 0, we get:

ν(τ) =
kE[p(τ −A)]

E[p(A)]
, (27)

which saturates at ν(∞) = kp(∞)/E[p(A)]. This shows that
unbounded functions p(x) may be unsuitable in practice not
just for active, but also passive, systems.

Simplifying (24), we get for the step-function:

νstep(τ) =
kFA(τ − x0)

1− FA(x0)
, (28)

which leads to the uniform case νunif = kFA(τ) via x0 = 0.
Expanding (25) results in:

νage(τ) = k
( τ

E[A]
− FZ(τ)

)
. (29)

The expected out-degree in passive networks is also very
simple and equals the mean number of neighbors whose
residual V is at least τ , i.e., E[Dout(τ)] = kF̄V (τ). Uniform
selection combined with its V ∼ FA(x) produces D(τ) =
kF̄A(τ) + kFA(τ) = k for all τ . The other two cases allow
the combined degree to dip below k, but then recover and
eventually exhibit D(∞) = 0 +Din(∞). This translates into
a limit equal to k/F̄A(x0) for the step-function in (28) and ∞
for age-proportional in (29).

Fig. 8 shows this effect in comparison to the uniform
case (drawn as a dashed line). Observe that the step-function
monotonically decays until τ = x0 and only then begins
to recover. The lowest point of the curve is determined by
FV (x0) since D∗ = kF̄V (x0), which is 4.5 and 2.88 for
the two cases in Fig. 8(a). The two saturations points are
D(∞) = k/F̄A(x0) = 18 and 72 neighbors, respectively.
Max-age behaves similarly and is omitted for brevity. The
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age-proportional case in Fig. 8(b) does not allow the average
degree to drop below 6.63, but its E[D(τ)] increases very
aggressively after 1 hour and eventually tends to infinity as
a linear function kτ/E[A] in (29). Interestingly, this rate is
exactly E[u(A)] times smaller than in the active case (25).

As age-proportional again fails to bound user degree,
we next analyze how to use the step-function to achieve
E[D(τ)] ∈ [BL, BU ] for all τ . Observe that this can be
satisfied with any combination of (k, x0) such that:{

D∗ = kF̄V (x0) ≥ BL

D(∞) = k/F̄A(x0) ≤ BU

. (30)

Additionally, recalling that the message overhead of the
system is proportional to λ = k/E[L], it makes sense to
minimize k among the pairs that conform to (30). In that
case, a unique optimal solution emerges as k = BL and
x0 = 0. This shows that uniform selection minimizes the
overhead among all methods that satisfy E[D(τ)] ≥ BL,
where parameter BU actually becomes irrelevant as long as
it is no smaller than BL.

The reason why enforcing the lower bound BL is so
important specifically in passive systems is that their vari-
ance in D(τ) is much higher than in active systems, where
E[S] ≪ E[V ] keeps the degree bounded away from zero.
Approximating D(τ) as a sum of two Poisson variables, it
follows that:

P (D(τ) = 0) ≈ e−E[Dout(τ)+Din(τ)] ≤ e−D∗ , (31)

meaning that the higher the mean of D(τ) at every point τ , the
less likely the system is to disconnect. Similarly, maximizing
D∗ helps improve resilience. In particular, under uniform
selection, we get P (D(τ) = 0) ≈ e−k, which suggests that
30 neighbors commonly seen in Gnutella are excessive even
for passive systems, which Gnutella is not. A more reasonable
k would be 12− 16 with (31) contained below 10−5 or 10−7.

VII. RELATED WORK

Behavior of P2P networks under node failure has become
a prominent area in analytical P2P research [2], [3], [6], [7],
[8], [9], [12], [10], [14], [17], [19], [26]. However, traditional
analysis is usually limited to exponential lifetimes, uniform
selection, and/or just out-links. Recent work [22] has ventured
into modeling the expected in-degree under uniform selection,
but did not address the more general cases considered here.
Their methodology and modeling approach are also different
from ours.

VIII. CONCLUSION

We introduced a novel stochastic framework for tackling
link lifetimes and degree evolution in random graphs under
churn, covering both passive and active systems under the
same umbrella. This work has shown that neighbor-selection
mechanisms and the lifetime distribution have a significant
impact on the properties of the system, including its message
overhead, node resilience to disconnection, and their ability
to function as part of the system. We also offered practical

guidelines for balancing the various tradeoffs and selection
system parameters.
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