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Abstract—This paper builds a generic modeling framework for
analyzing the edge-creation process in dynamic random graphs in
which nodes continuously alternate between active and inactive
states, which represent churn behavior of modern distributed
systems. We prove that despite heterogeneity of node lifetimes,
different initial out-degree, non-Poisson arrival/failure dynamics,
and complex spatial and temporal dependency among creation
of both initial and replacement edges, a superposition of edge-
arrival processes to a live node under uniform selection converges
to a Poisson process when system size becomes sufficiently large.
Due to the convoluted dependency and non-renewal nature of
various point processes, this result significantly advances classical
Poisson convergence analysis and offers a simple analytical
platform for future modeling of networks under churn in a wide
range of degree-regular and -irregular graphs with arbitrary
node lifetime distributions.

I. INTRODUCTION

Many contemporary distributed systems (e.g., P2P [7], [23]
and wireless ad-hoc networks [25], [26]) and large data-centric
applications (e.g., Google MapReduce [5], Amazon EC2 [6])
can be modeled as decentralized graphs in which nodes rely
on communication services and computational power of other
hosts in the system. An important characteristic of these
networks is their robustness to node churn, which includes
topology randomization, operation under failure, and dynamic
link rewiring to accommodate arriving/departing entities.

Previous research has analyzed multiple avenues for un-
derstanding and improving such networks, which includes
ensuring connectivity [11], balancing load [27], reducing graph
diameter [17], improving resilience [14], [31], mitigating chan-
nel interference [1], understanding routing mobility [25] and
flooding [26], and optimizing capacity [4], [9], [19]. While
relying on a separate model for each study is acceptable in
certain cases, the field of dynamic distributed systems has
reached sufficient maturity that calls for a unifying foundation
that can explain the limiting behavior of the aggregate edge
process of the system and pave the way for rigorous analysis
of diverse application-specific metrics.

This paper considers a system of n nodes, each of which
alternates between dead/alive (i.e., ON/OFF) states that rep-
resent the online/offline behavior of the corresponding user
or host. Upon joining the network, each node i creates a
routing table consisting of ki ≥ 1 initial out-degree neighbors
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selected from the pool of available participants. Upon failure
of neighbors, each node replaces them with other live users in
order to keep its routing table up-to-date, where all selections
are made uniformly randomly.

The first half of this paper focuses on the edge-creation
process {Wi(n, t)}t≥0 of each user i, which is the number of
edges injected from i into the system in [0, t], including those
in response to failure of neighbors. Note that it is important to
differentiate between the initial edges created when i arrives
in the system and replacement edges generated when i repairs
failed links. The latter type creates complicated dependencies
between the nodes and poses the main challenges we address
later in the paper.

In the second half of this paper, we deal with edge arrival
from n−1 users to a given live node v. We prove that despite
user heterogeneity, non-Poisson arrival dynamics, irregular
initial out-degree, and two types of dependent edge-creation
processes (i.e., initial and replacement), the aggregate edge-
arrival process from the system to each live node v converges
in distribution as n → ∞ to a Poisson process with fixed rate

γ =
k + θ

l
, (1)

where k is the average initial out-degree across all users, θ
is the mean number of replacement neighbors that an existing
user obtains during its ON duration, and l is the average uptime
across all nodes.

II. RELATED WORK

The first classical area that deals with dynamic graphs falls
under the umbrella of mobile ad-hoc networks. Some of the
recent work [3], [25] deals with routing under the uniform
speed-limited mobility model, which allows these systems to
be modeled in the framework of uniform neighbor selection
studied in this paper. Additional results [26] explicitly rely on
the Poisson assumption on edge arrival to each user, but do
not formally establish the basis for it.

The second classical area of dynamic graphs studies the
behavior of P2P networks under churn [2], [4], [8], [10],
[12], [13], [16], [18], [22], [23], where measurement studies
[28] have shown that P2P users are highly volatile (i.e.,
join and depart frequently). Traditional analytical work in
P2P [13], [16], [23], [24] relies on a single homogeneous
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Fig. 1. Process {Zi(t)} depicts ON/OFF behavior of user i = 1, . . . , n.

Poisson process that describes the arrival of all users. With
the exception of [24], these studies additionally require that
user lifetimes be exponentially distributed, which clearly does
not hold in practice [28]. Other P2P modeling studies [14],
[15], [30], [31] focus on local neighbor failure/replacement
processes to understand how they affect user isolation and
ultimately resilience of the system to partitioning.

Prior work has led to interesting insight into performance
of random graphs under dynamic edge behavior; however,
the question of whether these conclusions hold under more
complex node activities remains open. It is our belief that
the existing analysis would greatly benefit from the rigorous
explanation of how random graphs under churn develop Pois-
sonian dynamics and the specific closed-form expressions for
the arrival rate established below.

III. GENERAL EDGE-CREATION MODEL

We start by formalizing the user join/departure model and
the out-link model of dynamic networks. We use notation
“node” and “user” interchangeably throughout the paper.

A. Overview

Each node becomes active when arriving in the system or in-
active when departing from the system. Define Zi := {Zi(t)}
to be an ON/OFF right-continuous process on time interval
[0,∞), indicating online/offline states of user i:

Zi(t) :=

{
1 user i is ON at time t

0 otherwise (OFF)
, t ≥ 0, (2)

where i = 1, 2, . . . , n, and n is the number of participating
nodes. Define random variables Li,m > 0, Di,m > 0 to be the
m-th durations of user i’s ON and OFF periods, respectively.
Denote by {τi,m}∞m=1 the arrival times of user i, as illustrated
in Fig. 1, and by {Mi(t)} the point process that counts the
number of times i joins the system in the interval [0, t]:

Mi(t) :=
∞∑

m=1

1τi,m∈[0,t], (3)

where τi,m+1 = τi,m + Li,m +Di,m, for m ≥ 1.
Whenever arriving in the network, each user i creates ki

out-links to other nodes, which it continuously monitors and
repairs as its neighbors become dead. Denote by Y c

i :=
{Y c

i (n, t)} the alternating process representing the states of
i’s out-link c:

Y c
i (n, t) :=

{
1 out-link c of user i is ALIVE at t
0 otherwise (DEAD)

, (4)
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Fig. 2. Process {Y c
i (n, t)} indicates DEAD/ALIVE behavior of the c-th

out-link of user i, for c = 1, . . . , ki.
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Fig. 3. Process {Uc
i (n, t)} counts the number of DEAD→ALIVE transitions

within the current ON/OFF cycle of i.

for c = 1, . . . , ki and t ≥ 0, where ALIVE means that the
neighbor adjacent to this link is currently online and DEAD
means that the neighbor has become failed and a replacement
is being sought. If node i is offline at t, all of its links are
considered DEAD.

As depicted in Fig. 2, user i’s link c becomes ALIVE at
arrival times {τi,m}m≥1 and then alternates between DEAD
and ALIVE states during i’s ON periods. Note that DEAD
durations are search delays1 for finding replacement neighbors
and ALIVE durations of Y c

i are residual lifetimes of selected
neighbors with the exception of the very last ALIVE cycle
before i leaves, which is terminated by i’s departure rather
than neighbor failure.

Whenever Y c
i transitions from DEAD to ALIVE, user i

creates an edge (i.e., performs one selection). Define initial
edges to be those added when users arrive in the system (i.e.,
whenever Zi transitions from OFF to ON) and replacement
edges to be those added in response to neighbor failures.
The collection of processes {Y c

i }i,c contains elements with
rather complex inter-dependency since multiple nodes may
concurrently connect to the same neighbor and a given user
i may select the same node v multiple times during different
ON durations of i (see the introduction for more discussion).

Define {U c
i (n, t)} to be a right-continuous process that

counts the number of transitions DEAD→ALIVE of Y c
i within

the current ON/OFF cycle of i up to time t, which is shown
in Fig. 3. We assume U c

i (n, τi,m) = 1, use notation t− to
represent the instant just prior to t, and denote by

U c
i (n, τ

−
i,m+1) = sup

τi,m≤t<τi,m+1

U c
i (n, t) (5)

the number of selections for link c in the m-th ON cycle of
user i.

1We assume that search delays are negligible compared to user lifetimes.
The impact of search delays on graph dynamics is not studied in this paper,
but can be found in, e.g., [14].
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Finally, the number of selections that i performs for link c
across all of its ON durations in [0, t] is given by

W c
i (n, t) := U c

i (n, t)− U c
i (n, 0) +

Mi(t)∑
m=1

U c
i (n, τ

−
i,m), (6)

where Mi(t) is the number of arrivals of i in [0, t]. Then, define
the edge-creation process Wi(n, t) of user i as the superposi-
tion of ki processes W c

i , i.e., Wi(n, t) :=
∑ki

c=1 W
c
i (n, t).

Observe that
∑n

i=1 Wi(n, t) is the number of out-degree
edges generated by n users in [0, t], which is the same as the
number of in-degree edges received by live users in [0, t].

B. Assumptions

We first split the system into K unique user types to model
the heterogeneous nature (i.e., diversity) of user behavior (e.g.,
K = 1 reduces the system to a network of homogeneous users)
and mandate that all average online/offline durations be both
positive and finite.

Assumption 1: There exists a fixed set F of K ≥ 1 distinct
user types, which are specified by pairs of continuous CDFs
(F (j)(x), G(j)(x)) that define non-negative random variables
whose means

l(j) :=

∫ ∞

0

(1− F (j)(x))dx (7)

d(j) :=

∫ ∞

0

(1−G(j)(x))dx (8)

satisfy 0 < l(j), d(j) < ∞ for all j = 1, . . . ,K. Furthermore,
F (j)(x) > 0 and G(j)(x) > 0 for all x > 0, all j = 1, . . . ,K.

We next allow for bias in the selection process and let
certain user types be more popular than others.

Assumption 2: Each Zi is associated with a pair of CDFs
(Fi(x), Gi(x)) that is independently drawn from set F , where
type j is selected with probability pj ≥ 0 and

∑K
j=1 pj = 1;

We finally ensure that once users have chosen their types
(i.e., ON/OFF duration CDFs), {Zi(t)}ni=1 evolve as indepen-
dent stationary renewal processes.

Assumption 3: Defining S to be set of selections made
by each user and conditioning on S, set {Zi(t)}ni=1 con-
sists of mutually independent, stationary alternating renewal
processes, where ON durations {Li,m}∞m=1 are independently
identically distributed (i.i.d.) with CDF Fi(x) and OFF dura-
tions {Di,m}∞m=1 are i.i.d. with distribution Gi(x).

We next regulate the initial out-degree of each user, ensuring
that all ki are uniformly bounded as n → ∞ and there is no
dependency between Zi and ki.

Assumption 4: The initial out-degree ki of each user i is
independently drawn from some distribution K(x) with mean
k whose probability space is upper-bounded by a constant
independent of n. Furthermore, given that users have set their
ki, the number of out-degree neighbors each user i connects
to at arrival times τi,m is ki for all m ≥ 1.

For simplicity of notation, conditioning on user type, define
li := E[Li,m|i’s type] and di := E[Di,m|i’s type] to be the

mean ON/OFF durations of each user i, respectively. Let

λi := (li + di)
−1 (9)

be the arrival rate of user i into the system. To ensure
stationarity, the first arrival time τi,1 is defined as

τi,1 :=

{
Le
i +Di with probability (w.p.) ai

De
i w.p. 1− ai

, (10)

where Le
i has the equilibrium distribution of Fi(x) (i.e.,

P (Le
i < x) = (li)

−1
∫ x

0
(1 − Fi(u))du, x ≥ 0), De

i has the
equilibrium distribution of Gi(x), and ai := li/(li + di) is
user i’s availability.

C. Properties

In this subsection, we focus our attention on the properties
of aggregate user lifetimes and residual lifetimes of selected
neighbors, upon which we compute the rate of edge-creation
from each user in the next section.

For each instance of user i being present in the system
during interval [0, t], place its ON duration Li,m into set
Si(t) and define S(t) = ∪n

i=1Si(t). Then let F (n, t, x) be
the CDF of values collected in set S(t) (i.e., the probability
that the obtained lifetimes are less than or equal to x). Given
n participating users, define F (n, x) := limt→∞ F (n, t, x) to
be the aggregate lifetime distribution of the system and l(n)
to be its mean. By [30, Theorem 1], the aggregate lifetime
CDF F (n, x) and its mean l(n) for any finite n ≥ 1, are
respectively given by

F (n, x) =

n∑
i=1

biFi(x), l(n) =

n∑
i=1

bili, (11)

where bi := λi/
∑n

j=1 λj and λi is defined in (9). The
asymptotic results on F (n, x) and l(n) are given below.

Lemma 1: Under Assumptions 1-3, the following se-
quences converge almost surely (a.s.) as n → ∞:

F (n, x)
a.s.−−→ F (x) :=

∑K
j=1 pjλ

(j)F (j)(x)

λ
, (12)

l(n)
a.s.−−→ l :=

a

λ
, (13)

where λ(j) := 1/(l(j)+d(j)) is the arrival rate of type j, λ :=∑K
j=1 pjλ

(j) is the average arrival rate across all user types,
a :=

∑K
j=1 pja

(j), and a(j) := l(j)/(l(j)+d(j)). Further, F (x)
is a proper CDF function and 0 < l < ∞.

Now, suppose node v picks a random currently-alive user
i as a potential neighbor. Denote by Ri(t) the remainder of
the current ON cycle of user i, as illustrated in Fig. 4, and by
Hi(x) its CDF:

Hi(x) := P (Ri(t) ≤ x|Zi(t) = 1), (14)

which is invariant in t due to stationarity of Zi. It is known
from [29] that for x ≥ 0: Hi(x) = (li)

−1
∫ x

0
(1− Fi(u))du.

Next, define R(n, t) to be the residual lifetime of the user
uniformly randomly selected from among peers that are alive
at time t. Let N(n, t) :=

∑n
i=1 Zi(t) be the system population
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Fig. 4. Residual Ri(t) is the remaining online duration of user i until it
departs, conditioned on Zi(t) = 1.

at that time and denote by H(n, x) the distribution of R(n, t)
conditioned on at least one user being alive:

H(n, x) := P (R(n, t) ≤ x|N(n, t) ≥ 1). (15)

The next lemma shows that under uniform selection, the
residual CDF H(n, x) can be reduced to a simple function of
the aggregate lifetime CDF F (x).

Lemma 2: Given Assumptions 1-3 and uniform selection,
H(n, x) defined in (15) converges a.s. to

H(n, x)
a.s.−−→ H(x) :=

1

l

∫ x

0

(1− F (u)) du, (16)

as n → ∞, where F (x) and l are given in (12)-(13).
Recalling that ALIVE durations of Y c

i are residual lifetimes
of selected users and applying (16), we next study edge-
creation processes {Wi(n, t)}ni=1.

IV. EDGE CREATION

Denote by δi,z the z-th time at which user i makes a
selection, across all links of i, and by Iji,z the indicator that
user i selects peer j for its z-th connection. Note that the z-
th selection time δi,z of user i is determined by the ON/OFF
process Zi and residual lifetimes of i’s all previous selections
z′ < z. This indicates that the history observed by i up to time
δi,z helps i predict whether the previously selected peers are
alive at δi,z . The model for the number of users available for
selection at time δi,z is rather intricate due to the dependence
on i’s past selections.

In the following, we first deal in Lemma 3 with uniform
integrability (UI) of set {(Wi(n, t))

r}n≥1, where Wi(n, t) is
the number of edges created by i in interval [0, t], and then
prove in Lemma 4 that residuals R(n, δi,z) of selected neigh-
bors at random times δi,z ≤ t are asymptotically independent.
These two critical results make the distribution of R(n, δi,z)
tractable and lay the foundation for studying the edge-creation
process in Theorem 1.

A. Preliminaries

We start by addressing UI of set {(Wi(n, t))
r}n≥1.

Lemma 3: With Assumptions 1-4 and uniform selection, for
each user i and all t ≥ 0, collections {(Wi(n, t))

r}n≥1 are
uniformly integrable in n, for any r > 0.

Lemma 3 is needed to show that E[(Wi(n, t))
r] converge

as n → ∞, for all r > 0, and that the intensity measure
E[Wi(n, t)] of each edge-creation process is finite.

Lemma 4: Under the same assumptions as in Lemma 3,
residuals {R(n, δi,z)}z≥1 of selected neighbors at random
times δi,z are asymptotically independent and converge in
distribution as n → ∞ to i.i.d. r.v.’s with CDF H(x) in (16).

The rationale behind Lemma 4 can be explained as follows.
Intuitively, as the pool of users available for selections be-
comes larger, the probability that user i selects any other peer
more than once in interval [0, t] diminishes. In other words, for
sufficiently large n, it is more likely that the set of neighbors
that i connects to in [0, t] contains distinct peers. Therefore,
given the assumption that each user’s arrival/departure times
are independent of any other nodes’, the CDF of residuals
selected at δi,z approaches that of residual R(n, t) of a
randomly selected user in (16).

For simplicity of notation, denote by {U(t)}t≥0 a pure
renewal process (with a point at time 0) whose cycle lengths
follow H(x) in (16). The expected number of renewals (i.e.,
points) in interval [0, x] is given by [21]

E[U(x)] = 1 +
∞∑
r=1

H∗r(x), (17)

where H∗r(x) is the r-fold convolution of H(x).
Using the regenerative property of process {U c

i (n, t)} de-
fined in (5), we next show that E[Wi(n, t)] can be reduced to
a function of E[U(t)] in (17).

Theorem 1: Assuming the same as in Lemma 3, the mean
number of edges that user i generates in [0, t] converges as
n → ∞ to

E[Wi(n, t) | i’s type, ki] → kiλit

∫ ∞

0

E[U(x)] dFi(x), (18)

where ki is i’s initial out-degree, λi is its arrival rate, Fi(x)
is its lifetime CDF, and E[U(x)] is given in (17). Uncondi-
tionally,

lim
n→∞

E[Wi(n, t)] = (k + θ)λ t, (19)

where λ is the arrival rate shown in (13), k is the mean
initial out-degree, θ := k

∑∞
r=1

∫∞
0

H∗r(x)dF (x) is the mean
number of replacement neighbors that i selects in its lifetime,
and F (x) is the aggregate lifetime distribution in (12).

To understand (18), recall that the mean number of arrivals
of user i in interval [0, t] is simply λit due to stationarity
of renewal process {Zi(t)}. During each ON duration Li,
i generates E[U(Li)] edges on average for out-link c, for
c = 1, . . . , ki. The total number of edges created in [0, t]
is thus kiλitE[U(Li)], which leads to (18) upon expanding
E[U(Li)]. Averaging (18) over user types and initial out-
degree, we reach (19).

We are now ready to examine the process of incoming edge
arrival to a given live user in the system.

B. Superposition of Edge Arrival Processes

We set aside a given user v (so the values of Zv(·) are
given) and examine edge arrival to this user from n− 1 other
peers under uniform selection.
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Define ξn,i(t) :=
∑Wi(n,t)

z=1 Ivi,z to be the number of edges
delivered by user i to node v in [0, t], for i ̸= v, where Ivi,z is
the indicator that i selects v at time δi,z . Then, the edge-arrival
process from n− 1 other nodes to user v is the superposition
of processes ξn,i:

ξn(t) :=

n∑
i=1,i ̸=v

ξn,i(t) =

n∑
i=1,i ̸=v

Wi(n,t)∑
z=1

Ivi,z. (20)

Invoking Lemmas 3-4 and Theorem 1 and applying the
result on the convergence of random measures in [20, Propo-
sition 3.22], we reach the main result of this paper.

Theorem 2: Under Assumptions 1-4 and uniform selection,
conditioned on Zv , the point process ξn defined in (20)
converges in distribution as n → ∞ to a non-homogeneous
Poisson process ξ with local rate γZv(t), where Zv(t) is a
deterministic function of t,

γ := (k + θ)/l, (21)

k and θ are in (19), and l is the mean lifetime given in (13).
The local rate γZv(t) in Theorem 2 means that when user v

remains alive in the system (i.e., Zv(·) = 1), the instantaneous
rate of edge arrival to v is the constant γ; otherwise it is 0
(i.e., no users connect to v when it is offline). This immediately
implies that unconditioning Zv, the edge-arrival process ξn to
user v converges in distribution to a Cox process directed by
the random process Zv.

Theorem 2 states that despite multiple user-types, non-
Poisson user-arrival dynamics, and complex edge-creation de-
pendencies, the arrival of edges to any online user v is Poisson,
which holds for any pair of online/offline distributions that fall
under the assumptions introduced earlier. This allows future
work to obtain relatively simple models for many important
metrics (e.g., in-degree, routing load) that are interesting to
network designers.

V. CONCLUSION

We introduced a generic framework for modeling user
join/departure and edge arrival in distributed systems under
churn, which allows tractable analysis of system dynamics
as n → ∞. Using this framework, we developed theoretical
results on the edge-arrival process to each user and paved the
way for future analytical work in this area that tackles load
balancing, dynamic topology adaptation, routing distances, and
other important issues.
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[22] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in

a DHT,” in Proc. USENIX ATC, Jun. 2004, pp. 127–140.
[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions,” in Proc. ACM SIGCOMM, Aug. 2001, pp. 149–160.

[24] G. Tan and S. Jarvis, “Stochastic Analysis and Improvement of the
Reliability of DHT-based Multicast,” in Proc. IEEE INFOCOM, May
2007, pp. 2198–2206.

[25] D. Tschopp, S. Diggavi, and M. Grossglauser, “Hierarchical Routing
over Dynamic Wireless Networks,” in Proc. ACM SIGMETRICS, Jun.
2008, pp. 73–84.

[26] M. Vojnovic and A. Proutiere, “Hop Limited Flooding over Dynamic
Networks,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 685–693.

[27] X. Wang and D. Loguinov, “Load-Balancing Performance of Consistent
Hashing: Asymptotic Analysis of Random Node Join,” IEEE/ACM
Trans. Networking, vol. 15, no. 4, pp. 892–905, Aug. 2007.

[28] X. Wang, Z. Yao, and D. Loguinov, “Residual-Based Estimation of Peer
and Link Lifetimes in P2P Networks,” IEEE/ACM Trans. Networking,
vol. 17, no. 3, pp. 726–739, Jun. 2009.

[29] R. W. Wolff, Stochastic Modeling and the Theory of Queues. Prentice
Hall, 1989.

[30] Z. Yao, D. Leonard, X. Wang, and D. Loguinov, “Modeling Heteroge-
neous User Churn and Local Resilience of Unstructured P2P Networks,”
in Proc. IEEE ICNP, Nov. 2006, pp. 32–41.

[31] Z. Yao, X. Wang, D. Leonard, and D. Loguinov, “Node Isolation Model
and Age-Based Neighbor Selection in Unstructured P2P Networks,”
IEEE/ACM Trans. Networking, vol. 17, no. 1, pp. 144–157, Feb. 2009.

5


