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Abstract—Several models of user churn, resilience, and link
lifetime have recently appeared in the literature [12], [13], [34],
[35]; however, these results do not directly apply to classical
Distributed Hash Tables (DHTs) in which neighbor replacement
occurs not only when current users die, but also when new
user arrive into the system, and where replacement choices are
often restricted to the successor of the failed zone in the DHT
space. To understand neighbor churn in such networks, this
paper proposes a simple, yet accurate, model for capturing link
dynamics in structured P2P systems and obtains the distribution
of link lifetimes for fairly generic DHTs. Similar to [8], our results
show that deterministic networks (e.g., Chord [28], CAN [24])
unfortunately do not extract much benefit from heavy-tailed user
lifetimes since link durations are dominated by small remaining
lifetimes of newly arriving users that replace the more reliable
existing neighbors. We also examine link lifetimes in randomized
DHTs equipped with multiple choices for each link and show
that users in such systems should prefer neighbors with smaller
zones rather than larger age as suggested in prior work [13],
[30]. We finish the paper by demonstrating the effectiveness of
the proposed min-zone neighbor selection for heavy-tailed user
lifetime distributions with the shape parameter α obtained from
recent measurements [4], [31].

I. INTRODUCTION

Resilience of distributed peer-to-peer (P2P) networks under
user churn has recently attracted significant attention and has
become an important research area [11], [12], [17], [25], [34].
Traditional metrics of performance in this analysis have been
the ability of the graph to stay connected during user departure
[13], [17], [23], behavior of immediate neighbors during churn
[11], data delivery ratio [30], evolution of out-degree [12] and
in-degree [34], and churn rate in the set of participating nodes
[8]. All metrics above depend on one fundamental parameter
of churn – link lifetime, which is defined as the delay between
formation of a link and its disconnection due to a sudden
departure of the adjacent neighbor.

In many P2P networks, each user v creates k links to other
peers when joining the system, where k may be a constant or
a function of system size [18], and detects/repairs failed links
in order to remain connected and perform P2P tasks (e.g.,
routing and key lookups) [24], [25], [26], [28]. Under fairly
general conditions on user lifetimes [12], [34], link behavior
is often modeled as an ON/OFF process in which each link is
either ON at time t, which means that the corresponding user
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is currently alive, or OFF, which means that the user adjacent
to the link has departed from the system and its failure is in the
process of being detected and repaired. ON durations of links
are commonly called link lifetimes and their OFF durations
are called repair delays. With this setup, it is not hard to see
that link lifetimes play a key role in the study of resilience,
performance, and reliability of P2P networks. For instance,
longer average link lifetime means that users must repair failed
links less frequently, which leads to smaller churn rates in the
terminology of [8], and queries are less likely to encounter
dead neighbors during routing [11], which yields larger data
delivery ratios [30] and higher lookup success rates.

If links do not switch to other users during each ON duration
(i.e., keep connecting to the same neighbors until they fail),
then link durations are simply residual lifetimes of original
neighbors. We call this model non-switching and note that it
applies to certain unstructured P2P networks [7] and some
DHTs [21]. Link lifetimes for non-switching systems have
been studied in fair detail under both age-independent [12],
[34] and age-biased [30], [35] selection. However, many DHTs
actively switch links to new neighbors before the current
neighbor dies in order to balance the load and ensure DHT
consistency. We call such systems switching and note that their
link lifetimes require entirely different modeling techniques,
which we present below.1

A. Analysis of Existing DHTs

We start by introducing a stochastic process that keeps track
of the changes in the identity of neighbors adjacent to the i-th
link of a given user v as the system experiences churn. We
show that this process is a regular semi-Markov chain whose
first hitting time to the absorbing state corresponding to the
failure of the last user holding the link is link lifetime R. Using
this model, we find that the distribution of R is determined
not only by lifetimes of attached users, but also by the zone
size of the original neighbor holding the link.

We next obtain the Laplace transform of the distribution of
R and derive its expected value E[R] for general user lifetimes
L, including heavy-tailed cases. We then use this result to
show that in systems with exponential peer lifetimes, link

1In the notation of [8], switching/non-switching are agnostic neighbor
replacement strategies, where the former is called Active Preference List
(APL) and the latter encompasses both Passive Preference List (PPL) and
Random Replacement (RR).



lifetime R follows the same exponential distribution, which
indicates that for such cases link lifetimes are very similar to
those in networks without switching [12]. However, for heavy-
tailed peer lifetimes (e.g., Pareto) observed in many real P2P
networks [4], [27], [31], our model of link lifetime R shows
that R is stochastically smaller than the residual lifetime Z
of the initial neighbor holding the link and, as first observed
in [9], the mean link lifetime E[R] is very close to E[L].
This is in stark contrast to the results of [12] where E[R] is
several times larger than E[L] depending on Pareto shape α of
the lifetime distribution (e.g., E[R] ≈ 11.1E[L] for α = 1.09
observed in [31] and E[R] ≈ 16.6E[L] for α = 1.06 observed
in [4]). This phenomenon occurs because older (i.e., more
reliable) neighbors in DHTs are replaced with new arrivals that
exhibit much shorter remaining lifetimes. As a result, classical
DHTs unfortunately do not extract any benefits from heavy-
tailed user lifetimes and suffer much higher link churn rates
than the corresponding unstructured systems [12]. A similar
conclusion was obtained in [8] for query failure rates in Chord.

B. Improvements

One method of overcoming the problem identified above
is to utilize randomized DHTs (e.g., randomized Chord [10],
randomized hypercube [20], and Symphony [19]) in which
the i-th finger pointer of a given user v is randomly selected
from some set Si of possible locations in the DHT space. By
trying multiple options in Si and linking to the user with the
best characteristics (which we determine below), the hope is
to improve link lifetime and reduce the impact of churn on
system performance.2 The first randomized technique, which
we call max-age, selects m points in Si uniformly randomly
and connects v to the user with the largest age (this method
was suggested in [30] for DHTs and [35] for unstructured P2P
systems). While quite effective in non-switching scenarios, this
strategy has minimal impact in DHTs since link lifetime is
determined by the remaining session length of not the first,
but the last neighbor holding the link.

To overcome this limitation, we propose a novel randomized
strategy that stems from our model of link lifetime R. Our
theoretical results show that neighbors with larger zones (e.g.,
in Chord [28], this means larger distance to the predecessor)
are less reliable as they are more likely to be hit by a new
arrival whose remaining lifetime will be small. To extract
benefits from randomized selection, we show that users must
prefer neighbors in Si with the smallest zone size rather
than maximum age or any other characteristic. We call this
strategy min-zone and show that it is vastly more effective
than max-age selection given lifetime distributions observed
in real systems [4], [31]. In addition to reduced link churn,
min-zone selection benefits DHTs by balancing the load such
that users with smaller zone sizes are responsible for fewer
keys while forwarding more queries.

Note that min-zone selection allows one to achieve a spec-
trum of neighbor-selection strategies, where m = 1 corre-

2Note that this method only works when set Si is sufficiently large. We
assume that each node has at least one link that satisfies this condition.

sponds to regular switching behavior of DHTs and m → ∞
(assuming |Si| → ∞) corresponds to a non-switching system
(in fact, different links of the same peer may use different m
depending on the size of each Si). However, unlike purely non-
switching networks that create inconsistences in finger tables
and sometimes require routing along successor/predecessor
links, min-zone selection always keeps the network consistent.

We finish the paper by showing that under min-zone selec-
tion and shape parameter 1 < α ≤ 2, the mean link lifetime
E[R] tends to infinity as the number of samples m becomes
large. We also suggest simple formulas for E[R] using exam-
ples of Pareto shape α obtained from recent measurements [4],
[31] and show simple results demonstrating the growth rate of
E[R] as a function of m.

The rest of the paper is organized as follows. Section II
overviews related work. Section III introduces our model of
user churn, DHT space, and zone splitting. In Section IV,
we propose a general model of analyzing link lifetimes based
on the semi-Markov chain associated with neighbor zone
occupancy. We then apply this model to examine link lifetimes
in deterministic DHTs in Section V and randomized DHTs in
Section VI. Section VII concludes the paper.

II. RELATED WORK

Among the recent studies of link lifetimes, one direction
focuses on non-switching P2P systems. Leonard et al. [12]
show that heavy-tailed lifetimes allow link lifetime E[R] to be
significantly larger than user lifetime E[L]. Additional results
of this model and its application to unstructured networks
are available in [13], [34], [35]. Another recent study [30]
examines DHTs without switching with a focus on the delivery
ratio, which is the fraction of time that all forwarding nodes
between each source and destination are alive. Their results
show that the delivery ratio is a function of link lifetime R
for all examined neighbor-selection techniques.

The other direction covers switching networks exemplified
by traditional DHTs. Godfrey et al. [8] study the impact of
node-selection techniques on the churn rate and observe that
switching DHTs exhibit dramatically smaller link lifetimes
than non-switching networks. Krishnamurthy et al. [11] com-
pute the probability that neighbors in Chord are in one of three
states (alive, failed, or incorrect) and use this model to predict
lookup consistency and latency.

Additional work [2], [5], [14], [15], [16], [25], [29] focuses
on measurement and simulation of structured P2P systems
under churn.

III. GENERAL DHT MODEL

We start by formulating assumptions on the DHT space,
churn model, and link switching in DHTs.

A. Assumptions

Without loss of generality, we assume that the network maps
keys and users into the same identifier (ID) space, which
is a continuous ring in the interval [0, 1) [22]. Each user is
responsible for a fraction of the DHT space from itself to its
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Fig. 1. User v’s neighbors in the DHT.

successor, which we call the user’s zone. To facilitate routing,
each joining peer v selects and then monitors using some
stabilization technique k links in the DHT space as shown
in Fig. 1(a).

For the churn model, we adopt the recently introduced [34]
framework of n alternating renewal processes representing
periodic online/offline behavior of users observed in real traces
[8], [31]. In this model, each user i is viewed as alternating
between online and offline states, where the duration of each
state is random and has some user-specific distribution. While
the total number of users n is fixed, the number of currently
alive peers Nt at time t is a random process that fluctuates over
time. Once stationarity is reached, we usually replace Nt with
its limiting version N = limt→∞Nt. We finally assume that
when a particular user rejoins the system, it generates a new
random ID (e.g., based on its IP-port pair) instead of using the
same fixed hash. Note that the use of new IDs helps balance
the load in the DHT [28], [32]. As a consequence of this churn
model [34, Theorem 5], user arrivals into the system follow a
Poisson process with a constant rate λ = E[N ]/E[L], where
E[N ] is the average number of users in the steady state and
E[L] is the mean user lifetime.

B. Neighbor Dynamics

Note that the main focus of the paper is on the behavior
of one particular link i in Fig. 1(a) and neighbors adjacent
to it during v’s online session. As user v continues to stay
in the system, the identity of its neighbors (i.e., successors of
its neighbor pointers) may change over time as users join and
leave the system. There are two types of changes in neighbor
tables – graceful handoffs of an existing zone to another user
and abrupt departures without explicit notification of v. The
former type, which we call a switch, occurs when a new arrival
takes ownership of a link by becoming the new successor of
the corresponding neighbor pointer. This is shown in Fig. 1(b)
where a new arrival w splits the zone of an existing neighbor
u and becomes the new neighbor of v. The latter type of
neighbor change, which we call a recovery, happens when an
existing neighbor dies (which is considered to be abrupt) and
the successor of the failed neighbor takes over that zone to
become the new neighbor of v.

We next define several additional metrics to facilitate ex-
planation in later parts of the paper. Notice that one cycle in
the life of a particular neighbor pointer is composed of several
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Fig. 2. The i-th link failure and replacement of user v who joins at time 0
in a DHT, 1 ≤ i ≤ k.

switches and one recovery as shown in Fig. 2(a). In the figure,
thick horizonal lines represent online presence of peers that
own v’s neighbor pointer in the DHT space. The topmost line
is the original neighbor with residual lifetime Z1 acquired by
v during join. As peers split the zone of the current neighbor,
the link switches to two additional users. Once the last user
dies at time R1, the link is considered dead and a replacement
process is initiated.3 Recovery is complete after S time units
when another node takes over the zone of the dead peer and
is selected as v’s new neighbor.

In all other aspects, the second recovery cycle behaves
identical to the first one and leads to link failure after R2

time units. This ON/OFF nature of a link process is shown
in Fig. 2(b) where we assume that all repair delays S are
i.i.d. random variables, but the distribution of link lifetimes
R1, R2, . . . may depend on the cycle number (in fact they do
in certain cases studied below).

The final note is that it is important to distinguish the
residual lifetime of the first neighbor from that of a link. While
in non-switching systems the former metric (e.g., variables
Z1, Z2, . . .) determine how long a link stays alive, this is no
longer the case in switching networks. Instead, the latter metric
formalized as R1, R2, . . . determines query performance and a
user’s ability to tolerate churn. Our next step is to understand
the behavior of these random variables under general lifetime
distributions.

IV. LINK LIFETIME MODEL

In this section, we construct a semi-Markov model for the
distribution of lifetimes R1, R2, . . . of a given link in a user’s
routing table.

A. Preliminaries

Recall that arriving users split zones of existing nodes based
on a uniformly random hashing function. Denote by U the
random zone size of existing users in a stationary system as
shown in Fig. 3(a). Further assume that during join or the
current recovery step that starts cycle j, successor u takes
over pointer i as shown in Fig. 3(b). Then, define Yj to be the

3Specifics of detecting failure are not essential to our results as repair delay
is not studied in this paper.
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Fig. 3. Zone size U and remaining zone size Yj of user u.

remaining zone size between this pointer and the index of u.
Intuitively, if the remaining zone Yj is large, then it is likely
that a new arrival will soon split the zone and the ownership
of the link will be transferred to another peer. Therefore, link
lifetimes are determined not by the distribution of U , but rather
by that of Yj . We derive both metrics later in the paper and
next show how they can be used to obtain R1, R2, . . .

For simplicity of notation, define conditional link lifetime
R(y) as the duration of the link conditioned on the fact that
the remaining zone size Yj is y > 0. Then, observe that the
CDF of link lifetimes Rj can be written as:

P (Rj < x) =
∫ ∞

0

P (R(y) < x)fYj (y)dy, (1)

where fYj (y) is the probability density function (PDF) of
remaining zone size Yj (note that the distribution of Yj

depends on cycle number j). Similarly, we can obtain the
expectation of Rj as:

E[Rj ] =
∫ ∞

0

E[R(y)]fYj (y)dy. (2)

Thus, the task of deriving link lifetime Rj is reduced to
analyzing the properties of conditional link lifetime R(y) and
the distribution of remaining zone size Yj . In the rest of
this section, we construct a semi-Markov process for each
R(y) and leave the derivation of the distribution of Yj for
deterministic DHTs to Section V and that for randomized
DHTs to Section VI.

B. Conditional Link Lifetimes

For each zone size y, let variable Ay
δ count the number of

switches (i.e., replacements by new users) that have occurred
along the link in the time interval [0, δ], where time 0 denotes
the instance when user v finds the first neighbor at the
beginning of the current cycle. Denote by Ay

δ = F a special
absorbing state into which Ay

δ arrives if the current neighbor
attached to the link is in the failed state at time δ.

Then, it is easy to see that {Ay
δ ; δ ≥ 0} is a continuous-time

stochastic process with state space {F, 0, 1, 2, . . .} whose state
transitions are shown in Fig. 4. As depicted in this figure, for
each state i ≥ 0, the process can jump into either state i + 1,
which means that a given zone is further split by a new arrival
(i.e., the number of switches increases by 1), or state F , which

0 1 m…

F

…

absorbing state, link failure

switchswitch switchswitch

Fig. 4. State diagram for the process {Aj
δ, δ ≥ 0} of neighbor changes.

represents link failure. The initial state of the process at time
0 is always 0.

Using notation {Ay
δ}, variable R(y) can be described as

the first-hitting time of process {Ay
δ} onto state F given that

Ay
0 = 0:

R(y) = inf{δ > 0 : Ay
δ = F |Ay

0 = 0, Yj = y}. (3)

The next theorem shows that {Ay
δ ; δ ≥ 0} is a semi-Markov

chain that describes the process of new users entering a given
zone of initial length y and repeatedly splitting it.

Theorem 1: Process {Ay
δ , δ ≥ 0} for a given remaining

zone size Yj = y is a regular semi-Markov chain. The sojourn
time τi in state i follows the following general distribution:

P (τi > x) =

{
P (W0 > x)P (Zj > x) i = 0
P (Wi > x)P (L > x) i ≥ 1

, (4)

where Zj is the residual lifetime of the first neighbor that starts
the j-th cycle, L is user lifetime with CDF F (x), Wi is an
exponential random variable with rate λi:

λi =
E[N ]y
E[L]2i

, i ≥ 0, (5)

and E[N ] is the mean system size. Furthermore, transition
probability pi,i+1 from state i to i + 1 is given by:

pi,i+1 =

{
P (W0 < Zj) i = 0
P (Wi < L) i ≥ 1

, (6)

and the probability pi,F to absorb from state i is equal to
1− pi,i+1.

Note from (5) that as the number of switches within a zone
(i.e., variable i) increases, arrival rate λi into state i decreases
exponentially fast and the mean waiting time Wi until the
next arrival increases at the same rate. As state i → ∞,
Wi → ∞ and thus process {Ay

δ} jumps into failed state F
with probability pi,F that converges to 1.

Next, we study the distribution and expectation of condi-
tional link lifetime R(y). Denote the CDF of the sojourn time
τi in state i by:

Gi(t) = P (τi < t). (7)

Noting from (4) that τi of chain {Ay
δ} is independent of

the next state, the matrix of the semi-Markov kernel Q(t) =
[qik(t)] is given by [6]:

qik(t) = pikGi(t), i, k ∈ {F, 0, 1, . . .}, (8)
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where pik is the transition probability from state i to state k
given in (6). Taking the Laplace (Stieltjes) transform of qik(t)
leads to:

q̂ik(s) =
∫ ∞

0

e−stdqik(t) = pik

∫ ∞

0

e−stdGi(t). (9)

Define the following Laplace transform of the first hitting
time R(y) from state 0 to F as:

R̂(s, y) = E[e−sR(y)]. (10)

Though it is known that the Laplace transform of the first-
hitting time of a semi-Markov chain can be computed using
spectral properties of kernel Q(t) [3], this approach hides the
effect of system parameters on the resulting distribution. Due
to the simplicity of state transitions of chain {Ay

δ}, we next
derive R̂(s, y) without involving matrix operations on Q(t).

Theorem 2: The Laplace transform R̂(s, y) of conditional
link lifetime R(y) is given by:

R̂(s, y) = q̂0F (s) +
∞∑

k=1

(
k−1∏

i=0

q̂i,i+1(s)

)
q̂kF (s), (11)

where q̂ik(s) are shown in (9).
With R̂(s, y) in hand, we can apply the inverse Laplace

transform to retrieve the distribution of R(y) and take the
derivatives of R̂(s, y) to get its moments. Next, we use a
simpler approach to obtain the mean E[R(y)].

Theorem 3: The expected conditional link lifetime is:

E[R(y)] = E[τ0] +
∞∑

k=1

(
k−1∏

i=0

pi,i+1

)
E[τk], (12)

where E[τk] is the expected sojourn time in state k shown in
(4) and pi,i+1 are state transition probabilities in (6).

Theorems 1–2 demonstrate that variable R(y) is fully de-
termined by user lifetimes L and residual neighbor lifetimes
Zj . Our remaining steps are to analyze the properties of Zj

and derive the distribution of remaining zone sizes Yj for both
deterministic and randomized DHTs.

V. DETERMINISTIC DHTS

In deterministic DHTs, each neighbor pointer of user v
is generated based on a fixed distance between the pointer
and the user. We start this section by deriving a model for
R(y) under two types of user lifetimes and then analyze the
distribution of residual zone size Yj .

A. Residual Lifetimes of Neighbors

Using the user churn model summarized in Section III-A,
it has been shown in [34, Theorem 3] that the equilibrium
CDF P (Z1 < x) of residual neighbor lifetimes under random
selection during join is a simple function of the user lifetime
distribution F (x):

P (Z1 < x) =
1

E[L]

∫ x

0

(1− F (u))du, (13)

where E[L] is the mean user lifetime. The next lemma shows
that (13) also holds for all j ≥ 2.
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Fig. 5. Comparison of model (14) to simulations in a deterministic DHT
with E[N ] = 2, 000 and exponential user lifetimes with E[L] = 1 hour.

Lemma 1: For all j ≥ 1, the CDF of residual lifetime Zj

of the initial neighbor that starts the j-th cycle converges to
(13) as system age approaches infinity.

It is important to emphasize that Lemma 1 holds when
switching occurs in DHTs in response to Poisson user arrivals
into the system and may not hold otherwise. When a neighbor
pointer switches to a new user, it loses track of which peer on
the ring will be the neighbor that will start the next cycle in the
link’s ON/OFF process. Hence, neighbor selection during link
recovery is essentially uniformly random among the existing
neighbors (due to random hash indexes) and independent of
the selected neighbor’s age.

Before we show simulation results in the next subsection,
we define rules for generating a DHT under churn. In simu-
lations, user arrivals follow a Poisson process with a constant
rate E[N ]/E[L], where the mean system size E[N ] and the
average user lifetime E[L] are determined a-priori. Each user
departs at the end of its lifetime L, which is drawn from a
given distribution F (x). In addition, each joining user obtains
a uniformly random hash index in [0, 1), follows the random-
split algorithm during join, and performs recovery when its
predecessors die. After the system has evolved for enough
time, we compare simulation results to the derived models.

B. Conditional Link Lifetimes

We next use exponential and later Pareto lifetimes to study
the behavior of R(y). Assume that user lifetimes L are
exponential with rate µ = 1/E[L]. Then, it is easy to obtain
from Lemma 1 that residual lifetime Zj of the initial neighbor,
for all cycles j ≥ 1, is exponential with the same rate µ. Using
L ∼ exp(µ) and Zj ∼ exp(µ) and invoking Theorem 2 leads
to the following result.

Theorem 4: For user lifetimes L with CDF 1− e−µx, link
lifetime Rj is independent of remaining zone size Yj and has
the same distribution as L:

P (Rj < x) = 1− e−µx, for all j ≥ 1, (14)

where µ = 1/E[L].
Model (14) is very accurate as shown in Fig. 5. Notice from

the left figure that E[Rj ] is equal to mean user lifetime E[L]
and from the right figure that the distribution of Rj is indeed
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exponential, which holds for any j ≥ 1 (only R3 is shown in
the figure).

The rationale behind Theorem 4 can be explained as
follows. Recall that Zj is the residual lifetime of the first
neighbor u that owns the neighbor pointer in each cycle.
Due to the memoryless property of exponential distributions,
the remaining time of Zj obtained at a random instant is
still exponential with rate µ, which matches the lifetime
distribution of new arrivals entering the same zone. Therefore,
it makes no difference whether a current neighbor u is replaced
by a new arrival or not. Then, it is not hard to see that
the link lifetime has the same distribution as Zj , which is
exp(µ). A similar scenario is observed in M/M/1 queues
[33] where customers can be interrupted during services and
the distribution of the total service time required for a customer
does not change.

Theorem 4 indicates that switching has no impact on link
lifetimes in any DHT with exponential user lifetimes, which
makes analysis of system performance in such systems very
simple. However, we should note that this result does not
hold for any non-exponential lifetime distribution. As recent
measurements of P2P networks show that user lifetimes are
often heavy-tailed [4], [31], we next use the Pareto distribution
P (L < x) = 1 − (1 + x/β)−α with shape parameter α > 1
and scale parameter β > 0 to estimate the performance of real
DHTs under churn.

For Pareto lifetimes, it is clear from Lemma 1 that the
residual lifetime Zj of initial neighbors follows the CDF
P (Zj < x) = 1−(1+x/β)−(α−1) for all j ≥ 1, which shows
that Zj are also Pareto distributed but more heavy-tailed. Next,
we apply Theorem 2 to obtain the Laplace transform R̂(y, s)
and Theorem 3 to obtain the mean of R(y).

Theorem 5: For Pareto lifetimes L, the mean conditional
link lifetime E[R(y)] is given by (12) with

E[τi] = βeλiβEαi(λiβ), pi,i+1 = λiE[τi] (15)

where arrival rate λi is given in (5), Ek(x) =
∫∞
1

e−xu u−kdu
is the generalized exponential integral, and

αi =

{
α− 1, i = 0
α i ≥ 1

. (16)

Furthermore, the Laplace transform R̂(y, s) is given by (11)
with

q̂i,i+1(s) = λiE[τi]A, q̂iF (s) = (1− λiE[τi])A, (17)

where A = 1 + (1 − λi − s)βe(λi+s)βEαi((λi + s)β), and
E[τi] is shown in (15) and αi in (16).

Fig. 6 shows that simulation results of E[R(y)] for any
fixed remaining zone size y are consistent with the model
given in Theorem 5. Moreover, notice from this figure that
as remaining zone size y reduces, E[R(y)] increases and
converges to E[Z1], where the distribution of neighbor residual
lifetime Z1 is given in (13).

We next derive the distribution of zone sizes in deterministic
DHTs in order to obtain a computable model for Rj .
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Fig. 6. Comparison of model E[R(y)] in Theorem 5 to simulation results in
a deterministic DHT with mean size E[N ] = 2, 000 and Pareto user lifetimes
L with mean E[L] = 1 hour and β = E[L](α− 1).

C. Zone Sizes

In order to determine the distribution of zone sizes U and
Yj in Fig. 3, we must decide on the zone splitting method. The
derivations below only cover the random-split [32] mechanism
(i.e., zones are split at hash indexes of arriving users) that is
used in Chord [28] and only considers one-dimensional DHTs.
A similar derivation can be carried out for the center-split
[18], [24] strategy (i.e., zones are always split in the center)
and multi-dimensional DHTs, but this analysis is much more
tedious and is not shown here.

Since all arriving users are placed in the interval [0, 1), the
average zone size is approximately 1/E[N ], where N is the
random system size in the steady-state.4 The next result states
that in equilibrium DHTs, zone sizes no larger than 1/

√
E[N ]

are distributed approximately exponentially. Since most zone
sizes do not deviate from the mean very far, this result directly
applies to random variable U defined earlier.

Lemma 2: As the mean system size tends to infinity, the
distribution of small zones in the DHT becomes approximately
exponential:

lim
E[N ]→∞

P (U > x)
e−E[N ]x

= 1 (18)

for all x such that x2E[N ] → 0.
Our next task is to obtain the distribution of remaining zone

size Yj in each cycle j ≥ 1.
Lemma 3: For a given zone size y, assume that y2E[N ] →

0 as E[N ] → ∞. Then, the PDF fYj (y) of remaining zone
size Yj is asymptotically:





lim
E[N ]→∞

fY1 (y)

E[N ]e−E[N]y = 1 j = 1

lim
E[N ]→∞

fYj
(y)

E[N ]2ye−E[N]y = 1 j ≥ 2
, (19)

where E[N ] is the mean system size in equilibrium.
Lemma 3 shows that the distribution of Y1 is exponential

and that of Yj for j ≥ 2 is Erlang-2. As shown in Fig. 7,
model (19) is very accurate even for small average system size

4Approximation E[1/N ] ≈ 1/E[N ] is asymptotically accurate as system
size tends to infinity.
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Fig. 7. Comparison of simulation results on the distribution of Yj to model
(19) in a deterministic DHT with mean size E[N ] = 500 under churn
introduced by Pareto L with α = 3 and E[L] = 1 hour.

E[N ] = 500 users. Additional simulation results confirming
(19) for larger E[N ] and different j are not shown for brevity.

D. Putting the Pieces Together

The final step is to apply (1) and (2) to uncondition the
distribution of link lifetime Rj and its mean E[Rj ] using the
distribution of initial zone size Yj given in (19). To this end,
substituting E[R(y)] shown in Theorem 5 and the PDF of
Yj in (19) into (2) leads to the final result on the mean link
lifetime E[Rj ]. Similarly, to get the distribution of Rj , we first
retrieve the distribution of R(y) from R̂(s, y) in Theorem 5
by applying an existing inverse Laplace transform software
package [1]. Then substituting the distribution of R(y) and
(19) into (1) leads to the final model of the distribution of
link lifetime Rj .

Fig. 8 shows simulations results and the model of the mean
link lifetime E[Rj ] and the average residual lifetime E[Zj ]
of the initial neighbor that starts the j-th cycle. The model of
E[Zj ] is obtained using (13) and the general solution to E[Rj ]
is given in (2). As shown in the figure, both models match
simulation results very well and as α becomes smaller, the
difference between E[Rj ] and E[Zj ] increases as expected.
The above results also show that the process of switching
to new users can significantly reduce the lifetime of a link
and that deterministic DHT systems with Pareto L can exhibit
E[Rj ] very close to E[L]. This is in contrast to unstructured
P2P systems where E[Rj ] can be 11 − 16 times higher than
E[L] depending on shape parameter α [4], [31].

Further observe from the model and Fig. 8 that link lifetimes
are completely characterized by two random variables R1 and
R2 since Rj for j ≥ 3 has the same distribution as R2. This
arises from the fact that zone size Y1 is different from Y2,
while Yj for j ≥ 3 are all distributed as Y2. Since Y1 is
stochastically smaller than Y2 (see Lemma 3), it follows that
R1 is stochastically larger than R2. Furthermore, from the
analysis of the Markov chain in previous sections, it becomes
clear that selecting neighbors with smaller initial zone sizes
leads to larger link lifetimes since such neighbors are less
likely to be replaced by newly arriving users and the link’s
E[Rj ] will be closer to E[Zj ].
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Fig. 8. Comparison of E[Rj ] to E[Zj ] in a deterministic DHT with mean
size E[N ] = 2, 500 users, Pareto lifetimes with mean E[L] = 1 hour, and
β = E[L](α− 1).
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Fig. 9. Link lifetimes R4 are less heavy-tailed than Pareto user lifetimes
L in a deterministic DHT with mean size E[N ] = 2, 500 peers, E[L] = 1
hour, and β = (α− 1)E[L].

The most intriguing result shown in Fig. 8 is that E[Rj ] for
all j ≥ 2 is very close to the mean user lifetime E[L] under
different values of α (e.g., E[R4] = 0.986 hours for α = 3
and 1.096 for α = 2.2). However, from the model of the tail
distribution of link lifetime R4 shown in Fig. 9, observe that
the distribution of Rj for j ≥ 2 is actually different from
that of lifetime L and is less heavy-tailed than the original
distribution. A similar result holds for other values of α and
other distributions, which we do not show for brevity.

VI. RANDOMIZED LINKS

Our analysis suggests that since the user arrival process
into a DHT is unchangeable, peers may utilize knowledge of
residual lifetime Zj of the initial owner of a given link and
remaining zone size Yj to improve link lifetime Rj . In the
following, we make use of the freedom of selecting links in
randomized DHTs to achieve the goal of increasing Rj using
two link-selection strategies.

A. Max-Age Selection

The first strategy we apply for selecting neighbor pointers is
called max-age [30], [35]. In this technique, which we explain
using the example of Randomized Chord [10], user v with
hash index id(v) ∈ [0, 1) uniformly randomly samples m
points in the range [id(v) + 2i/264, id(v) + 2i+1/264) and
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Fig. 10. Impact of shape α and number of samples m on mean link
lifetime E[Rj ] under max-age selection in a randomized DHT with mean
size E[N ] = 2, 000 for Pareto lifetimes with E[L] = 1 hour and
β = E[L](α− 1).

selects the point whose successor has the maximum age as its
i-th neighbor pointer. Note that switching occurs as described
before (i.e., when new users split a given zone and replace
existing neighbors) and link failure is repaired by replacing
the dead neighbor (i.e., the last user holding the link) with the
current successor.

It is clear that link lifetimes Rj for all cycles j ≥ 1 have the
same distribution since the neighbor pointer in each cycle is
uniformly randomly generated within a certain range of users
(as mentioned before, we assume the range is large enough
to support non-trivial choices). Simulation results of max-age
selection and the model of E[Zj ] from [35] are shown in
Fig. 10. First notice from part (a) that for a fixed number of
samples m = 6, as shape α decreases, the mean link lifetime
E[Rj ] increases much slower than the mean residual lifetime
E[Zj ] of the initial neighbor (in fact, E[Zj ] = ∞ for α ≤
2). A similar phenomenon appears in part (b) where E[Zj ]
increases at the rate of

√
m for α = 3 (see [35, Lemma 5]),

while E[Rj ] rises from 1.17 hours to only 2.09 hours as m
increases from 1 to 19. These two subfigures demonstrate that
the improvement in terms of the mean link lifetime E[Rj ]
under max-age selection is generally very small since new
arrivals sooner or later split initial neighbors to take ownership
of the link and hence ages or residual lifetimes of original
neighbors do not affect link churn rate very much.

B. Min-Zone Selection

To reduce the likelihood that new arrivals replace old neigh-
bors when splitting a given zone, we propose a new strategy
called min-zone. Similar to the max-age method, user v uni-
formly samples m points in [id(v)+2i/264, id(v)+2i+1/264),
but then selects the point whose successor has the minimum
zone size.

To obtain a model for E[Rj ] under min-zone selection, first
note that residual lifetime Zj of the initial neighbor starting
the j-th cycle follows the distribution given in (13) since all m
samples are uniformly random and zone sizes are independent
of user ages or lifetimes. It is then clear that for a fixed
remaining size Yj = y, the Laplace transform and the mean
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Fig. 11. Comparison of mean link lifetime E[Rj ] under min-zone selection
to that under max-age selection in a randomized DHT with mean size E[N ] =
2, 000 for Pareto user lifetimes with E[L] = 1 hour and β = E[L](α− 1).

conditional link lifetime given in Theorem 5 are both still
valid. Next, given that initial zone size Yj is minimum among
m uniformly randomly selected samples, we readily obtain:

P (Yj > y) = [P (U > y)]m , for all j ≥ 1, (20)

where U is the zone size of a randomly selected user on the
ring whose limiting distribution shown in (18). The final step
is to combine Theorem 5 and (20) to obtain the distribution
of Rj and its mean under min-zone selection.

As shown in Fig. 11, the model of E[Rj ] matches simulation
results very well. Most interestingly, the figure demonstrates
that the mean link lifetime E[Rj ] under min-zone selection
is significantly larger than that under max-age selection for
both choices of α and that the difference between the two
metrics becomes more pronounced as the number of samples
m increases or shape α decreases. Furthermore, this figure
suggests that as m → ∞, E[Rj ] for min-zone selection and
α < 2 goes to infinity, while E[Rj ] for max-age selection
converges to some fixed number regardless of α. The following
theorem confirms this result.

Theorem 6: For Pareto user lifetimes with 1 < α ≤ 2, the
expected link lifetime under min-zone selection approaches
infinity for sufficiently large system population and random
sample size: limE[N ]→∞ limm→∞E[Rj ] = ∞. For max-age
selection and any α, the mean link lifetime converges to a
constant: limE[N ]→∞ limm→∞E[Rj ] < ∞.

The above analysis indicates that min-zone selection is
significantly better than max-age selection for very heavy-
tailed user lifetimes. Since real systems have been observed
to exhibit α ≈ 1.06 in [4] and α = 1.09 in [31], this result
paves a simple way for building better DHTs in practice.
The amount of actual improvement in E[Rj ] for these two
values of α is shown in Fig. 12, where the growth rate in both
curves is approximately linear in m. The figures also show the
corresponding linear fits to the model, which can be used to
predict how m affects link lifetime E[Rj ] in these two cases.
For instance, with α = 1.09, users can obtain E[Rj ] ≈ 76
hours by sampling m = 10 points for each suitable (i.e.,
with enough random choices) link in a randomized DHT. For
α = 1.06, the corresponding average link lifetime is 127 hours.
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Fig. 12. Approximation of E[Rj ] as a linear function of number of samples
m under min-zone selection for Pareto user lifetimes with E[L] = 1 hour
and β = E[L](α− 1).

Comparing these numbers to E[Rj ] ≈ E[L] = 1 hour in
deterministic DHTs, the extent of improvement is undoubtedly
dramatic.

VII. CONCLUSION

This paper formalized the notion of “link lifetimes” in
certain types of DHTs where link pointers switch to new
neighbors in response to arriving peers. We introduced a semi-
Markov process to model random replacement of neighbors
along a given link and showed that lifetimes of deterministic
links are much worse than those in unstructured P2P networks
with heavy-tailed user lifetimes. For randomized DHTs, our
results show that the proposed min-zone selection method is
substantially more effective than the commonly-used max-age
selection strategy and the mean link lifetime E[Rj ] under min-
zone selection can be increased approximately linearly in the
number of points m each user v samples.

Future work involves development of more sophisticated
algorithms for increased DHT resilience, analysis of non-
Poisson arrivals, and analysis of asymptotically small networks
where limiting results similar to Theorem 6 do not hold.
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