Hershel: Single-Packet
QS Fingerprinting

Zain Shamsi, Ankur Nandwani, Derek Leonard, and
Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering
Texas A&M University

June 18, 2014

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q0
O
(Vo)
i
2
Q
S
O
O

>~
-
o
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
(Vo)
i
2
Q
S
O
O

Agenda

* [ntroduction

Background

Building Hershel

Simulations

Internet Scan

Introduction

* The goal of OS fingerprinting is to determine OS of
a remote host based on its network behavior

« Stack differentiation is possible due to:

- Unclear language and lack of response standardization in
IETF RFCs

- No mandated behavior for malformed requests
- Broken (non-compliant) implementations

* Network administrators and industry analysts have
used OS fingerprinting as a tool
- |dentify and secure devices in own network
- Market analysis of OS usage

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

Introduction

* |Internet measurement studies are important to
researchers
- Detect vulnerabillities
- Show deployment of new software and protocols

« Scans have become progressively faster
- 30 days, 1K pps [Heidemann 2008]
- 24 hours, 24K pps [Leonard 2010]
- 45 minutes, 1.4M pps [Durumeric 2013]

« Large-scale measurement tools need to be fast, low
overhead, and accurate

- OS fingerprinting at large scale has not been explored
before, which is our topic here

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

>~
-
o
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
(Vo)
i
2
Q
S
O
O

Agenda

* |ntroduction

Background

Building Hershel

Simulations

Internet Scan

Background

« Active OS fingerprinting typically requires open port

* Rooted in banner grabbing,

which has many drawbacks HTTP/1.1 200 OK

Cache-Control: private

- Protocol must be known content-Type: text/html;
Server: Microsoft-IIS/7.5
- High overhead X-Powered-By: ASP.NET

. Date: 15 Jun 2014 20:00:22
- Defeated by generic Connection: close

software (e.g_, ApaChe) Content-Length: 20559
- Admins can also remove/obfuscate OS-identifying strings

 Nmap is the current state of the art
- Database of over 4K different OSes

- Default 1032 probes per target, but no less than 38 in the
least-verbose mode

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

Background

 Why not use Nmap?
- Not a polite tool, generates complaints
- Sends malformed probes, performs vertical port scans
- Slow, infeasible for large scale
- Packets easily blocked by IDS such as snort

« Therefore, a more subtle approach is needed
- pPOf, RING, Snacktime are single-packet tools
- Use header fields and timing of SYN-ACKSs
- Have small OS fingerprint databases (~20 different stacks)
- Inaccurate when features change (e.g., packet loss)

 As aresult, the issue of low-overhead and accurate
fingerprinting remains open

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

>~
-
o
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
(Vo)
i
2
Q
S
O
O

Agenda

* |ntroduction

Background

Building Hershel

Simulations

Internet Scan

Building Hershel

 QOur aim is to build a single-packet tool that is robust
to network and user modification

- “Single-packet” means one outbound probe, but multiple
responses from the remote OS are allowed

* Assume remote host responds to TCP SYN
- Specific port/protocol does not matter

- A SYN probe provides minimal intrusiveness, along with
non-malicious operation

« Suppose each OS j can be described by some
fingerprint vector y;
- Consists of two types of features — network and user

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

>~
-
(Z
)
2
-
-
D=
o
<
(2]
O
x
O
—
)
©)
C
Q
O
09
i
2
Q
S
O
O

Building Hershel

* Network features are SYN-ACK RTOs

RTO, RTO,

RTO,

7\ \

\

\ server

SYN SYN-ACK SYN-ACK

« Examples:

Windows 7

Mac OSX 10.3
NetBSD 4.0
Juniper Netscreen

Huawei Embedded

SYN-ACK

client
SYN-ACK/RST/RST-ACK

3 6 12
292 6 12 24 30
292 6 12 24 -
167 2 2 2 2 2 2 2 2

07112345 -
10

>~
-
o
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
09
i
2
Q
S
O
O

Building Hershel

« User features are values taken from packet header

flelds Time-to- Do-not- Options vector (RST present, RST
ey S ITTRAReT) ACK, RST Seq, RST Win)
Receiver (IP) flag (IP) _
(TCP) size (TCP) _‘

CES TSN S I A
Windows 7 8192 1 MNWST 1460 1,0,1,0 |
Mac OSX 10.3 33304 64 1 MNWNNT 1460 1,1,1,32768
NetBSD 4.0 32768 64 1 MNWNNTSNN 1460 0,-,-,-
Juniper Netscreen 8192 64 0 M 1380 1,0,0,8192
Huawei Embedded 1536 255 0 M 768 0,-,-,-

M = MSS, N = NOP, W = Window Scale, S = Selective ACK, T = Timestamp — never used j

before 11

* Challenges
- One-way delay (OWD) jitter (usually zero-mean)
- Packet loss

Building Hershel

server

/\\E‘v AN

SYN-ACK SYN ACK SYN-ACK SYN- ACK/RST

client

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

R, R, Rz Rs
With OWD 1 packet lost | 2 packets lost | 3 packets lost
(2.8,6.4,12.1) (9.2, 12.1) (21.3) empty
(2.8, 18.5) (6.4)
(2.8, 6.4) (18.5)
(6.4, 12.1) (9.2)
(12.1)

(2.8)

Not just many

possibilities, but

also drastically
different values!

12

Building Hershel

* Challenges (cont'd)

- User modification of default TCP/IP parameters (e.g., OS
tuning software, fingerprint scrubbers, NAT, IDS)

- Unlike OWD, these result in arbitrary value fluctuations

- Example: Window size is more likely to jump from 8,192 to
65,535 than to 8,193

« Treating all features as volatile, an observed sample
can match pretty much any OS

T A N T

Observed 65535 1460 1,1,0,0 2.8 6.4
Windows 7 8192 128 1 MNWST 1460 1,0,1,0 3 6 12

Mac OSX 33304 64 1 MNWNNT 1460 1,1,1,32768 2.9 6 12 24 30
13

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
(Vo)
i
2
Q
S
O
O

Building Hershel

* Thus, any observation z can be viewed as a distortion
of each original fingerprint y; from underlying OS j

* Given a sample z, our goal is to determine the most
probable y, that could have produced it:

S\r) = arg 11ax
() g probability that

— observation z

 Which is equivalent to: comes from OS j

s(x) = arg max(p

probability that y; fraction of hosts running OS j
became distored into x

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
V)
o
o)
O
&
O
Q

14

Building Hershel

* To obtain these probabilities, we need a new model
- Machine learning techniques don’t work due to lossy features

* We develop a stochastic theory of single-packet
fingerprinting to account for these random effects
- See paper for detalls

 We then build a classifier called Hershel, which can
additionally handle OSes with random feature vectors,
and construct a database of 116 OSes

« Can distinguish not only between OS families
(Windows, Linux, FreeBSD, embedded devices), but
also patch levels (SP1 vs SP2)

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

15

>~
-
o
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
(Vo)
i
2
Q
S
O
O

Agenda

* |ntroduction

Background

Building Hershel

Simulations

Internet Scan

16

Simulations

 Emulate a FIFO queue between server and client

- Run simulations to classify 218 IP samples with random
network/user modifications

- Vary packet loss and user feature modification from 0 to 50%

 First, we perform comparison with Snacktime, which is
the most accurate previous single-packet tool
- Uses only RTO and WiIn/TTL (Pareto OWD, mean 0.5 sec)

RTO only accuracy +Win/TTL accuracy

3.8% 10% 10% 21% 44% 78%
10% 10% 7% 20% 33% 76%
50% 50% 0.8% 10% 2% 28%

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q0
O
09
i
2
Q
S
O
O

Simulations

* Hershel’'s RTO classifier doubles Snacktime accuracy
at low loss, triples at 10%, and improves an order of
magnitude at 50% loss
- However, Hershel works even better with new features

Hershel accuracy, using Pareto OWD (mean 0.5 sec)

22% 86% 899% 96% 99% 99.9%
21% 77% 79% 91% 94% 95%
20% 76% 77% 91% 94% 95%
10% 28% 35% 54% 57% 60%

* Numerous other scenarios and delay distributions
omitted here, but shown in the paper

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
09
i
2
Q
&
O
O

18

>~
-
o
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
(Vo)
i
2
Q
S
O
O

Agenda

* |ntroduction

Background

Building Hershel

Simulations

Internet Scan

19

Internet Scan EEIETNETT

3 9.6M
2 9.0M 16
 Port-80 SYN scan of the Internet - e)3
- 2.1B IPs in 24 hours, 37.8M responses, 5.0M 16
949 with at least one RTO 1 2.6M 1

* Extensive sanity verification of the dataset
- Not enough room to show here, see the paper

« We see a lot more values for each header field than
we have Iin our dataset
- Emphasizes the importance of probabilistic matching

* Run Hershel on all hosts and obtain a non-zero
matching probability on 37.4M devices

>
-
0
)
2
-
D
>
ol
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
V)
0
D
Q
&
O
Q

20

Internet Scan

» Classification results — top 5 OSes and families

Linux 2.6 / 2.4 9.6 M Linux 13.8 M
VxWorks Embedded 4.1 M Embedded 13.5M
Windows Server 2003 SP1 SP2 2.3 M Windows 7.5M
VxWorks 5.4 / Xerox Embedded 1.8 M Other (Mac, BSD, Novell, etc) 2.3 M

Linux 2.6 / Debian / CentOS 1.1 M

« Compared to previous application of Snacktime to this
dataset [Leonard10], 9M more embedded devices

« Manual verification vs. Snacktime
- We pick 1000 random hosts to compare classifications

- When Hershel and Snacktime disagree, 97% of the time
Hershel is correct, 1.8% Snacktime, and 1.2% neither

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
(Vo)
i
2
Q
S
O
O

21

22

Thank you!
Questions?

AlISISAIUN WY SOX8] ‘@ouslos Jajndwo)

