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Agenda

e Background and Motivation
e Disconnection of Chord under Static Node Failure

* Disconnection of Chord under Dynamic Node Failure
— Node Isolation
— Graph Disconnection

o Stabilization Strategies
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Successor Sets in DHTsS

 We study one particular DHT, Chord U
— Each user maintains a list of » successors -
— When all of » successors of a node fall, the graph is disrupted

* Roles of Successor lists

— Successor lists ensure correctness of lookup and connection
of the graph, whereas routing tables are mainly used for
reducing lookup latency

— Unlike routing tables, a different strategy is used in Chord to
stabilize successor lists

* There exists strong dependency among successor lists
of consecutive users on the ring

— As lillustrated, the number of common successors shared by
two consecutive nodesisr — 1
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Background Node Failure in

P2P Networks

Static node failure Dynamic node failure
(.e., p-fraction) (i.e., churn)

T R OO

Gummadi 2003, Stoica 2003 Krishnamurthy 2005, Krishnamurthy
Kaashoek 2003, Leonard 2005 2004 (TR)

Leonard 2005
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Agenda

Disconnection of Chord under Static Node Failure

Disconnection of Chord under Dynamic Node Failure
— Node Isolation
— Graph Disconnection

Stabilization Strategies

Wrap-up
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Model Basics

e Suppose that each node in Chord correctly links to its r
closest successors

e Consider the resilience of Chord when each user
becomes dead with an independent probabillity p

— This is a one-time simultaneous failure event

e Note that Chord Is connected Iff each user has at least
one alive successor among ItS r» SUCCeSSOors
« Define a Bernoulli random variable X, for each node <:

. — 1 < is alive and its r successors failed
10 otherwise

— Call the event X, = 1 as isolation of node ¢ 6



Disconnection under Static Node Failure

 The number of isolated nodes in a system with n users

IS.
X Sum of dependent random
variables

* The probability that Chord is connected is equal to:
P(connected) = P (X = 0)

— Using the Erd6s and Rényi law, we obtain the next result

e Theorem 1: Given that r — oo as n — oo, the
probability that Chord remains connected under p-
fraction node failure is:

. P(X=0)
lIm =1

n—oo g—n(l—p)pt 7
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Disconnection under Static Node Failure

e Simulation results on the non-partitioning probability of

Chord

p=.933,r = [2logy n] n = 50,000, » = [10logy n |

n Simulations (13) p Simulations (13)
9417 9369 .89 9999
9373 9360 9 9997
9367 9360 .91 9983
9365 9360 .92 9918
9368« .9367 .93 9613
9363 9361 .94 8343
9393 9393 © .95 4514
9395 9394 .96 0371

8



Discussion

e Note that for r — oo as n — oo, node isolations
become rare events P(X. =1)= (1 -p)p" — 0

e The probability that Chord is connected can then be
transformed into:

P(X =0) = e =P = TT P(X; =0)
1 =1

— The above shows that variables X. behave as if they are
completely independent

— Though dependency among successors of consecutive users
IS very strong, Chord exhibits the same static resilience as
other P2P networks using maostly independent peers in their
routing tables (see Leonard 2005)

— The rate of convergence of P(X = 0) Is different 9
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Agenda

e Background and Motivation
e Disconnection of Chord under Static Node Failure

e Disconnection of Chord under Dynamic Node Failure
— Node Isolation
— Graph Disconnection

o Stabilization Strategies
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Model Basics

successors of user v

> time

il Rl n'la
- Ll L'l L

* Unlike static node failure, user arrivals/departures are
not synchronized in human-based P2P networks

e Model basics

— Each joining user obtains r closest successors and leaves the
system in L time units

— Each user performs stabilization every S time units on the
entire successor list

— At the end of each stabilization, bring the number of
successors back to r (old successors + newly arriving users)

— Denote by Z(t) the number of successors of user v at time ¢ ,
where time 0 is the time when v joins the system o



Exact Node Isolation Model

* Define the first-hitting time 7 onto state 0:
T =inf(t >0:2Z(t) =0|Z(0) =r)
« Lemma 1: For exponential user lifetimes with rate p

and exponential stabilization intervals with rate 6, {Z(t)}
IS a continuous-time Markov chain

«9{ 0 0
D O Eye
— Using the Markov chain, we obtain the PDF f(t) of T°

— The probability that node v is isolated due to the failure of the
entire successor list within v’s lifetime Is then:

o=P(T<L)= /ch‘; P(L > t) fp(t)dt 12
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Exact Node Isolation Model

=Y ° Simulation results on isolation probability ¢ for mean
o user lifetime E[L] = 30 minutes and E[S] = 2 minutes
P
-
+0 - del :

; = * o simuatons| * The model is accurate for
g 1B14 « exponential L and S
% E2. %
© % .  Asrincreases or F|S|

s 1E-3 - )
'q—)_ 2 * decreases, ¢ sharply
o 25 decreases
o S 1E5-
o « This exact model will be used
g = 1E6 \\.\.\ to verify the accuracy of our
5 1E-7 - *. later closed-form bounds on
3 \E-8 | | | * & when other distributions of
S o 4 &8 12 1  Sareused

r 13




Graph Disconnection

e Recall that X, is a Bernoulli variable indicating whether
node : IS I1solated within its lifetime due to the failure of
ItS successor list:

¢=P(X;=1)=1-P(X; =0)
— If X, = 0, the network is said to survive the presence of use

e Supposing that IV users have joined the system, the
number of isolations among /N continuous
join/departure events:

X Sum of dependent random
N :
variables
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 Open question: how do individual node isolations affect
the connectivity of Chord underchurn P(X,, = 0)? 1
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Graph Disconnection

» Define B, to be the set of users who share at least one
successors of user ¢

Bi={i—r+1,...,4,...,i+7r—1}

* For |B,| = 2r — 1, we use the Chen-Stein method to
show that X Is asymptotically a Poisson random
variable under the condition given below

e Theorem 2: Given that Nr¢ — 0 as N — oo, the
probability that Chord survives N user joins without
disconnection approaches:

P(Xy =0
im PN N) =1
N—00 (1 — Qb) 15
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Graph Disconnection

» Simulation results on P(X, = 0) that Chord

accommodates N joining users without disconnection

— r = §, mean system size 2,500, E|L] = 0.5 hours, and

p=E[L]/EI[S]
p = 40 (E[S] = 45 s) N = 50, 000
N Simul.  (46) | p | E[S]s | Simul.  (46)
1,000 9999 | 16| 112.5 | 4831  .4557
5,000 9995 | 24|| 75.0 | .9176  .9139
8, 000 9993 | 32/| 56.3 | .9833  .9829
10, 000 9991 | 40|| 45.0 9955
50, 000 9955 | 48|| 37.5 9985
100, 000 9910 | 56 | 32.1 19994
500, 000 9556 | 64+| 28.1 19998 5




Discussion

« A similar result P(X, = 0) = (1 — ¢)" was observed in

Leonard 2005 without proof where node isolations
thought neighbor sets are considered as independent
events

— Our result is formally proven and is stronger than Leonard
2005 since it applies to successor lists having dependency
during failure

* As node isolations become rare, the probability of non-
partitioning of Chord converges to that of avoiding
Isolation of each joining user

— Node isolation probability provides sufficient information to
predict the disconnection probability of Chord

— Next, we focus on node isolation probability when different
distributions of stabilization intervals are used
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Closed-Form Bounds on Node Isolation

Probability

successors of user v

ol »lad »lad »
M L N ¥

S ' S : S
* Note that the sequence of stabilization intervals forms
a renewal process with cycle length S
— The probability that all » successors fail in a particular interval
S Is given by:

f — P(maX{L?l}. o ,Lfr} < S)

remaining lifetime of
the i-th successor

 Based on renewal theory and Jensen’s inequality, we
derive a simple bound using f for isolation probability
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Closed-Form Bounds

« Theorem 3: For L ~ exp(u) and S ~ exp(60), isolation

>

5 probability ¢ is upper-bounded by: f ply!

> _

= ¢ <(aJ- ' (p+)!
= E[L] _ 0

S p = = —

< E[S] u

% Moreover, as p — oo, the upper bound becomes exact
|_

g p E[S] s exact model upper bound | Relative Error
G 10 | 180 1.46 x 10~ 229 x 10~* 57.05%

2 50 36 2.30 x 1078 2.61 x 108 13.41%

[ 100 18 | 2.66 x 10719 2.84 x 10~ 1° 6.85%

oS 200 9 2.55 x 10712 2.64 x 10~12 3.46%

= 500 | 3.6 | 4.74x 1071 4.80x 10715 1.29%

O 1,000 1.8 3.86 x 10717 389 x 10717 |7 0.69% 2




Uniform Stabilization Delays

 Theorem 4: For fixed r > 3 and E|L|, and uniform
intervals S € [0, 2E|S]], the ratio of isolation probability
¢, for uniform S to ¢ for exponential .S approaches:

T
im Se=teo 2y
E[S]—0 ¢ (r+1)!
f = P(max{Ly,...,Ly} < S)
* Model ¢,/¢ = .0127 for E[L| = 0.5 hours, r = 6
0 E[S] s | Simulations of ¢,,  Simulations of ¢ ¢, /¢

>
2
.
)
2>
c
-
=
oJ
<
(V]
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

20 90 2.15 x 10~° 7.10 x 10~° 0303
40 45 7.59 x 10~° 3.86 x 1076 0197
60 30 9.98 x 10~ 6.10 x 10~7 0164
80 22.5 2.28 x 109 1.62 x 10~° 0141

100 18 7.18 x 1010 5.59 x 1078 + (01284




Optimal Stabilization Strateqy

« Theorem 5: For exponential L and the same mean
E|S], isolation probability ¢ under constant
stabilization delays S is no greater than that under any
random S, where:

pp!

E[l,is?lo be = (@—l— -*r)!
p = E[L]/E[S]

 The above result shows that using constant intervals is
not only a simple but optimal method to stabilize
successors in Chord
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Wrap-up

e We derived formulas for the resilience of Chord’s
successor lists

— Under static node failure, Chord enjoyed the same resilience
through the successor list as many other P2P networks
though their neighbor sets

— Under dynamic node failure, we used the Chen-Stein method
to show that isolations of individual peers can be treated as
Independent when system size and successor lists become
large

 We analyzed the effect of periodic stabilizations

— Stabilization with constant intervals was optimal and kept
Chord connected with the highest probability
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