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Abstract— Previous analytical results on the resilience of un-
structured P2P systems have not explicitly modeled heterogeneity
of user churn (i.e., difference in online behavior) or the impact
of in-degree on system resilience. To overcome these limitations,
we introduce a generic model of heterogeneous user churn,
derive the distribution of the various metrics observed in prior
experimental studies (e.g., lifetime distribution of joining users,
joint distribution of session time of alive peers, and residual
lifetime of a randomly selected user), derive several closed-form
results on the transient behavior of in-degree, and eventually
obtain the joint in/out degree isolation probability as a simple
extension of the out-degree model in [20].

I. INTRODUCTION

Peer-to-peer (P2P) networks have recently emerged as an
efficient and highly resilient platform for large-scale dis-
tributed applications. One of the fundamental problems in
comprehending how these systems behave is the analysis of
their properties during user churn, which is a general term
describing arrival/failure of individual nodes in the system and
repair algorithms applied by surviving users to counteract the
effects of abrupt departures. Unlike other distributed systems
where failures may be considered rare or abnormal, most P2P
networks constantly remain in the state of churn and embrace
frequent failures as part of their normal operation.

While many metrics of a system (e.g., search latency, path
existence probability, efficiency of routing, message overhead,
file popularity) affect its usefulness to the user, one commonly
studied problem in the literature is the ability of P2P networks
to stay connected in the face of random failures [1], [4], [8],
[11], [14], [18], [19], [20], [22], [24], [31], [28], [34]. It may
be argued that compromised connectivity is one of the most
fundamental byproducts of churn that directly affects routing
efficiency and other metrics observed by the user. However,
before resilience and performance of P2P networks can be
fully understood, a good model of churn is required since even
today most analytical models that consider churn [18], [20],
[24], [28] do not completely capture the inherent heterogeneity
of users, the impact of in-degree on the resilience of the sys-
tem, or the behavior of P2P networks under non-exponential
lifetimes.

A. Churn Model

We start the paper with a goal of modeling churn in P2P
systems and striking a balance between model complexity and
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its fidelity. Our focus for the time being lies with networks
in which neighbor selection occurs only during the initial
join into the system and failure of an existing neighbor. This
framework is commonly used in unstructured P2P imple-
mentations (such as the ultra-peer layer of Gnutella) where
replacement takes place as a reactive response to failed keep-
alive messages. Certain DHTs in which neighbor pointers do
not have to change after arrival of new users (e.g., Randomized
Chord [25]) fall into this category as well.! This type of
churn was originally formalized in [20], where Leonard et
al. equipped users with random lifetimes L; that determined
the duration of their presence in the system and modeled
neighbor replacement using random delays .S; that included the
timeouts to detect each failure and protocol delays to actually
obtain a new neighbor. This model, however, treated P2P users
equally in their online characteristics (i.e., all user lifetimes
were drawn from the same distribution) and did not consider
their offline behavior as having any impact on churn.

Heterogeneity of lifetimes is a fundamental property of
P2P systems where some users consistently spend substantial
periods of time in the system and others very little. This
observation prompts the question of whether P2P systems
can indeed be modeled using a single homogeneous lifetime
distribution without sacrificing model accuracy? In addition to
lifetimes, churn is characterized by the distribution of offline
durations, which together with lifetimes define the availability
of each user [6], [33], i.e., the average fraction of time a
user is logged in. It is therefore important to understand how
offtimes contribute to the dynamics of the system and which
peer characteristics affect local graph-theoretic properties (e.g.,
distribution of in and out-degree at each time ¢, probability
that a given neighbor is alive, isolation probability within a
lifetime) of each user.

To answer these questions, we offer a generic churn model
that captures the heterogeneous behavior of end-users, in-
cluding their difference in online habits and diversity of
offline “think time.” We view each user as an alternating
renewal process that is ON when the user is logged in and
OFF otherwise, where online/offline durations are drawn from
(potentially different) distributions F;(z) and G;(z) unique
to each user ¢. This approach captures the fact that the same
user in subsequent sessions is likely to exhibit characteristics
resembling those of its prior sessions, while simultaneously
allowing for cases where similarity between different users is
arbitrarily low.

! Analysis of other types of DHTs where arriving users actively replace
existing neighbors will be covered in a separate paper.



Armed with this model, we obtain the distribution F'(z) of
lifetimes of newly arriving users, the joint lifetime distribution
J(x) of the users currently in the system, and the residual
lifetime distribution H(z) of a randomly selected alive user
in the network. Our results show that all three metrics are
weighted functions of individual lifetime distributions F;(x),
where H (z) is additionally dependent on the number of alive
users currently in the graph, the probability that user 7 is picked
by a joining peer, and the conditional residual lifetimes of
the neighbors chosen by the selection method. The model for
H(z) is extremely complex and generally intractable unless
neighbor selection is performed uniformly among the alive
users®, in which case we show that H(z) can be directly
obtained from F'(z). This is an important conclusion that
demonstrates that instead of measuring n individual lifetime
distributions, where n is the total number of users participating
in the system, one can measure lifetimes of joining users to
obtain F'(z), which is then sufficient to entirely model the
effect of churn on P2P graphs.

We also revisit the observation of [35] that the users already
present in Gnutella and BitTorrent networks exhibit larger
average lifetimes than those joining the system. We show that
this effect is a consequence of J(x) being the spread [39] of
distribution F'(z), which allows us to prove that random users
currently in the system have stochastically larger lifetimes than
random arriving users regardless of the shape of distributions
Fi(z) and G;(x). We additionally show that while F'(x) may
be heavy-tailed as observed in practice [7], [12], [23], it is
possible that individual lifetime distributions F;(x) may all
be exponential, or contain a mix of exponential and heavy-
tailed distributions. Occurrence of this effect depends on
random availability of each user and shows that conclusions
on the individual habits of peers may not be drawn from their
aggregate behavior F'(z).

B. Local Resilience Model

In the second half of the paper, we tackle the issue of
node resilience to isolation in the presence of churn under the
assumption that neighbors provide mutual resilience benefits to
each other (i.e., both outgoing and incoming edges increase re-
silience of peers). Prior work [20], [21] showed that many P2P
graphs stayed connected if and only if they did not develop
isolated nodes during churn and derived that individual node
isolation probabilities were functions of p = E[L;]/E[S;],
where E[L;] was the mean lifetime of homogeneous users
and E[S;] was the mean search (i.e., node-replacement) delay.
However, despite its importance, this approach only modeled
the out-degree of each user and did not consider the increased
resilience arising from additional in-degree edges arriving “in
the background” to each user during its stay in the system.

We overcome this shortcoming and build a complete closed-
form model characterizing the evolution of in-degree in un-
structured systems under the assumption of uniform neighbor
selection. We first show that under certain mild assumptions

2This can be implemented by picking users from uniformly random subsets
of cached nodes or using special random walks on the graph [40].

the edge arrival process to each user tends to a Poisson distri-
bution when the system size becomes sufficiently large, which
is consistent with recent observation of this phenomenon in
certain real networks [35]. We then derive the transient dis-
tribution of in-degree as a simple function of F'(x), including
cases with non-exponential peer lifetimes, and show that users
who stay online longer quickly accumulate non-trivial in-
degree and become much more resilient to isolation over time.
This outcome was intuitively expected as it makes sense that
current unstructured P2P networks have been designed such
that users with more contribution to the system (i.e., longer
lives) become better connected over time and provide more
search capabilities to their neighbors. In contrast, the original
model of [20] showed that P2P users became progressively
more susceptible to isolation as their age increased.

We finish the paper by combining the in and out-degree
isolation models into a single approximation that clearly shows
the contribution of in-degree to the resilience of the graph.
Denoting by ¢ the isolation probability of a user (i.e., loss
of all neighbors within its lifetime) and by ¢,,; the same
metric with only the out-degree being considered [20], we
show that for exponential F'(x) the following holds as search
delays become asymptotically small (i.e., tend to zero):

1— e—Qk
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where k is the initial number of neighbors obtained by
each arriving user. This result illustrates that the amount of
improvement from the in-degree amounts to approximately a
factor of 2k reduction in the isolation probability. Also note
that for non-negligible search delays, ratio ¢,,:/¢ is larger
than implied by the worst-case bound in (1), but does not
admit a simple closed-form expression. We finish the paper
with examples and simulations that demonstrate this effect.

II. RELATED WORK

One of the first models of churn was proposed in [28], which
assumed an unstructured P2P system with Poisson arrivals
and departures that could be modeled as an M/M/1 queue.
Neighbor replacement in this system was in direct response to
failures and was assumed to be instantaneous, where the pos-
sibilities for replacement were limited to the nodes currently
alive in a certain centralized cache. The paper showed that
under user churn the graph remained connected and exhibited
a logarithmic diameter, both with high probability.

Later models of churn [24] and recently [18] assumed a
DHT-like system in which repair algorithms were run in-
dependently of user failures and at exponentially distributed
intervals (i.e., as Poisson processes). This approach modeled
the consistency check algorithm in Chord, which periodically
verified the successor list and corrected invalid pointers. While
viable in general, this model required Chord to change neigh-
bors frequently (i.e., 2(logn) new neighbors per half-life)
and stabilize at rather high rates [18] since repairs were not
correlated with actual successor failures. Additionally, these
models assumed homogeneous exponential lifetimes and Pois-
son arrival/departure processes with no way of generalizing
their results to non-exponential system dynamics.



Fig. 1. Churn model depicting ON/OFF behavior Z;(¢) of user 4.

A different approach was undertaken in [20], where neigh-
bor replacements were explicitly initiated in response to failed
links. In this setup, each joining user randomly selected k
neighbors from the graph and then monitored their online
presence using keep-alive messages.> Once the failure of an
existing neighbor was detected, a uniformly random replace-
ment was sought from among the currently alive users in the
system. Detection and replacement delays were also random,
but explicitly non-zero. Under these conditions, the paper
showed that each user became isolated with probability no
larger than ¢, = kp/(1 + p)*, where p was the ratio of
the average lifetime to the average replacement delay, for all
lifetime distributions with an exponential or heavier tail. This
result was later generalized in [21] to show that the probability
of non-partitioning in many P2P networks converged as n —
oo to that of avoiding isolation for each alive user.

III. CHURN MODEL

To understand the dynamics of churn and performance of
P2P systems, we start by creating a model of user behavior
and specifying assumptions on peer arrival, departure, and
selection of neighbors. The focus of this section is to formalize
recurring user participation in P2P systems in a simple model
that takes into account heterogeneous browsing habits and
explains the relationship between the various lifetime distri-
butions observable in P2P networks.

A. Churn Model

Consider a P2P system with n participating users, where
each user 1 is either alive (i.e., present in the system) at time
t or dead (i.e., logged off). This behavior can be modeled by
an alternating renewal process {Z;(t)} for each user i

. 1<i<n. (2

Zi(t) 1 user ¢ is alive at time ¢
! 0 otherwise

This framework is illustrated in Fig. 1 where variable c
stands for the cycle number and durations of user i’s ON
(life) and OFF (death) periods are given by random variables
L;. > 0 and D;. > 0, respectively. The figure also shows
the residual process R;(t), which is the duration of the user’s
remaining online presence from time ¢ conditioned on the fact
that 7 was alive at ¢.

We next make several modeling assumptions about this
system. First, we suppose that users behave independently of

3Gnutella, for example, sends a ping message every 3 seconds and detects
link failure when TCP declares the connection aborted, which happens after
several (e.g., 5 in Windows) subsequently failed retransmission attempts.

each other and that processes {Z;(t)} and {Z,(t)} for any i #
7 are independent. This means that users do not synchronize
their arrival or departures and generally exhibit uncorrelated
lifetime characteristics. This assumption also implies that users
simultaneously present in the system with multiple identities
are not very common and have no large-scale impact on
the dynamics of the network. Second, we assume for each
process {Z;(t)} that its ON durations {L;.}22; have some
joint distribution F;(z) and that its OFF durations {D; .}°,
have another joint distribution G;(x). While this model is
generic enough to allow dependency between cycle lengths,
the results developed later in the paper are sensitive not to the
correlational structure of processes {L; .}o2; and {D; .}°2,,
but to the distribution of random variables comprising each
of them. We thus, without loss of generality, omit discussion
of correlated sequences and treat all lifetime and offtime
processes as ¢.i.d. sets of variables. This allows us to replace
{L; }22; with a random variable L; ~ F;(z) and {D; .},

Examples of ON/OFF distributions commonly considered
in this paper are the exponential:

Fi(z)=1—e " 3)
with mean 1/)\; and the shifted Pareto:
Fio)=1-(1+a/8) " 2>00,>1 (4

with mean $3; /(a; —1). For convenience of notation, define the
average lifetime I; = E[L;] and the average offline duration
d; = E[D;].

From Smith’s theorem, we easily obtain that the asymptotic
availability [6], [33] of each user 1, i.e., the probability that it
is in the system at a random instance ¢ > 0, is given by:

L
L +d;

The final metric related to our churn model is the dis-
tribution of the number of users in the graph. Denote by
N(n,t) = >"" | Z;(t) the number of users in the network at
time ¢ and notice that it is also a random process that fluctuates
with time. In cases when the size of the system is understood,
we will write N (t) instead of N(n,t).

Since most P2P properties of interest require a sufficiently
evolved system with ¢ — oo, our analysis below examines the
distribution of the various metrics in the equilibrium. Our next
result shows that the limiting distribution of N (¢) is Gaussian
with mean and variance solely determined by the availability
set {ay,...,an}.

Lemma 1: The number of users N = lim;_, ., N(¢) ob-
served in the equilibrium tends to a Gaussian random variable
with mean > ", a; and variance > ., a;(1—a;) as n — oc.

Proof: See Appendix 1. [ ]

Before we show simulations with our churn model, we
define the rules for producing heterogeneous users and their
lifetime/offtime distributions. The only parameters that control
each user’s availability are [; and d;, which we draw for each
user randomly from two Pareto distributions with o« = 3 as
described next. For the mean ON duration, we use 8 = 1
and obtain E[l;] = 1/2 hour; for the mean OFF duration,

a; = lim P(Zl(t) = 1) =

(&)
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Fig. 2. Sample path and distribution of N(¢) in system H with n = 1000
users. The Gaussian fit is from Lemma 1.

we use 0 = 2 and get E[d;] = 1 hour. Note that once pair
(l;,d;) is selected for user i, it remains constant for the entire
evolution of the system. The actual lifetimes and offtimes of
each cycle are drawn from distributions F;(z) and G;(x),
which are selected such that their means are equal to the corre-
sponding /; and d;. We study three cases throughout the paper:
1) heavy-tailed system H with F;(xz) ~ Pareto(3,2l;) and
G;(x) ~ Pareto(3, 2d;); 2) very heavy-tailed system VH with
Fi(z) ~ Pareto(1.5,1;/2) and G;(z) ~ Pareto(1.5,d;/2);
and 3) exponential system &£ with F;(x) ~ exp(1/l;) and
G;(x) ~ Pareto(3,2d;), where notation Pareto(c;, 3;) refers
to (4) and exp();) to (3).

Fig. 2(a) shows one example for the evolution of system size
N(t) as a function time ¢, which as n — oo tends to simple
Brownian motion (also known as the limiting distribution of
random walks). Part (b) of the figure shows the PMF of
N(t) at t > 0 and a Gaussian fit from the previous lemma
(note the log-scale of the y-axis). Numerous additional results
confirming that N(t) is a Gaussian process are omitted for
brevity.

B. Lifetime Distribution of Joining Users

The goal of this subsection is to derive the distribution of
user lifetimes when they join the system. While each user has
a different distribution of ON/OFF durations, we show below
that the aggregate behavior of the system can be reduced to
that of individual users in a simple closed-form expression.
Suppose that random variable L describes the lifetime of the
next user that enters the system and define F'(x) = P(L < x)
to be its CDF. Note that L can also be viewed as the lifetime
distribution of all users who have ever visited the system.

Before we proceed to the next result, let \; be the reciprocal
of the mean duration of a life-death cycle of process {Z;(t)}:

1
T L+d;]

which can also be interpreted as the average arrival (or
departure) rate of user i. Moreover, denote by b; the ratio
of )\; to the total rate of arrival in the system:

1
Ai — I +d;
b= e = . )
POHEPY <j_1 L + dj)

Ai (6)
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Fig. 3. Comparison of simulation results of F'(x) to model (8) in a graph
with n = 1000 nodes.

The next lemma shows that the lifetime distribution of all
users put together is a weighted average of individual lifetime
distributions, where the weights are biased toward those peers
who frequently join and leave the system since their sessions
constitute the majority of overall peer arrival into the system.

Theorem 1: The distribution of lifetime of the next joining
user is given by the following weighted average:

F(z) = Z biFi(z), ®)

where F;(z) is the lifetime CDF of user i.
Proof: See Appendix II. [ ]

Similarly, we obtain the following results.

Corollary 1: Random offline duration D of the next failing
user is given by G(z) = P(D < z) = >, b;G;(z), where
G;(z) is the offtime CDF of user i. Furthermore, the mean
session time of a joining user and the mean OFF period of a
failing user are respectively E[L] = Y. | b;jl; and E[D] =
> iz bids.

We next verify (8) and discuss several implications of this
result. Two typical simulations are presented in Fig. 3 for
exponential and heavy-tailed lifetimes, both of which show
that the model is very consistent with simulation results. Note
that both figures are on log-log scale and plot 1 — F'(z) vs.
1 4 = to make the shifted Pareto distribution in (4) appear as
a straight line. Notice in Fig. 3(a) that system & produces
a heavy-tailed aggregate distribution F'(z) even though all
individual lifetime distributions F;(x) are exponential. This
can be explained as follows. It is well-known [5], [9] that
for a hyper-exponential distribution in the form of (8) and
any desired distribution W (x) with a monotonic PDF, there
exists a set of weights {b1,...,b,} such that (8) converges to
W (z) as n — oo. Given numerous possibilities for the arrival-
rate set {A1,...,\,} in practice, it is possible that one can
observe a nicely shaped Pareto, Weibull, or other distribution
F(xz), which is produced by a mixture of exponentials F;(x).
It may therefore be preliminary to conclude that Pareto F'(x)
measured experimentally [7], [33] provides any indication as
to the true nature of F;(x) or individual user behavior.

While our current conclusion shows that one cannot char-
acterize the lifetimes or availability of individual peers by
observing their aggregate behavior, the next question we seek



to answer is whether the aggregate behavior F(x) can be
used to characterize the parameters of a single user selected
from the system randomly? We focus on two such metrics
below: the remaining online duration of a randomly selected
user from among the peers currently alive and the joint lifetime
distribution of all alive peers at sufficiently large times t.

C. Residual Lifetime Distribution

Assume that a user v selects some number of neighbors
from among the existing peers in the system and does not
replace them until they die. The mechanism for initial selection
and subsequent replacement may be uniformly random, based
on the age of existing users, or influenced by the degree and
structure of the graph (e.g., random walks). Let R;(¢) denote
the length of the remaining life cycle of a given user i at
time t, i.e., the remainder of the current ON cycle illustrated
in Fig. 1. Note that R;(t) is important to peer v since this
metric determines how long this neighbor will be online after
it is selected by v. As shown in [20], the residual lifetime
distribution solely determines the resilience of the out-degree
isolation model.

Define the equilibrium residual distribution of user :

Hi(z) = lim P(R;(t) < z|Zi(t) = 1) €))

and note that the offtime distribution G;(x) has no impact on
H;(x) since (9) is conditioned on the fact that user ¢ is alive
at t (i.e., when a user is OFF, it is never selected by other
peers for any purposes). Then from renewal theory [30], the
residual lifetime distribution of user ¢ is:
1 x
(@) = g7 | (1= Py

where F;(z) is the lifetime distribution of user ¢ as before.

Next, let R(t) be the residual lifetime of the user randomly
selected by a peer v at time ¢, R = lim;_, o, R(t) be its
equilibrium version, and H(z) = P(R < z) be its CDF. To
understand the next result, denote by:

(10)

Yi(t) = {1 user ¢ is selected at ¢ (11

0 otherwise

the indicator process that shows whether user ¢ is picked by
v at time ¢ and by:

Vite) = lim P(Ri(t) < alYi(t) = LZi(t) = 1) (12)

the equilibrium CDF of residual lifetimes of the users selected
for replacement. Further define:

sij = Hm P(Yi(t) = 1|Zi(t) = 1L, N(t) = j) (13)
to be the probability that ¢ is selected among j existing users.
Note that our prior assumptions on the churn model dictate
that V;(z) cannot depend on N (t), i.e., users do not change
their lifetime behavior based on the size of the system.

We next elaborate on definitions (12)-(13). In systems where
the residual lifetime distribution of a user does not change
based on whether that peer has been chosen or not, V;(z)
is identical to H;(x). This means that V;(z) = H,(z) holds

only in cases when neighbor selection is independent of the
lifetimes (or ages) of the selected users (e.g., this model was
used in [20]). Examples that satisfy this condition include
uniform selection, selection based on content similarity or
random hashing space, age-independent popularity, etc. On the
other hand, selection based on the age of potential neighbors
or random walks (which depend on the in-degree of each user,
which in turn depends on age) do not fall into this category.

To understand s;;, we have the following examples. For
uniform selection, s;; is simply 1/j. For stationary random
walks, s;; = di/ Y.} _, dp,, where d; is the stationary in-
degree of user 7 conditioned on the fact that it is alive. For
content-based selection, assume that each user shares w; files
with others and that each peer is selected to be a neighbor
proportionally to its “content utility” w;. Then, s;; may be
equal to w;/ Y7 | w,.

As must be evident, (12)-(13) can model arbitrarily complex
rules for choosing neighbors; however, tractability of the
resulting distribution H (x) is questionable for all except the
simplest cases. Below, we first derive H(z) for the most
generic case and show that it can be expressed as a sum of
weighted individual residual distributions, where the weights
are biased towards users with large availability a; and high
probability s;; of being selected. We then simplify this ex-
pression for uniform selection.

Theorem 2: The residual lifetime distribution of a random
neighbor in an equilibrium P2P system is given by:

H(@) = 3 Vil@a Y sy PN —1) = j 1), (14

where N(n — 1) = limy_,oo N(n — 1,1).
Proof: See Appendix III. [ |

The above theorem shows that H(x) depends on a number
of complex factors, including the distribution of N(n — 1),
CDF function V;(x), and metric s;5. While for large n, the
distribution of N(n — 1) is very close to that of N, the
resulting Gaussian distribution has no suitable expressions
for expanding (14) in closed-form. Furthermore, without the
knowledge of V;(z) (which depends on F;(x) as well as all
other F(x), j # 1), computation of H (x) is intractable.

Fortunately, for certain neighbor-selection strategies we can
circumvent the difficulty of obtaining P(N(n —1) = j — 1)
in closed-form, as shown in the next lemma.

Lemma 2: The residual lifetime distribution of neighbors
under uniform selection is given by:

n

1
H(z) = =—
®) Dlisy G ;
where H;(z) is the residual CDF of user ¢ in (10).
Proof: See Appendix IV. [ ]
Next, we run simulations to confirm Lemma 2. As shown in
Fig. 4 for the exponential and Pareto cases, simulation results
of H(x) match the model very well and also demonstrate that
£ may produce non-exponential residual lifetime distributions.
While yet again H(x) in (15) requires the knowledge of F;(x)
and a; for i = 1,...,n, our next result shows that H (x) under
uniform selection may be directly obtained from F(x).

a;iH;(z), 15)
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Theorem 3: Under uniform selection, the equilibrium resid-
ual distribution H (x) of random neighbors can be reduced to
the lifetime distribution of joining users:

HE) = 57 / " (1~ Fw) du,

where E[L] is given in Corollary 1 and F(x) is in (8).
Proof: See Appendix V. ]
Note that (16) is an extremely important result since it
shows that in practice one only needs to measure the aggregate
lifetime distribution F'(z) and its mean E[L] rather than each
ON distribution F;(z) and each user availability a; in order to
obtain the residual lifetime distribution of a uniformly selected
neighbor. Assuming from measurement studies [7], [12], [23],
that F'(x) is Pareto with F'(x) = 1—(1+x/8)~%, (16) reduces
to:

(16)

H(z) =1—(1+a/p)" "7V (17)

as also shown in [20]. Comparing (17) to F'(z), we see that R
is stochastically larger than user lifetimes L, i.e., P(R > x) >
P(L > z), which implies that a uniformly randomly selected
user is more reliable than new arrivals in terms of failure. For
other neighbor selection strategies, it is important to realize
that the distribution of residual lifetimes R may be completely
different from (16) and should be analyzed accordingly.

D. Lifetime Distribution of Users in the System

Denote by J(x) the joint lifetime distribution of users
currently in the system. As observed in [35], distribution
J(x) is clearly different from F'(z); however, no closed-
form analysis has been made available to date. The intuitional
rationale behind this difference is that lifetimes of the peers
observed in the system are biased towards larger values, which
is commonly known as the inspection paradox [39]. In the next
result, we formally derive J(z) as a function of F'(z).

Theorem 4: The joint lifetime distribution J(x) of alive
users in the equilibrium is:

1 x
J(x) = —— xe—/Fudu), (18)
@ = g (7@ - [
where E[L] is given in Corollary 1 and F'(z) is in (8).
Proof: See Appendix VI. ]

The accuracy of (18) was confirmed in simulations, but is
omitted here for brevity. Since spread is the convolution of
two distributions H (x), it follows that exponential lifetimes
F(z) imply that J(z) is the Erlang(2) distribution with mean
2E[L)]. For Pareto F(x), spread J(z) is a convolution of two
distributions in (17), which has no closed-form expression,
but is clearly more heavy-tailed than F'(z). The next result
summarizes these observations, as well as those of [35], in
more formal terms.

Corollary 2: For any set of lifetime distributions
{F;(z)}_,, the spread J(x) is stochastically larger than
F(z) and the mean lifetime of a user currently alive in
the system is double the mean residual lifetime E[R] of a
uniformly selected user.

In conclusion, our results demonstrate that given heteroge-
neous users and uniform selection of neighbors, both metrics
H(z) and J(x) can be reduced to the aggregate behavior F'(z)
of arriving users. The rest of the paper shows that F(z) in
such systems can be additionally used to obtain the distribution
of in-degree as a function of users’ age and thus completely
characterize local resilience of unstructured P2P networks.

IV. IN-DEGREE MODEL

Before analyzing node in-degree, we study the process of
edge arrival into each user under uniform selection since this
metric determines both the rate at which each user accumulates
incoming neighbors and the stationary in-degree distribution.
In the following, we first examine the user arrival and failure
process in a P2P system driven by our churn model, from
which we obtain the behavior of edge arrival to each user.

A. Node Arrival Process

Recall that our churn model prescribes that each arriving
node find k£ random initial neighbors and then continuously
replace them as they fail. Let X (¢) be the number of in-degree
neighbors accumulated by a random user by age ¢, L be its
random lifetime, and # = E[X(L)] its mean number of in-
degree neighbors when it dies. Under these definitions, each
new arrival inserts an average of k edges and each failure
brings an average of 6 edges into the system.

Define new edges to be those added by the arrival of new
users, which occurs when a process {Z;(¢)} transitions from
0 to 1, and old edges to be those added in response to the
failure of existing users, which happens S time units after
{Z;(t)} transitions from 1 to 0. Since search delay .S is usually
negligible compared to ON/OFF cycle durations, we do not
explicitly model its effect to save space.

For each ON/OFF renewal process {Z;(t)} of user i, denote
by T} the k-th arrival instance of user <. Then let:

M2 (t) = max{k : Tr,—1 <t} (19)

be the total number of arrivals of user ¢ in the interval [0, ]
for ¢ > 0. Hence, {M(t) : t > 0} is a counting process with
inter-arrival cycles given by L; + D;.

Theorem 5: Superposition arrival process: M®(t) =
S, Mg(t) converges as n — oo to a homogeneous Poisson
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process with rate:

A=) "N <o, (20)
i=1
where \; is the reciprocal of [; + d; given by (6).
Proof: See Appendix VIIL ]
This conclusion is confirmed for the very heavy-tailed
system VH (e., o 1.5) in Fig. 5. Notice in the figure
that for small n, the arrival process is not Poisson; how-
ever, as n becomes sufficiently large, the inter-arrival delay
is perfectly exponential. Furthermore, the rate of arrival A
follows (20) very well. Next, we verify that the distribution of
M*(t,t + At), i.e., the number of arrivals from n sources
in any fixed interval [t,t + At], converges to the Poisson
distribution with parameter \ as n — co. We show two typical
simulation results of the distribution of the number of arrivals
from n = 1000 sources in the interval [¢t,t + At] in Fig. 6.
In part (a), we have heavy-tailed system H with At = 36
seconds, while in part (b) we have very heavy-tailed system
VH with At = 43.2 seconds. Observe from Fig. 6 that in
each case, simulation results of M%(¢,t + At) show a good
match with a Poisson distribution with parameter A. For other
ON/OFF distributions, simulations are also consistent with the
properties of a Poisson process and are not shown here for
brevity.
We next follow the same steps to study the user failure
(i.e., departure) process. Denote by Mg (t) the number of
departures of user ¢ in the time interval [0, ¢]. Then it is clear

[t,t+ At] in a system with n = 1000 users, kK = 10, and 6 = 10. The lines
show Poisson fits with A, in (21).

that {Mg(t) : t > 0} is a counting process with random inter-
departure delays D; + L;.

Corollary 3: Superposition departure process M?(t) =
S M(t) converges as n — 0o to a homogeneous Poisson
process with rate A in (20).

Finally, note that the Poisson results above are not an
assumption of the paper as in prior work [18], [24], [28], but
rather a consequence of the churn model introduced earlier.
Armed with these observations, we next focus on the edge
arrival process to each user.

B. Edge Arrival Process

In this subsection, we analyze the arrival process of edges
to individual users assuming uniform selection. For other
strategies for obtaining users, the analysis is significantly more
complex and will be considered in future work.

Theorem 6: Edge arrival into a random user under uniform
selection converges as n — oo to the Poisson process with

te:
e _k+0

B[L]’

where k is the number of neighbors a user selects upon joining

the system, 6 is the mean in-degree of a user when it leaves
the system, and F[L] is the mean peer lifetime.

Proof: See Appendix VIIIL. [ ]

Fig. 7 shows the distribution of edge inter-arrival delays

to a single node obtained in simulations in a system with

Ao 2



1000 users. Notice in its two sub-figures, the distribution of
inter-arrival delay approaches exponential with rate given by
(21) for both systems. Additionally, Fig. 8 shows that the
distribution of the number of edge arrivals to a node in a
random interval of size At approaches the Poisson distribution
with the same average rate A, in (21).

Equipped with Theorem 6, the evolution of a node’s in-
degree becomes tractable as we show below.

C. General Model of Expected Degree

As before, define X (¢) to be the in-degree of a random
user v at age ¢ > 0. In this subsection, we focus on transient
and stationary distributions of X (¢) under uniform selection
of neighbors and assuming the main churn model of the paper.

Recall that the lifetime distribution of a new arrival is given
by F(z) in (8). Thus, once a new edge arrives to the current
node v, it lives for a random time L whose CDF is given by
F(x). Moreover, each old edge arriving to v lives for a random
duration R whose CDF is H(z) in (16). As discussed earlier
in this section, user v dies at some random time L drawn from
F(z) and its average degree at that time is § = E[X (L)].

The following theorem solves the mean in-degree E[X ()]
of a node at age ¢ for any lifetime distribution.

Theorem 7: The expected in-degree of a random node v at
age t is a monotonically increasing function of age given by:

E[X(t)]z/O k(l_F(t_Z)E[LL?(l—H(t—z))

where 0 is derived below.
Proof: See Appendix IX. [ |
Although E[X(t)] in (22) appears complicated, it can be
computed if the lifetime distribution F'(x) and residual lifetime
distribution H (z) are known. We next carry out this task using
two distributions of user lifetimes and confirm the accuracy of
the model.

dz, (22)

D. Verification of Expected Degree

In the following, we use exponential and Pareto user life-
times to compute F[X (¢)] and then verify the obtained result
in simulations.

Theorem 8: For exponential lifetimes L ~ exp(u), the
mean in-degree of a node at current age ¢ is

E[X(t)] = 2k(1 — e ") (23)
and the mean in-degree at failure time is 6 = k.
Proof: See Appendix X. ]
From (23), observe that the mean in-degree of a node
increases monotonically from X (0) = 0 when it arrives into
the system to X (co) = 2k when its age tends to infinity.
Next, we compute 0 and F[X (¢)] for Pareto lifetimes.
Theorem 9: For Pareto L ~ 1 — (14 x/8)~* with a > 2,
the mean in-degree of a node at current age ¢ is given by:
E[R]

EX(#)] =00t a—2)+kQ(t,a —1),

E[L] @9

21 21 4

18 4 18 4
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Fig. 9. Comparison of models (23), (24) to simulation results for E[L] = 0.5
hours and k& = 8.

where Q(t, o) = 1—(1+t/8)~%, E[L] = 8/(a—1), E[R] =
B/(a — 2), and the mean in-degree during failure is:
2kp3
28+ E[L]
Proof: See Appendix XI. [ ]
Simulation results in Fig. 9 demonstrate that the models
are very accurate and indeed saturate at predicted values 2k
and OE[R]/E[L] + k as age t — oo. It is also interesting to
observe in the figure that if a node survives for more than 1
hour in the system, it develops an average of 12— 15 in-degree
neighbors (depending on the distribution of L) and is unlikely
to be isolated from the graph from that point on. The saturation
effect illustrated in Fig. 9 suggests that P2P implementations
should cap user in-degree at values no smaller than the limit of
(22) for t — oco. The corresponding upper bound in Gnutella
(i.e., 30 in-degree neighbors) satisfies this condition for the
two examples shown above.
In the next section, we focus on the probability that X (¢) is
zero at any time ¢ and later consider the impact of X (¢) =0
on the isolation probability.

(25)

E. Zero In-Degree

In this subsection, we use metric P(X(t) = 0), i.e., the
probability that a node’s in-degree is zero at age ¢, to determine
local in-degree resilience. The following theorem shows that
regardless of the lifetime distribution, P(X (t) = 0) is a simple
function of expected in-degree E[X (t)].

Theorem 10: The probability that the in-degree of a node
is zero at given age t is:

P(X(t) =0) = e #XW], (26)

where E[X (t)] is given by (22). Furthermore, X (¢) tends to
a Poisson distribution with rate E[X (¢)] as n — oo.
Proof: See Appendix XII. [ |
Notice from (26) that P(X (t) = 0) decreases in age t since
E[X(t)] increases with ¢ as shown in (22). In other words,
the longer a user stays alive in the system, the smaller the
probability that it is disconnected because its in-degree is zero
(of course, after E[X (t)] becomes saturated, P(X (t) = 0)
stays almost constant). Substituting (23) and (24) into (26),
we verify P(X (t) = 0) for exponential and Pareto lifetimes in
Table I, which demonstrates that both models of P(X (t) = 0)



TABLE I
MODEL (26) AND SIMULATIONS WITH E[L] = 0.5 HOURS AND k = 5

TABLE I
EXACT MODEL (30) AND SIMULATIONS FOR E[L] = 0.5 HOURS

Aget Exponential lifetimes Pareto lifetimes E[S] k=6 k=38

hours Simulation Model Simulation Model min Simulations Model (30) Simulations Model (30)
0.1 1.63x 10~ 1.63x10~' | 203 x10~1 2.03x 10~ 6 363 x107% 3.61x1076 | 280 x 10~® 2.87 x 10~8
1.1 1.35 x 107%  1.37x107% | 316 x 107* 3.17 x 10~ 18 3.15x 1075 3.17x 1075 | 5.91 x 1077 598 x 107
2.1 526 x 107°  5.27x 1075 | 5.04 x 10~° 5.02 x 10~° 30 6.04 x107° 6.08 x 1075 | 1.48 x 1076 1.46 x 10~6
4.1 455 x107%  455x107° | 1.30x 1075 1.31 x 105 42 8.38x107% 837x1075 | 230 x10°6 227 x 106
7.1 455 x 107°  4.54x 1075 | 6.54 x 108  6.55 x 10~6 60 1.06 x 104 1.09 x 10~% | 327 x10~% 3.28 x 10~ 6

are very accurate. Also observe in the table that after a user
spends 2 hours in the system and with just 5 initial neighbors,
its probability to have no in-degree links at time ¢ > 2 is very
small (i.e., less than 5.3 x 107°).

V. JOINT IN/OUT-DEGREE MODEL

Analytical results in the previous section show that the early
stage in a node’s life in the network is actually very risky from
the isolation point of view as it must rely solely on its out-
degree neighbors. However, once a node survives this early
stage, it increases its resilience to isolation through constantly
arriving incoming edges. In this section, we combine the in-
degree and out-degree models to derive the joint isolation
probability of an arriving user.

A. Preliminaries

As in [20], denote by W (t) the out-degree of a node v at
given age t and define it to be isolated when its in-degree and
out-degree are simultaneously zero. Define time to isolation T
to be the first-hitting time of both processes to state 0:

T =inf{t > 0: W(t) = X(t) = 0|W(0) = k, X (0) = 0}. (27)

Then the probability of node isolation is simply ¢ = P(T <
L), where L is the random lifetime of node v. Note that
unlike in the out-degree process, a node does not replace its in-
coming edges, which means that the in-degree and out-degree
processes are independent of each other.

In the next subsections, we derive ¢ for systems with
exponential user lifetimes and exponential search delays using
two methods. The first approach provides an exact model using
matrix algebra, while the second one shows an asymptotically
accurate approximation that is available in simple closed-form.

B. Exponential Lifetimes (Exact Model)

Let pair (W (¢), X (t)) be the joint process of out-degree and
in-degree of a node at age t and (4, j) denote any admissible
state of the joint process for 0 < ¢ < k and 0 < j < n. Recall
from Section IV that edge arrival at any node occurs according
to a Poisson process with rate (21). Therefore, under uniform
selection, new in-degree neighbors arrive to v at rate:

kE+6 2k
M= —7 =7 28
B[] ~ BlI) )
since # = k for exponential lifetimes. Also note that the

existing in-degree neighbors fail at rate ;1 = 1/F[L] due to the

memoryless property of exponential distributions. This leads
to the following result.

Lemma 3: For exponential lifetimes L ~ exp (u) and
exponential search times S ~ exp(o), the joint process
{(W(t),X(t))} is a homogeneous continuous-time Markov
chain with a transition rate matrix () derived below.

Proof: See Appendix XIII. [ |

It is convenient to treat {(W(t), X (¢))} as an absorbing
Markov chain in order to derive the PDF of the first-hitting
time 7" on state (0,0). Assuming (0, 0) is an absorbing state,
we can write () in canonical form as:

0 0
I‘Qo7

where g is the rate matrix obtained by removing the rows
and columns corresponding to state (0,0) from @ and r is a
column vector of transition rates into state (0,0). Before we
proceed to the next result, define 7(0) = (7(; ;)(0)) to be the
initial state distribution where each cell m(; ;)(0) of the row
vector 7(0) is the probability that the chain starts with state
(i,4) at time 0. Since chain {(W (¢), X (t)} always starts with
state (k,0), we have 7 0)(0) = 1 and 7(; ;(0) = 0 in all
other initial states.

With this result in hand, we next obtain ¢.

Theorem 11: For exponential lifetimes L ~ exp (u) and
exponential search delays S ~ exp(c), the probability of node
isolation is given by:

¢ =n(0)VBV 'r,

Q (29)

(30)

where V' is a matrix of eigenvectors of @y, B = diag(b;) is a
diagonal matrix with b; = 1/(n—¢;), §; is the j-th eigenvalue
of Qo, and Q) and r are given in (29).
Proof: See Appendix XIV. [ ]
We verify (30) in simulations shown in Table II, which
shows that our results are indeed very accurate. While (30)
provides values ¢ that are smaller than isolation probability
dout of the out-degree model [20] by several orders of
magnitude, it is still unclear what impact in-degree has on the
probability that a user gets isolated as its age increases and
how large the improvement ratio ¢,,:/¢ is. We study these
issues below.

C. Isolation with Increased Age

To better understand the impact of in-degree on ¢, let
us define the first hitting time 7,,; on state 0 of the out-
degree process {W(¢)}, ie., Toue = inf{t > 0 : W(t) =
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Fig. 10. The CDF of T,y and T for exponential lifetimes with E[L] = 0.5
hours, exponential search delays with E[S] = 0.1 hours, and k = 6.

0|W(0) = k}. Analysis in [21] shows that {W (¢)} is a birth-
death Markov chain and derives its CDF function P (T, < t)
in matrix form. We use this result and the CDF of 7" derived
in the proof of Theorem 11 to compare the distribution of
isolation times in the joint in/out degree model with that
studied in [21]. We plot the exact distributions of both T},
and T as functions of user age in Fig. 10. Notice in the
figure that P(T,,; < t) increases almost linearly in time ¢
indicating that users with large lifetimes have proportionally
higher probabilities of isolation. In contrast, the curve of
P(T < t) becomes almost flat as time ¢ increases beyond 0.5
hours showing that users with lifetimes in the range [0.5, 200]
hours exhibit almost the same isolation probabilities. In fact,
once the initial 1/2-hour period is over, isolation probability is
orders of magnitude smaller than in the initial phase. As user
age increases above 200 hours, the CDF of T slowly increases
in time since X (t) becomes saturated and can no longer keep
up with the increased possibility of isolation.

D. Exponential Lifetimes (Asymptotic Model)

Although (30) provides exact results for ¢, it relies on nu-
merical matrix algebra. Our next task is to combine the earlier
derived in-degree model (26) with the out-degree isolation
result in [20] to obtain a simple closed-form solution to ¢
when the mean search delay E[S] — 0.

Theorem 12: For L ~ exp(u) and S ~ exp(o), isolation
probability converges to the following as E[S] — 0:

1— 67210
¢ - 2% d)outa

where ¢ou; = pk/(1+ p)* and p = o/ = E[L}/E[S].
Proof: See Appendix XV. ]
It can be seen from (31) that by considering both in-degree
and out-degree, the probability of node isolation is reduced
by a factor of approximately 2k for non-trivial k. The reason
for this relatively small improvement is that only a handful
of users benefit from the in-degree in their isolation resilience
since the majority of users depart very quickly and are unable
to accumulate any in-degree neighbors. Nevertheless, analysis
of this section has important consequences as it shows that
the most reliable users of the system (i.e., those with large
lifetimes) extract huge benefits from the in-degree process and

€2y

TABLE III
CONVERGENCE OF (31) TO (30) FOR E[L] = 0.5 HOURS AND k = 6

E[S] Exact model (30)  Approx. model (31)  Relative error
36 sec 8.721 x 10~ 10 1.421 x 109 62.91%
3.6sec | 1.498 x 10~14 1.581 x 10~ 14 5.57%
360 ms | 1.589 x 10~19 1.598 x 10—19 0.55%

36 ms 1.600 x 10—24 1.600 x 10—24 0

are thus allowed to continue providing services to others with
much higher probability than possible with just the out-degree.

To complete this section, Table III shows the relative ap-
proximation error of (31) and indeed confirms its asymptotic
accuracy. Note that for large search delays, (31) provides
an upper bound on the isolation probability, where the ratio
Dout/d is 3-10 times larger than the 2k suggested by (31). For
instance, for fixed E[L] = 0.5 hours and k = 6, ratio ¢yt /¢ is
39 when E[S] = 2 minutes and 120 when E[S] = 6 minutes.

VI. CONCLUSION

This paper introduced a simple model of churn and devel-
oped numerous closed-form results describing the behavior of
users including their joint and residual lifetime distributions,
evolution of system size, transient in-degree distribution, and
isolation probability under the joint in/out degree model.
Future work involves modeling of non-uniform neighbor se-
lection and churn of traditional DHTs.
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APPENDIX I
PROOF OF LEMMA 1

Proof: Observe that the mean number of users alive in
the equilibrium is given by:

E[N = lim Z E[Z (32)

n
= E g,
=1

which is the sum of all users’ availability. Also note that, due
to the independence among users, the variance of N is:

E G,Z —ai.

Next, denote by m;o the second central moment, and by
m;3 the third central moment of Bernoulli variable Z; =
lim;_, oo Z;(t). Since a; are constants, it is easy to see that
m;o and m;s are constants too. It immediately follows that

n

lim ViZ

t—o0
i=1

VIN] = (33)

1/3

(Z?:l mi3> -
(Z?:l mi?) /

showing that the Lyapunov condition of the Central Limit
Theorem [29] holds. Thus, we conclude that N tends to a
Gaussian random variable as n — oo. In fact, it can be
shown that N (¢) is a stationary Gaussian process regardless of
how heavy-tailed ON/OFF durations are (i.e., including cases
1 <a; <2)[32]. [ |

-0, (34)

APPENDIX II
PROOF OF THEOREM 1

Proof: For each instance of user ¢ being present in the
system during interval [0,¢], place its duration L, . into set
Q;(t) and define Q(t) = UP_,Q;(t) to be the set of lifetimes
of all users that have visited the system during [0, ¢]. Notice
that as ¢ — oo, the distribution of variables in §2;(¢) converges
to F;(z) and that in Q(¢) to F(x).

Observe that set (¢) contains

ey
fil) = s ]

lifetime variables from user <. Bounding this metric, we have:
1 tA;
= < filt) < ST o
Z?:l t>\ Zy— -
Sending ¢ to infinity in (36), it immediately follows that the
proportion of random variables of type 7 in Q(¢) converges to
lim;_ o fi(t) = b;. Therefore, we obtain that the probability

that a randomly selected user in (¢) is peer ¢ and its lifetime
is smaller than = is P(L; < ) f;(¢), which leads to:

(35)

b; — (36)

P(L<z)= tlim P(L; < x)fi(t) 37
—00
=1
and thus establishes (8). |
APPENDIX III
PROOF OF THEOREM 2

Proof: Define

pi(e) = lim P(Ri(t) <2,Yi(t) =1,Z:(t) =1)  (38)

to be the probability that the selected neighbor at time ¢ was
user ¢ and its residual lifetime was less than z. Then notice

that: "
=> pil@) (39)
=1



Simplifying using basic probability theory, we have:

pi(x) = Vi(z) lim P(Yi(t) =1, Z,(t) =1),  (40)

where V;(z) is given by (12). Note that (40) is not solvable
unless we condition on N (¢t) = j. To this end, denote by:

aij = lim P(Z(t) = 1[N(t) = j) (41)

the probability that user ¢ is alive given that the system has j
online users and expand (40) to become:

CU) ZaijsijP(N = j),
j=1

where s;; is obtained from (13) and N = limy o N ().

Notice that (41) can be transformed using Bayes theorem to:

P(N(n,t) = jlZi(t) = D P(Zi(t) = 1)
P(N(n,t) = j)

Due to the independence among existing users, we have:

(42)

a;; = lim (43)

t—o0

P(N(n,t) = j|Zi(t) =1) = P(N(n - 1,1) = j = 1), (44)

which can be interpreted as follows. The probability that j
users are alive out of n peers, conditioned on the fact that one
user 7 is known to be alive, is the same as the probability that
among the remaining n — 1 users exactly 7 — 1 are alive.
Next, substituting (44) into (43), a;; reduces to:
P(Nn—-1)=j-1)
a;j = a; _ ; 45
’ P(N =j)

where N(n — 1) = lim; o N(n — 1,t). Re-writing (42), we
have:

pi - az 7, (46)

Z sij P

Substituting (46) into (39), we get (14). |

n_l):]_l)v

APPENDIX IV
PROOF OF LEMMA 2

Proof: In the case of uniform selection, we have s;; =
1/j and V;(z) = H;(z). Then (14) reduces to:

ZH alz ~P(N

Notice that each of H;(x ) and H (z) is a CDF function, which
means that H;(oo0) = 1 and H(o0) = 1. Thus, letting = — oo,
(47) yields:

n—1)=j—1). (@7

n

iaz;

=1

Nn—-1)=j-1), (48)

from which we get:

1

|
- ) =1 = e 49
; N ImU=5 “9)

i=1 %

The final step is to substitute (49) into (47), which immediately
leads to (15). [ |

APPENDIX V
PROOF OF THEOREM 3

Proof: Using H(x) in (10), H(x) in (15) yields:
D iey i ; E[L /

= b/l— ))du.
1117‘1

Recall that the mean lifetime E[L] across all users can be
transformed into:

H(z) =

— Fi(u))du

(50)

. Ai Doy G
L =3 s Blll = ety 6D
Z Zk 1 Zi:l Ai
Then, noticing that (50) contains 1/FE[L], we get:
1 & v
H(z) = —— bi/ 1 — F;(u))du
@ = FEh ), (- Fw)
1 T n
1 /m
= — 1— F(u))du, (52)
B [, 0 Fo)
which is the desired result. |

APPENDIX VI
PROOF OF THEOREM 4

Proof: The joint lifetime distribution J(x) of users cur-
rently in the system is the same as that of a uniformly
randomly selected user from the set of alive peers. Denote by
Ji(z) the spread of F;(z), i.e., the distribution of the current
ON cycle of user ¢ given that it is “inspected” at a random
instance ¢ > 0:

Then from renewal theory [30], it immediately follows that
Ji(x) converges to the following:

i) = ﬁ (;«F z) - /O ’ F,»(u)du), (54)

which is the spread distribution function of ON periods L; of
user 4.

Next, using the techniques in Theorem 2, we easily obtain
the following. Given N(t) = j living users at time ¢, the
probability that an existing user is randomly selected is 1/5.
Furthermore, notice that conditioned on the fact that ¢ has
been selected, the probability that its lifetime is less than z is

given by J;(z). Thus, using s;; = 1/j and V;(z) = J;(z) in
a formula similar to (14), we immediately obtain:
x):zn:Ji azz P(N(n—1)=j—1). (55
i=1
Following the analysis in Lemma 2, (55) yields:
(56)

J(z) ZaJ
@i 3

1 1

Finally, substituting (54) into (56) and using the analysis in
Theorem 3, (56) reduces to the main result shown in (18). H



APPENDIX VII
PROOF OF THEOREM 5

Proof: Tt is known from the Palm-Khintchine Theorem
[13] that under very modest conditions, the user arrival process
{M*“(t)}, which is a superposition of independent renewal
processes, approaches a Poisson process as n — 0o, where
the asymptotic rate at which user arrival occurs is a finite
constant \, i.e., the sum of individual peer arrival rates. Note
that the Palm-Khintchine Theorem does not require that the
distribution of inter-renewal delays be non-heavy-tailed even
though this result appears to contract the results of self-similar
traffic modeling in the literature [38], [36], where packet traffic
on a link is commonly modeled as a superposition of many
independent ON/OFF (i.e., busy/idle) sources. It has been
shown in [10], [15], [27], [36], [38], that if the distribution
of either ON or OFF durations is heavy-tailed with o < 2
(i.e., variance of L; or D; is infinite), then properly scaled
process fot N (u)du converges to different types of limiting
behavior including fractional Brownian motion, stable LeVy
motion, or potentially other processes, where the convergence
limit depends on the details of the rescaling scheme. This does
not, however, preclude our results on the Poisson behavior of
N(t) since the behavior of fot N (u)du includes partial sums
of user lifetimes and offtimes, which is the reason for self-
similarity in the case of o < 2. On the other hand, our process
N(t) does not have this issue and is not sensitive the how L;
and D; are distributed. [ |

APPENDIX VIII
PROOF OF THEOREM 6

Proof: This proof proceeds in three steps. We begin with
the analysis of new edge arrival in response to the process
of user arrival, the old edge arrival corresponding to the
user departure process, followed by the supposed edge arrival
process to a random user v in the case of uniform selection.

From the Poisson user arrival process {M%(t)}, we see
that new edges appear in the system according to a non-
simple Poisson process [16], denoted by {M™¢(t) : t > 0},
where the inter-arrival time is exponential with rate A given by
(20) and there are k new edges simultaneously arrive at each
arrival epoch. Note that we are interested in edge arrival to an
individual user, rather than in the whole system. As shown in
the following, this non-simple Poisson process to the system
can be transformed into a (simple) Poisson process to v by
marking process {M"¢(t) : ¢ > 0} when edges arrive to v.

Note that the Poisson result on process { M *(t)} shows that
the probability to experience a user arrival in the system within

each interval [t,t + At] for At — 0 is:
P(arrival) = M\At, (57)

and O arrival with probability 1 — AA¢t. Then, the probability
that some current node v is uniformly randomly selected by
one edge after k£ edges are thrown (conditioned on the fact
that a user arrival occurs in this interval) is:

k
P(selected|arrival) = 1 — H (1 - N(; — z) - let)’
=1 (58)

where the last step is obtained using Taylor expansion since
k < N(t) at any epoch t, and the event that two or more
edges among the k new edges arrive to v is precluded. By
conditioning on N (¢) = j, which includes j — 1 alive users
at epoch t in addition to the current alive node v, (58) yields
k/j. Unconditioning, we have:
g
P(selected|arrival) = Z EP(N(t) =j|Z,(t)=1). (59)
i=1
Recalling (44), the above is transformed into:

P(selected|arrival)

Z?P(N(n— 1,t)=j—1)

1
= b=
i1 Gi
where the last equation is obtained using (49). Replacing
> a; with E[N] shown in (32), (60) reduces to:

(60)

P(selected|arrival) = (61)

L
EINT’
which depends on k and the mean system size. It follows that
the probability that node v receives a new edge in each interval
[t,t + At] is:

P(arrival) P(selected|arrival)
k

AAE——.

E[N]
Based on the above analysis, we conclude from the marked
Poisson process theorem [30], [37] that the new edge arrival
process to v under uniform selection, denoted by {M°(t)},
converges as n — oo to a (simple) Poisson process with the
average rate:

P(new edge) =

(62)

A® = AP(selected|arrival) = A (63)

E[N]

Likewise, using the Poisson result on the user departure
process {M<(t)} and following the above analysis, we im-
mediately conclude that the old edge arrival process into v,
denoted by {M?2¢(t)}, converges as n — oo to a Poisson
process with the mean rate:

0
E[N]

Finally, observe that the new edge arrival process { M'¢(t)}
and the old edge arrival process {M2°(t)} from the whole
system to v can be considered as two independent processes,
given that n is sufficiently large (i.e., the combined process
has edge arrival from a large number of sources and hence
eliminates any possible dependency between {M[*¢(¢)} and
{M2(t)} as n — o0). Then, the aggregate edge arrival
process to v, the supposition of the two process {M¢(t)}
and {M2°(t)}, is a Poisson process with the average rate:

A=) (64)

k
A = AP+ A= N N, 65
+ B[N + E[N] (65)
Note that A can be transformed into:
1"7, )\’L n nf )\Z
A o= = _ Zim N E[N].  (66)

S
Dlic1 i i—1 DY Y



Using a; = \; E[L;], the above yields:

_ Z;L:l )‘i _ E[N]
Y=oy M = @

where the last step is obtained recalling the formula for E[L].
Substituting (67) into (65), we get:

k+6
E[L]’
which completes the proof. Note that this result no longer
depends on the average number of users E[N), but only their
mean lifetimes and the number of edges added to the system
during the initial join and failure of users. ]

Av = (68)

APPENDIX IX
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Proof: 1In this proof, we first assume 6 is known to
derive E[X (t)] invoking Theorem 6. We then compute 6 from
E[X(t)] to complete the derivation of the mean in-degree of
a random user v at age t.

By using the Poisson result on the edge arrival process to v
shown in Theorem 6 and Splitting the time period [0, ¢] into
t/At bins for At — 0, it is clear that the probability of an
edge arrival into each bin with length At is A\, At where \,
is given by (21), and the probability of receiving two or more
edges is negligible. Thus, we can define an indicator function

I; as:
1 p;
Ii = b )
0 1-—p;

where p; represents the probability that one edge arrives in
the th bin and the edge will live beyond time ¢.
Next, notice from (21) that \,At can be viewed as:

k 0

E[L] At + E[L] At,
the sum of the probability of a new edge arrival and the
probability of an old edge arrival in this interval. Observe that
the probability that a new edge lives at least until time ¢ after
it enters the ¢th bin is P(L > ¢t — iAt) and the probability
that an old edge survives beyond time ¢ is P(R > t — iAt).
It immediately follows that:

(69)

A At = (70)

= ALP(L >t -

B iAE) +

AtP(R >t —iAt).

1
_ t/At 71)
=52 1; and

E[L]

Then, the in-degree of v at age t is X (t)
the mean in-degree E[X (t)] is given by:

t/At t/At
=Y EL]=>_p (72)
i=1 i=1
Upon substituting (71) into (72), using F'(z) = P(L < z) in

(8) and H(z) = P(R < z) in (16), and passing to the limit
as At — 0, (72) is transformed into:

k / (1-F(t—2))dz

0

+W/o (1— H(t - 2))dz, (73)

where 6 is unknown at this point.

To solve #, we know that by conditioning on L = ¢,
E[X(L)|L = t] = E[X(t)] which is given in (73). Thus
integrating E[X (¢)] using the PDF of user lifetimes L, f(t) =

F(t)/dt, we have:

0 = L / E (t)dt
= L/ / F(t—2)) f(t)dzdt +
= B z z
0
— — . 4
B / / Ht— 2) f(O)dzdt. (74
Define
JL// P(t—2)f(dzdt,  (75)
Falis z zdt,
1
ol / / H(t—z2))f(t)dzdt (76)
and observe that § = 71 /2. The final step is to substitute
0 = v1 /72 into (73), which then establishes (22). |
APPENDIX X

PROOF OF THEOREM 8

Proof: Using F(t) =1 —e #, H(t) =1 — e " and
f(t) = pe™#* for exponential lifetimes, 1 can be solved from

(75) as:
/ / (1=F(t—2))f(t)dzdt

= ku/ e “t/ e M dzdt = k)2, (77)
0

0

"=

and 5 from (76) as:

o} t
yp=1- u/ ,ue_“t/ e M= dadt = =
0 0

Dividing (77) by (78), we obtain § = k for the exponential
distribution.
Next, given that § = k, we obtain E[X (¢)] from (22):

(78)

2k [

E[X(t)] = —/ e Py = 2k(1 — M), (79)
E[L] Jo

which completes the proof. [ ]

APPENDIX XI
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Proof: Recall that F(z) =1— (14+x/8)"* and H(x)
is given in (17) for Pareto lifetimes. Then, ; can be obtained
using (75):

k [ee] t W
" =:ﬁﬁé ﬂﬂAO+@—@w)dwt
- k(l—Qa()i1>,ifa>l, (80)



and ~» using (76):

1 > ¢ a+1
E[L]/O f()/o(lﬂt%)/ﬂ) dzdi

- E[1L5(1 - g/ooo(lﬂ/ﬂ)?o‘“dt)

|

1 B8 «a

1— ) if o> 2.

E[L] a — ( 20 _2) "7

Combining (80)-(81), we have § = Qk(l —a/(2a— 1)) which

leads to (25) for o > 2 by doing some simple manipulation.
Next, invoking (22) we solve E[X (t)] as following:

Y2 = 1=

= 1-

(81)

k t
EX(t)] = W/o 14+ ({t—2)/8)"%dz+
0 t
E[L]/O (L4 (t — 2)/B)+'dz
- k(l (1+1/8)" a“)
0
E[L]B 5 (1 —(1+ t/ﬁ)‘a“), (82)
which leads to (24) by substituting (25) into the above and

recalling that E[R] = 5/(a — 2). [ |

APPENDIX XII
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Proof: Based on the indicator function I; defined in (69),
and its probability p; given in (71), it immediately follows that:

t/At

H (I —pi),

i=1

P(X(t) = 0) = (83)

the probability that none of edges entering bins can live beyond
time ¢. Taking the logarithm of both sides of (83), we obtain:

t/At

Zln 1—p).

Notice from (71) that p; — 0 as At — 0. Thus, using the result
that In(1 — p;) = —p; for p; — 0 from Taylor expansion, (84)
yields:

In P(X (84)

t/At

In P(X(t) = 0) = Alygoz —pi = —E[X(#)], (85

which leads to (26). More generally, X (¢) is a Poisson random
variable as shown next.

Denote by A(t) the number of edge arrivals to a random user
v up to time ¢. Note that X (¢) is the number of those edges
living at time ¢. Then, let {S;}32; be edge-arrival epochs and
{Y;}52, be edge-connection duratlons (observe that Y; is a
comblnatlon of user lifetime L and residual lifetime R) The
j-th edge lives at least until time ¢ iff S; +Y; > ¢. Thus, we
have:

= P(3" Ls v,z = KIA() = i),
= (86)

P(X(t) = k|A(t) =

where 1g,1y,>¢ is an indicator function. From the Poisson
result on {A(¢)}, (86) reduces to:

21U+Y>t—k)

where U; are uniformly distributed in [0,¢]. It immediately
follows that:

P(X(t) = k|A(t) (87)

1 [t
_P(Uj—&-i/th):;/ P(szt—u)du, (88)
0
and

PUXD) = kAW =) = ()00 -0, 59

following a binomial distribution. Unconditioning, we have:

> P(x
i=k

0 i ) ie_>‘“t
= > (k>p’“(1 - p)l_’“iwt)i!

i=k
B e_)‘“t()\vpt)k > (1 _p)i—k(/\vt)i—k
B k! Z (i — k)!

_ e_)\“t(/\vpt)keA,,t(l—p)
k!
e~ P\, pt)F
= —— (90)
showing that X (¢) approaches a Poisson distribution with rate
Aupt where p is given in (88). Finally, by using (21) and (88)
it is not hard to verify that E[X (t)] = A,pt where E[X (t)] is
given by (22). [ ]

t) = k|A(t) = i) P(A(t) = 1)

i=k

APPENDIX XIII
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Proof: Observe that given state (W (¢) = i, X (¢t) = j),
there currently exist ¢ out-going edges, k — i searches in
process, and j in-coming edges, and each is independent of
one another. Since the in-coming edge arrival approaches a
Poisson process at rate 2ku (see (28)), edges are exp(y) and
search processes are exp(c), the sojourn time in state (i, j) is
thus exponential with rate:

Ny =ip+ (k—i)o+ju+2kpy, 1)

where the first two terms come from the out-degree process
W (t) and the last two from the in-degree process X (t).

Denote by p,,+ the probability that state u’ is visited after
some sojourn time in the current state u. Recall that when
an out-going edge dies, a search starts immediately and its
properties are independent of those of other search processes,
edge lifetimes and the in-coming edge arrival process. This
type of transition reduces W (t) by 1 (and meanwhile increases
the number of search processes by 1) in response to one
failure of v’s out-going edges, which is equivalent to the jump:
(4,7) — (¢ — 1,7) for i > 0. The corresponding probability
that an out-going edge dies before any other event happens is
P(ig)(i—1,5) = i/ Aij.-



Similarly, the second type of transition as a result of finding
a replacement neighbor is written as (4,5) — (i+1, ) fori <
k. Its related probability is p(; jyi+1,5) = (K — )0 /Ai;. The
third type of transition responding to one failure of existing in-
incoming edges is denoted by (¢, j) — (¢,7—1) for j > 0, and
the transition probability is p(; j)(i;j—1) = ju/Asj . Finally,
the last type of transition caused by the arrival of a new in-
coming edge is a jump: (i,5) — (¢,7+ 1) for j <n—1 with
probability p(; jy j+1) = 2kp/Aij.

By recognizing that the jumps behave like a discrete-
time Markov chain and the sojourn times in each state are
independent exponential random variables, we immediately
conclude that the joint chain {(W(¢), X (¢))} is a homoge-
neous continuous-time Markov chain with a transition rate

matrix Q = (quu):

' i j) = (i, — 1

Guw =3 (03) = (17 =1) )
2kp (4,7) = (4,5 +1)
0 otherwise

where u and v’ represent any suitable states of the joint chain
satisfying transition requirements in (92) and A;; = ipu+ (k —
1)o + ju+ 2ku. [ |

APPENDIX XIV
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We start with the following lemma.
Lemma 4: For exponential lifetimes and exponential search
delays, the PDF fr(t) of T is given by:

fr(t) =m(0)VD(t)V ', (93)

where 7(0) is the initial state distribution, V' is a matrix of
eigenvectors of Qq, D(t) = diag(e®?) is a diagonal matrix,
&; < 0 is the j-th eigenvalue of @y, and @)y and r are given
in (29).

Proof: To simplify notation, let { A(¢) : ¢ > 0} represent
the joint in/out-degree chain, i.e., {A(t) = (W(¢),X(¢))}.
Denote by E = {(0,0)} the set of the absorbing state of
chain {A(t)}. Generalize the first hitting time from a starting
state w ¢ E to any absorbing state in F as:

Twp =inf{t >0: A(t) € E|A(0) =w}.  (94)

For Markov chains, it is not difficult to see that T, has a
continuous density function fr, ,(¢) such that for arbitrarily
small dt:

P(t < Typ < t+dt) = fr,, (t)dt +o(dt).  (95)

At the same time, from last-step analysis [17] we have:
P(t <Typ <t+dt) = puu(t)quedt+ o(dt), (96)
ugE

where py.,(t) = P(A(t) = u|A(0) = w) is the probability
that the chain is in state u at time ¢ given that it started in
state w and q, g is transition rate from state u to any absorbing

state in £. Combining (95)-(96) and letting dt — 0, we easily
obtain:

fTwE (t) = Z Puwu (t)QuE~ 97

ugE

Notice from the above that computation of fr, ,(¢) requires
transition probabilities p,,(t) for all v ¢ E, which are
rather difficult to obtain in explicit closed-form for non-trivial
Markov chains such as ours. Instead, we offer a solution that
depends on spectral properties of )y and a matrix represen-
tation of Py, (t) in the following.

Expressing (97) in matrix form, we have:

(frue ()" = Ro(t)r,

where (fr,,(t))T is a column vector, Py(t) = (pwu(t)) for
w ¢ E,u ¢ E are transition probability functions correspond-
ing to non-absorbing states, and r = (g,g)7 for u ¢ E is
a transition rate column vector. Representing Py(t) = %o
using matrix exponential [30] and Qo = VAV ! using eigen-
decomposition [26] where (g is given in (29), we get:

w ¢k, (98)

Py(t) = et = VMVt = VD)V, (99)
where D(t) = diag(e%?), &; < 0 is the j-th eigenvalue of Qo,
and V is a matrix of eigenvectors of (Jy. Then by substituting
(99) into (98), we obtain:

(fr,=(1))" =VD(HV'r,

wgE. (100)

Finally, the PDF fr(t) of the first hitting time 7" is simply the

product of row vector 7(0) and column vector (fr,,(t))7:

fr(t) = m(0)(fr,(1)" = 7(OVDH)V ',

where 7(0) is the initial state distribution of the joint in/out-
degree chain. [ ]
After obtaining the PDF of the first-hitting time 7' shown
in (93), we prove Theorem 11 as following.
Proof: Note that for user v with lifetime L, its isolation
probability is give by:

(101)

¢p=P(T <L) = /Ooo P(L > t)fr(t)dt

/ (1— F() fr(t)dt.  (102)

0

Invoking Lemma 4 and integrating 1 — F'(¢) using fr(t), (102)
reduces to:

¢ = =(0) / e MV D)V rdt
0
- W(O)V(/ e*#tD(t)dt)Vflr, (103)
0
which directly leads to (30). |

Note that the above analysis shows that, by constructing the
node out-degree and in-degree process as a joint Markov chain
{(W(t),X(t))} we can easily obtain solutions to isolation
probability ¢ using (30), rate matrix )y, and vector r with
numerical methods.



APPENDIX XV
PROOF OF THEOREM 12

We begin with obtaining the asymptotic distribution of
the first-hitting time 7,,; onto state 0 of the out-degree
process {W(t)}, followed by the derivation of the asymptotic
distribution of T onto state (0,0) of the join in/out-degree
process, and finally the proof of Theorem 12.

To this end, using previous results in [2], [3], we know that
for Markov chain {W (¢)}, the first hitting time of a rare event
(e.g., state 0 of {IW(¢)}) behaves as an exponential random
variable with rate 1/ E[Tpy:]:

P(Tpuy < t) =1—e V/EToutl a5 B[S] =0,  (104)
where E[T,,;] is available in closed form [20]:
E[S
ETou] = % 1+p", (105)
where S denotes the search delay and p = E[L]/EI[S].

Observe that E[T,,:] — oo as E[S] — 0. Thus by Taylor
expansion (104) reduces to:

P(Tpus < t) = t/E[Tpui), as E[S] — 0, (106)

showing that asymptotically 7,,; behaves like a uniform
random variable. Taking the derivative of (106), we obtain
the asymptotic result on the PDF of Tj,,;:

fr,..(t) = 1/E[Tou], as E[S] — 0. (107)

Then, we derive the CDF of T of the joint chain
{W(t),X(t)} shown in the following lemma. Before we
proceed, denote by:

E[L]

¢out = E[Tout],

(108)
the asymptotic model for P(7T,,; < L) as E[S] — 0 from
[20], which is the isolation probability when only node out-
degree is considered.

Lemma 5: Given L ~ exp(p) and S ~ exp(o), the
CDF of T onto state (0,0) of the joint in/out-degree process
approaches the following as E[S] — 0:

P(T < z) = e 2F(Ei(2k) — Ei(2ke ")) ous,  (109)

where ¢, is given by (108) and Ei(z) = — [7 e7%/2dz is
the exponential integral.

Proof: Observe that user lifetime L (with mean 0.5
hours) is small compared to the value of the first hitting time
T on state (0,0). Therefore, P(T" < L) is mainly affected
by the CDF P(T < z) only for small z. Next, note that
the probability that out-degree process {W (¢)} hits more than
once on state 0 within interval [0, ] for small z is negligible
when E[S] — 0 (i.e., E[Tout] — 00). Thus, based on the
property of the first hitting time 7,,; and the probability that
the in-degree is zero at epoch T,,;, we obtain a simple formula
for the asymptotic CDF of T"

P(T < 2) = /0 " POX() = 0) o (1), (110)

as E[S] — 0. For exponential lifetimes, from (23) we obtain
the probability that node in-degree is zero at time ¢ in closed
form:

P(X(t) =0) = e 2k0=¢™"), (111)

Using (107) and (111), (110) yields the following as E[S] —

0:
1 ’ 2k(1—e ™M)
e 2k(=e"") gy
E[Tout]/o

e—2k —2k e—%
= 7/ dz.
PE[Tout] J _ope—na 2
Notice that:

72k —z oo —2z o0 —2z
/ ¢ dz:/ ¢ dzf/ € 4z (113)
—2ke—nz % —2ke—nz 2 —2k 7

Substituting (113) into (112) and using ¢ = 1/E[L] and (108),
we easily establish (109). |
The asymptotic result on the CDF of T for E[S] — 0
immediately leads to finding isolation probability ¢, as shown
next.
Proof: Integrating (109) using the PDF f(x) = pe #*
of user lifetimes, we have:

/000 P(T < z)f(z)dzx
— (i - [ Bk ) f@)dr) b

PT<zx) =

(112)

¢ =

1 2k
= e_Zk(Ei(%)—% /O Ei(x)dw)céom. (114)

Observe that:
2k
/ Ei(z)dz = 1 — e** 4 2KkEi(2k). (115)
0

Substituting (115) into (114), we easily obtain (31). [ |



