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AgendaAgendaAgenda

• Motivation and background
━ Terminology, assumptions, and related work

• Generic node isolation model

• Max-age selection

• Age-proportional random-walk selection

• Wrap-up
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TerminologyTerminologyTerminology

• Resilience of unstructured P2P networks
━ Ability of a network to remain connected under node failure, 

which is fundamental to system performance

• User churn
━ Each user stays in the system for L random time units

• Out-degree
━ Joining users select  k neighbors

• Neighbor replacement
━ Detection of failed neighbors and replacement with existing 

peers occur within S time units (can be fixed or random)
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Heavy-tailed 
lifetimes

Background Background Background Resilience

Local: isolation of individual 
nodes before they depart

Global: disconnection 
of the graph

Out-degree Joint in/out-degreeDisconnection iff a 
node is isolated

Leonard 2005
Yao 2006

Real unstructured 
P2P networks

Exponential 
lifetimes

Pandurangan 2001, 
Liben-Nowell 2002, 
Krishnamurthy 2005, 
Leonard 2005

No prior work
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Model BasicsModel BasicsModel Basics
• Neighbor residual lifetimes R

━ The time duration from the instance a peer is selected by 
user v as a neighbor until the peer departs

• This metric depends on neighbor selection strategies
━ Some strategies may find users with large residual lifetimes 

with high probability while others may not

time tv when v selects a neighbor
R

L: user lifetime
peer 1

peer 2

peer 3
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Model Basics 2Model Basics 2Model Basics 2

• Neighbor failure/replacement is an ON/OFF process

• Node out-degree evolution

R: residual lifetime

S: search delay

the i-th
link

L: user lifetime

W(t) isolation time
T

isolation probability: 
P(T < L)

k

neighbor alive
neighbor 

dead
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Out-Degree Process OutOut--Degree Process Degree Process 

• Determining the first-hitting time of W(t) to zero (i.e., 
isolation time T) is difficult unless W(t) is Markovian
━ Idea: replace the distribution of ON/OFF durations with a 

hyper-exponential approximation (see paper for details)
━ It is well-known (Feldmann 1998) that any completely 

monotone density function (e.g., Pareto, Weibull) can be 
approximated by a hyper-exponential PDF with arbitrary 
accuracy

• Theorem 1: For hyper-exponential neighbor residual 
lifetimes R and hyper-exponential search delays S, 
the out-degree process {W(t)} is a continuous-time 
Markov process
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Node Isolation ProbabilityNode Isolation ProbabilityNode Isolation Probability

• Theorem 2: Given that {W(t)} is a Markov process, 
the PDF fT(t) of the isolation time T can be obtained 
using the transition rate matrix of process {W(t)} 
shown in the paper
━ Then, it is straightforward to obtain:

the CCDF of 
user lifetimes

node isolation 
probability
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Accuracy of Node Isolation ModelAccuracy of Node Isolation ModelAccuracy of Node Isolation Model
• Simulation results on isolation probability φ for 
E[L] = 0.5 hours and k = 7 under uniform selection

• Our model can be used to compute φ in networks with 
various types of lifetimes and different neighbor 
selection strategies
━ As long as the distribution of neighbor residual lifetimes can 

be approximated by a hyper-exponential distribution

consistent

shape parameter
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Rules for Selecting NeighborsRules for Selecting NeighborsRules for Selecting Neighbors

• Higher resilience (i.e., smaller isolation probability) is 
achieved by selecting neighbors with larger residual
lifetimes
━ When it is impossible to obtain future knowledge of user 

remaining lifetimes R, user age A may be used as a robust 
predictor of R

• In systems with heavy-tailed lifetimes (e.g., Pareto, 
Weibull, and Cauchy), users with larger age
demonstrate stochastically larger residual lifetimes.

• For light-tailed lifetimes (e.g., uniform distributions), it 
is the opposite
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13C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

Basics of Max-Age SelectionBasics of MaxBasics of Max--Age SelectionAge Selection

• Suppose that each user v publishes its joining time tv
to its neighbors, so that they knows v’s current age: 
t — tv, where t is the current time

• Each user uniformly selects m alive users at random 
from the system and chooses the one with the maximal
current age as its neighbor 
━ Uniform selection can be implemented using special random 

walks on the graph (Zhong 2005)
━ When m = 1, the max-age approach reduces to the simple 

uniform approach

• Denote by Um the residual lifetime of the user whose 
age is maximal among m uniformly selected peers 
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Neighbor Residual LifetimesNeighbor Residual LifetimesNeighbor Residual Lifetimes
• Theorem 3: For any heavy-tailed lifetime distribution, 

larger m implies a stochastically larger neighbor 
residual lifetime Um:

U6 is stochastically 
larger than U1

Open question: how does 
m affect the obtained 

benefits?

See the paper for the formula 
of the distribution of Um

Simulation results on the tail 
distribution of Um for α = 3
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Neighbor Residual Lifetimes 2Neighbor Residual Lifetimes 2Neighbor Residual Lifetimes 2

• Theorem 4: For Pareto lifetimes L with CDF 
F(x) = 1 — (1 + x/β)—α, the mean residual lifetime 
E[Um] is proportional to m1/(α — 1) for α > 2 and non-
trivial m
━ If α = 3,                         
━ For α → 2, the increase in E[Um] is more aggressive:

━ If α ≤ 2, the mean is infinite

• Max-age selection is much more effective in systems 
with more heavy-tailed lifetimes (e.g., smaller α)
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Node Isolation under Max-Age SelectionNode Isolation under MaxNode Isolation under Max--Age SelectionAge Selection
• By approximating the distribution of Um with a hyper-

exponential distribution, we readily obtain isolation 
probability using our general node isolation model

m=6, α=3, and k=7 α=2, and k=7, E[S]=6 mins

isolation probability 
approaches 0 as 

m → ∞matches 
simulation results
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DiscussionDiscussionDiscussion

• The max-age selection strategy requires sampling m
users per link
━ The overhead may not scale well for large m

• Much higher resilience can be achieved by more 
aggressively preferring users with large age

• We thus next propose a more efficient and effective 
neighbor selection strategy for heavy-tailed lifetimes
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Basics of Age-Proportional SelectionBasics of AgeBasics of Age--Proportional SelectionProportional Selection

• We introduce a new age-biased neighbor selection 
method to ensure that the probability that user v is 
selected by another peer is proportional to its current 
age Av:

• This approach is based on random walks on directed 
and weighted graphs
━ It provides a distributed solution that requires only one

sample per link

the set including all existing users
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Random WalksRandom WalksRandom Walks
• Assume that each user makes its current age and in-

degree known to its in-degree neighbors
━ The weight of each link is determined by the current age and 

in-degree of the node that the link points to

• Random walks are performed by alternating between 
walking along incoming and outgoing links
━ The probability that a link is chosen is proportional to its 

weight
━ The stationary distribution of the random-walk algorithm is:

u v

achieves the 
desired result
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Neighbor Residual LifetimesNeighbor Residual LifetimesNeighbor Residual Lifetimes

• Theorem 5: For random-walks where the above 
stationary distribution holds, the tail distribution of 
residual lifetimes R of selected neighbors is:

• For Pareto lifetimes F(x)=1 — (1 + x/β)—α, α > 2, the 
above yields:

• The mean E[R] is β/(α — 3) if α > 3, and is infinite 
otherwise

the mean age the user lifetime distribution

The shape is 
reduced by 2
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Node Isolation Probability for α > 2Node Isolation Probability for Node Isolation Probability for αα >> 22

• Simulation results on node isolation probability under 
age-proportional selection for Pareto L and k = 7

— Isolation probability is 104 times 
smaller than that under uniform 
selection for α = 2.5

— Isolation probability converges 
to 0 as α → 2

— In contrast, this metric under 
max-age selection does not 
tend to 0 unless m→ ∞ or 
α → 1 (both impossible to 
achieve in practice)
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Node Isolation Probability for α ≤ 2Node Isolation Probability for Node Isolation Probability for αα ≤≤ 22

• Theorem 4: For age-proportional random walks, Pareto 
lifetimes with 1 < α ≤ 2, any number of neighbors k ≥
1, and any type of search delay (including S = ∞), as 
system age     and size n converge to infinity, node 
isolation probability approaches: 

• Gnutella has been shown to have α between 1.06
(Bustamante 2003) and 1.09 (Wang 2007)
━ These networks under age-proportional random walks 

approach an ideal system with zero node isolation probability 
as users join/depart the system
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Node Isolation Probability for α ≤ 2Node Isolation Probability for Node Isolation Probability for αα ≤≤ 22

• Simulation results of node isolation probability without 
replacing neighbors (i.e., S = ∞) for Pareto lifetimes

monotonically 
decreases as system 

age increases
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Wrap-upWrapWrap--upup

• We developed a general node isolation model for any 
completely monotone density function of neighbor 
residual lifetimes
━ We applied this model to study node isolation behavior 

under uniform, max-age, or age-proportional random-walk 
selection to demonstrate its versatility

• We proposed a new neighbor selection strategy, age-
proportional random walks
━ Under proposed neighbor selection, P2P networks with 

heavy-tailed lifetimes with α ≤ 2 become progressively more 
resilient over time and approach a system with zero node 
isolation probability, as more users join the system
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