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Abstract—Recent work in OS fingerprinting [45], [46] has
focused on overcoming random distortion in network and user
features during Internet-scale SYN scans. These classifiban
techniques work under an assumption that all parameters of he
profiled network are known a-priori — the likelihood of packet
loss, the popularity of each OS, the distribution of networkdelay,
and the probability of user modification to each default TCPIP
header value. However, it is currently unclear how to obtain
realistic versions of these parameters for the public Intenet
and/or customize them to a particular network being analyze.
To address this issue, we derive a non-parametric Expectatn-
Maximization (EM) estimator, which we call Faulds, for the
unknown distributions involved in single-probe OS fingerprinting
and demonstrate its significantly higher robustness to nois
compared to methods in prior work. We apply Faulds to a new
scan of 67M webservers and discuss its findings.

|I. INTRODUCTION

OS Fingerprinting

Cline, and Dmitri Loguinov

[51]. Finally, researchers/organizations use these tqaks to
understand usage trends|[37],1[38], discover the spreadwf n
technologies!([8],[17],[129],.[41], and expose botnets| [28]

Active stack fingerprinting can be partitioned into three
categories —banner-grabbingvia plain-text protocols (e.g.,
telnet, HTTP, FTP)multi-probetools that elicit OS-specific
responses from various non-standardized combinationags fl
and/or unexpected usage of protocol fields (e.g., nhap [39],
xprobe [55], pOf[[5¥]), andsingle-probemethods that send a
regular SYN to each host (e.g., Snacktimeé [6], RINGI[53],
Hershel [46], Hershel+_[45]).

At large scale, banner-grabbing has several impediments
— frequent removal of OS-identifying strings by administra
tors (e.qg., for security purposes), high bandwidth ovedhaad
common interaction with non-platform-specific softwarey(e
apache, nginx). Multi-probe tools have their own challenge
heavy load on the target, massive complaints about ingusiv

The Internet is a fascinating conglomerate of highly hetergctivity, and noisy results when the destination IP is load-

geneous devices, which differ in hardware capability, sgcu

balanced across a server farm (i.e., each packet hits aatiffe

awareness, software features, and daily usage. Meastmengrhachine). More importantly, the accuracy of multi-packes
amount, type, and behavior of these devices, as well thgffers a significant degradation when firewalls block danj
networks they connect to, has become an important topi¢ [14lobes (e.g., a UDP to a closed port, rainbow flags in TCP

[16], [18], [21], [27], [3Q], [36], [45], [46]. To categoriz the
makeup of today’s networks, researchaictive OS fingerprint-

headers, ICMP port unreachable) and the underlying clessifi
is not robust against unexpected feature removal/modiitat

ing, which is our topic in this paper, aims to determine thas shown in[[45], OS classification with nmap over the public
stack of remote hosts using their responses to externalistimnternet fails in almos80% of the cases. Furthermore, nmap

(i.e., TCP/IP probes) [4][]5]/17]/110] 119][T25] 26131,
[33], [39], [44], [47], [51], [52], [55], [56], [57]. In addion to

uncovering the operating system of computers, fingermgnti

sometimes produces nonsensical results and worse accuracy
than the alternatives utilizing a single probe.
Before modeling and improving multi-packet classifiers,

can expose household items (e.g., printers, cameras, Tds) @hich are still poorly understood, it is important to ask
various cyber-physical systems (e.g., temperature mitoyhether there exists a set of algorithms for maximizing per-
lighting controllers), which are classes of devices thatehaformance of single-packet tools in Internet-wide scanshSu

enjoyed increased exploitation in recent years.

techniques provide a maximally stealthy option and may be

There are many uses for remote stack fingerprinting. Firstable to bypass firewalls/IDS when packets loaded with “gick
helps hackers in identification of vulnerable hosts and g#necannot. As it turns out, even the most advanced model in

network reconnaissance_[50], especially during cybereatt

single-probe literature, i.e., Hershelt+ _[45], leaves rofom

that target only a specific OS implementation![22]. Seconghprovement. It has many built-in assumptions that may be
OS fingerprinting is routinely deployed in security, e.gy, bviolated in practice, which in turn may affect its classifioa
administrators of large networks seeking to find unpatchedcuracy and overall performance on such basic metrics as
hosts and rogue entities I[1],_[32]. [48]. Third, perimeterthe fraction of the Internet running a particular stack. Our
defense systems (e.g., IDS, firewalls) may require the OS rbtivation for this paper is to understand the limitatiorfs o

the target host in order to detect certain types of expleitg. (

existing single-probe techniques and offer novel avenoes f

those involving reass_embly of IP fragments). In such casésecreasing both the classification accuracy and amount of
autonomous fingerprinting of the protected network allowaformation recovered from responses to a SYN packet.

these installations to function at maximum effectiven&sy,|

A shorter version of this paper appeared in ACM CCS 2017.
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A. Overview of Results

Assume a database of known fingerprirts- (xq, ..
and an observatior’ = (x},...

> Xp)
,x,) from a large number



of Internet hosts. Suppose vector= (a1, ..., «o,) specifies one UDP packet to a closed port, four malformed packets to
the distribution ofpopularityamong the known OSes, i.e; an open TCP port, and three TCP packets to a closed port. It
is the fraction of hosts using fingerprigt. Deciding which retransmits all probes multiple times to neutralize the dntp

OS generated eack’; is generally hindered by presence obf packet loss, which results in ovéf0 packets per host in
distortion during observation, which adds random delays taddition to the initial port scan.

packets, drops some of them, and modifies header fields. = Besides overhead, running nmap against the entire Internet

Hershel+ relies on a-priori knowledge of not only but poses a number of additional challenges. First, there isva lo
also additional parameteis of distortion — the probability likelihood that a port scan, combined with probes to closed
of change in each TCP/IP feature and distributions of ndtwoports, gets unnoticed by the IDS. Many software packages
delay, packet loss, and server think time. While the undiegly (e.g., snort) contain explicit rules to detect and block the
model in Hershel+ is more robust to distortion than those nather esoteric nmap traffic. Certain networks take offense
prior approaches [6],[53], its performance does depend ah being nmapped, which results in swift action to block
how well o and 6§ can be estimated ahead of time. Unforthe entire subnet/AS of the scanner and complaints about
tunately, extraction of these parameters from prior Irgernabusive behavior. Second, the firewall may allow selectsport
scans and Hershel+ decisions is far from simple. In fachgisito reach the target host (e.g., p8ftto a webserver); however,
the fraction of previous classifications that went to ©8s there is little incentive to pass UDP or TCP packets to other
a substitute fora; may lead to inferior results compared tgorts that do not offer any services. Third, in similar fashi
staying with the default parametels [46]. the OS firewall can be configured (e.g., using domain group

As the Internet is highly heterogeneous and constanthplicy) to silently drop incoming packets to closed ports. |
evolving, even if(a,d) could be estimated by monitoringfact, Windows and Mac OS X suppress outgoing ICMP port
routers and/or using end-to-end measurement betweer-strahreachablegven when an explicit rule is created to allow
gically positioned hosts (e.g., PlanetLab), it is unclehether such packets through the firewd8], [35].
conditions observed in the past or along certain paths carNmap expects responses to not deviate from those specified
yield meaningful predictions about the specific networkngei in the database (e.g., a RST to a TCP rainbow packet, ICMP
fingerprinted (e.g., a corporate LAN is very different fronport unreachable from a closed UDP port, ICMP echo reply
the public Internet). Instead, we argue tifat ) should be to a ping). Because it considers absence of a response to be a
the output of the classifier rather than theput Doing so feature, it can be misled into assigning large positive Wisig
allows the unknown parameters to be customized to a spectficfirewall actions, which skews the result towards network
observation’, i.e., reflect the OS composition of the networlstacks that inherently respond with fewer signals. This may
being analyzed and its distortion properties. occur despite a complete non-match in other features, mgani

To accomplish this objective, we derive a non-parametrihat the target may share nothing in the packet header (e.g.,
estimator for(«, #) in Hershel+ under the theoretical frameTCP window size, TTL, options, MSS) with the signature it is
work of Expectation-Maximization (EM)_[13]/[20]. We call matched to[45]. Other issues include the database itskiEhw
this approach Faulds and show that its iterative refinementamntains signatures that are subsets of others from coahplet
unknown distributions, followed by reclassificationxf, can unrelated stacks and allows spegciall header fields that can
significantly improve the accuracy of Hershel+. Additidgal match any value in the observation. Unless the target reispon
as the algorithm recovers botl, 6), it provides important to all 16 probes exactly as expected, an obscure device with
network characterization results for OS popularity, aslwsl the most null fields can trump the other alternatives, inicigd
distributions of delay, header-modification probabifiti@nd the correct signature.
packet loss experienced by. Additionally, certain TCP fields are quiteolatile, i.e.,

We perform a fresh Internet scan and show new EM-guidetiange from user tweaks, underlying network MTU, and
classification decisions of Faulds. We not only update the OSoftware setsockopt function calls. This does not inhérent
popularity vectore,, which demonstrates non-trivial changeshange the operating system, but creates an illusion of a
compared to Hershel+, but also expose statistical parasewifferent stack. For example, Server 2008 R2 accepts inogmi

of distortioné observed by Faulds fro3M webservers. connections with a kernel buffer (i.e., TCP window size) of
8,192 bytes; however, an apache webserver can reconfigure
Il. BACKGROUND this field to an arbitrary value before listening on the siocke

Furthermore, this can be done on a per-socket basis and

may vary over time depending on memory usage or other
Perhaps the most popular and exhaustive tool for OS fingebnsiderations. When faced with this type of uncertainyap

printing is nmap[[38]. To understand its infeasibility foid&- uses heuristic weights and thresholds that do not haveartigor

area usage, we briefly review its outgoing traffic and respongeory/verification behind them. As a result, it exhibitghy

requirements, as well as the matching algorithm. By defaulinreliable identification in certain scenaris|[45].

nmap starts with a vertical scan of the target usirt0 well-

known ports in an attempt to find two TCP ports, one of which

is open and the other is closed, as well as a closed UDP pa.t_SmgIe-Packet Tools

It then sendsl6 uniquely crafted probes — six regular TCP For accurate OS fingerprinting at Internet scale, low-

packets to an open port, one valid and one invalid ICMP pingyerhead methods resilient to volatility are preferred.r Ou

A. Nmap



TABLE |
FEATUREVECTORSx; (TCP OPTIONS: M = MSS, N = NOP, S = SACK, T = TMESTAMP, AND W = WINDOW SCALE)

OS name Win TTL DF OPT MSS RST RTOs
Linux 3.2 5,792 64 1 MSTNW 1,460 0,0,0,0 | 3,6,12,24.2,48.2
Windows 2003 | 16,384 128 0 MNWNNTNNS 1,380 0,0,0,0 | 3,6.5

Novell 6,144 128 1 MNWSNN 1,460 1,1,0,1 | 1.4,3.0

Client i* server Other protocols can be used in fingerprinting as well, e.g.,
7

g Smack 7 } HTTP [44], ICMP [4], [55], DNS [31], and DHCP[26].

RTO
SYN-ACK
«“— } RTO Ill. L EARNING FROM OBSERVATION

RST (optional

Fig. 1. Half-open connections in TCP.

A. General Problem

Suppose the OS database consists of 1 known stacks
(w1,...,wy), each with some vector-valudohgerprint x;, =
(41, Z42,...). As shown in Tabld]l, fingerprints contain a

mbination offeatures including default header values used

focus in this paper is on single-probe techniques, whi r new connections and SYN-ACK retransmission timeouts
[ kb di TCP SYN to the t t host A .
generally work by sending a 0 the target nos: a TOs) of each OS. Further assume a set of observatioas

inducing a stream of SYN-ACK responses, possibly with &', , ; ) e
RST at the end. Since the connection is kept in the half-op oo X obtalr_1ed by scanning th/e Inter/net /and ehqtmg
state, the server continues retransmitting SYN-ACKs utstil 'cSPOnses fromn live servers, where; = (x5,, 235, .. ) IS

internal maximum-retry threshold is exceeded. Delays betw

a vector of sampled features from hagst For the type of
the SYN-ACKs, known agetransmission timeoutéRTOs), OS fingerprinting considered here, i.e., single-probes thi
as well as their count and presence of the last RST, rev

38 e by dispatching a SYN to every IP address in BGP and
valuable information about the OS of the responding hosP lecting SYN-ACKS/RSTs from the responding servers, as
This is illustrated in Fig[1l. Coupling the RTOs with defaul

pfeviously shown in Fid.]1.
TCP/IP header values makes stack classification possible. /The goal of the classifier is then to determine for each
The main difference between prior woFk [€],127], [45].46] x; the most-likely fingerprint in the database. This task is
T 7 complicated by the presence of distortion (also calleldtility
the assumed distortion model. As of this writing, Hershdg] [ f45]) 0 that randomly modifies the original .featuresf of the
system before the observer gets them. This may involve a

is both the most recent effort in this direction and most sbbu . . :

: . Lo . change in the temporal relationship between the packegs (e.
to observation noise. We review its operation and formulas ~ '
later in the paper gueuing delays), removal of some features (e.g., loss of RST

' packets), and rewriting of TCP headers in an effort to oémi
or obscure the end-system.
C. Other Techniques Define a; = p(w;) to be the unknown fraction of hosts in
] N o x’ with OSi and leta = (a4, ..., a,) be the corresponding
Besides exploiting  application-layer software (e.9vector. Now suppose(y|w;,0) is the probability that the
openSSL), cyber-attacks frequently target bugs in the QRgerprint of signature has been changed intp under 6.
kernel. In response to this, _researchers have been denglo;gim”a”y’ assume that(w;|y, 6, @) is the probability that an
methpds to find and quantify unpatched systems [15], [4Ypserved vectoy was produced by a host running QS
Services such as Shodan [30] and Censys [14] scan B¥hditioned on distortion modeé! and popularitya. Then,
Internet, parse the downloaded banners (e.g., HTTP “Sérvefpplication of Bayes' rule shows that the classifier must

strings), and allow keyword search among the banners @ftermine for eacli the one database entry with the largest
responding hosts. Another direction of research has toed t

identify industrial control devices by attempting to coetel aip(xj|wi, 0)
handshakes using various SCADA protocals| [18],] [36]. The p(x]0, )
effectiveness of identifying and attacking such systems wah f tor of feat the d inator i
illustrated by the famous Stuxnet worm in 2010. where, Tor any vector of featurgs the denominator is
A related area to OS fingerprinting attempts to automaticall "
discover features that can differentiate network stacksnfr p(yl0,a) = Zo‘ip(Y|w“9)' ©
each other[]2], (9], 142] and build separable (i.e., maximal =1
and non-redundant) databases from production systems [45]Analysis of [1) in existing work[[45],[[46] assumes that
Additional approaches, many of which are now part of nmafs, uniform (i.e.,a; = 1/n) and @ is fixed by oracle input.
include usage of TCP initial sequence numbérs [33]) [S6Therefore, bothn; and denominatop(x)|0,«) are indepen-
scraping of various fixed header fields [S]J) [7]._[19]. [52]dent ofi and can be removed from the optimization, leaving
[55], [57], tests for reassembly of IP fragments|[47].1[51]only p(x/|w;,6). In contrast, our goal here is to estimate
and reliance on clock-skew differences in kernéls [10]].[25both o and 8 dynamically as the classifier is running, which

1)

p(wi|X;7 97 O[) =



should both increase its accuracy and yield interestirey het- ﬁ AN (5)
characterization results as byproduct of classificatioefoBe - Ak
reaching this objective, a gradual build-up of formalieatis -
needed. This section deals with estimatingthe next one It is often more convenient to work with summations, in
covers network distortion, and the one after that focuses amich case the above is replaced with
modification to fixed header features. .
/ /

B. Fingerprint Popularity loap (', 2|6, &) Z 108 0 108wz, 6)

Observation vectox’ gives rise to a number of equations
in the form of [2), where the left side contains the empirical
(known) probability of observing each unique veciore x’ J

and the right side is a model that embeds the unknowrherecm = logp(x!|wi, 0) is a constant that can eventually

parameters. Extraction oft and 6 from such systems of S : .
equations commonly involves the Expectation- MaX|m|zrznt|oIOe removed from optlmlzat|0n since it does not depend on
q Y P Now, the E-step takes the expectation [df (6) with respect

(EM) method, which produces a solution using fixed- ponﬁ) z, conditioned on the previous value$ and the available
iteration [13], [20]. At every step, it maximizes the expected observations, producing

log- likelihood function conditioned on the parametersaied

<.
Il
-

Z log (07 + ng zJ:ia (6)

i=1

I
M=

Il
-

during the previous iteratioh— 1. As long as the number of (alat) = E.[logp(x', 2|6, @)[x', 6, o]
equations exceeds the number of unknown parameters, EM -
works well for many problems in practice. _ Zz(log i+ cij)E[1.,—i|x', 0, 0]

For now, we treap(x/|w;, #) as a black-box classifier (e.g.,
Snacktime, Hershel, Hershel+), which does not attempt+o es
timated, and focus on determining. This is the simplest (and =
only) case wherd {2) forms a linear system of equations, i.e.
p(yrl0,a) = Yi | aicin(6), where allc;,(f) are constants.
Throughout the paper, superscripts applied to parameées r Where
to the iteration number during which they are estimated, e.g alp(x AN
ol approximatesy; during stept. Now notice that a sensible {=plwilx},0,0") = o 7
estimate of popularity for O%is the average probability with 2t afp( e 6)
which observations map to this fingerprint, conditioned fos t
previous estimate of popularity, i.e.,

j=1i=1

3

M-

(log a; + Cij)ﬂfjv (7)

<
Il
-
-
Il
-

(8)

The M-step maximizes [7) with respect to the unknown
parametery and entails solving

Zp il 0, © oQ(ol) _, ©)
80&1' '
While the next result is fa|rIy straightforward, its dettian
methodology is needed for later parts of the paper.
Theorem 1:For a classifier with fixed, (3) represents the

Note that we can reduce the number of unknown variables
usinga,, = 1— 77" a;, which yields fori = 1,2,...,n—1

EM algorithm for recovering the popularity vectar m. gt t

Proof: For a given set of observations = (x1,...,X.,), Z(f - f) =0. (10)
define thdikelihood function ofx with respect to observation j=1 " "
x’ as

p(xX'|0,a) == Hp x50, ) = HZ aip(xjlws, 0).  (4)
j=1i=1

Definingc = "7, B},;/an, we get
— 1y 8 (11)
Direct computa‘uon of the Maximum Likelihood Estimator i3

(MLE) for p(x’|0, ) is often impossible due to the complex
shape of the function. Instead, EM introduces hidden viesab ~ From normalizatiord ;" ; o; = 1, it follows thatc must be
which help simplify [#), and applies maximization to the- m and that additionally[(11) applies to= n. We therefore
pectedikelihood function, conditioned on the current estimatget [3). u
of unknown parameters. To this end, define hidden variablesNote that this is markedly different from deciding poputgari
z = (z1,...,2m) to specify which OS produced each observaising the fraction of classification decisions that go toheac
tion x). Note that the dataset of paif&<;, 21), . . ., (X),, zm))  OS, which is known akard EM and commonly used in clus-
is calledcomplete as opposed to just’, which isincomplete tering algorithms such ak-means|[[2B]. In fact, all previous
Then, thecomplete likelihood functiois given by fingerprinting tools[[6], [[7], [39], [45],[[46],155],[[5/7] an be

viewed as performing one iteration of hard EM, i.e., outipigtt

p(x', 2|0, ) Hp X7’ZJ|9 ) Hp |zJ, p(z]) the fraction of classifications that belong to each Qs an
estimate of its popularityy;.



TABLE |I 10 : : 10 : :
NETWORKDISTORTION IN SCENARIO S [ N . ‘ ‘
Case | Forward latency (sec) One-way delay (sec) Loss E (] e T i 6 o
Distribution  Mean | Distribution  Mean <Y A S S O oo - :
S11 Erlang(2) 0.5 Exp 0.5 3.8% o x A Linux o X% xX%é(: o 4 Linux
S12 | Pareto 0.5 Pareto 0.5 50% i i © Windows 2 xyx»%x;xxx © Windows|
S13 | Reverse-exp 1.5 Erlang(2) 0.5 10% o : * Novell o 1 * Novell
S1a | Pareto 0.1 Uniform 0.1 50% 0 2 4 6 0 2 4 6
RTO, (sec) RTO, (sec)
(a) databaseéD, (b) caseSi1
C. Discussion 10 . :
We now address the question of whettiér (3) is sufficient for i G _
achieving good classification on its own and how much of the § WY J ,,,,,,,,,, 8
. . . ' %09, ~
accuracy depends on knowing the exact distortion méd#l o I o
the majority of the benefit is already obtained from recawgri  ~ gbiv?:;ows -, i
«, the extra computational cost and modeling effort involved * Novell * Novell

in estimatingd may be unnecessary. For discussion purposes o 2 4 6 0 2 4 6
we use a set of toy databases that allow simple demonstratic.. B ) RTO, (sec)
of the intended effects. Note that the same conclusionsyappl (c) caseSiy (d) caseS13

to larger d_atasets, but fmdmg the corresponding scenarays Fig. 2. Database and distorted observations.
be more time-consuming.
Simulations below apply a forward latency to the SYN TABLE Ill
packet, pass each SYN-ACK through a FIFO queue, which CLASSIFICATION RESULTS IN D
adds random one-way delays along the return path, and drop

packets using an iid (independent and identically disteit Case| « pﬁ'erShec'; pia'd =V pEoM n®
loss mogiel wqh some fixed probability. This is similar to the |[—5;;7 090 (067 059 [ 095 095 [ 095 039
context in which prior methods _[45]._[46] have been tested. 0.05 0.35 0.00 0.06
For the scenario we calb;, there are four different cases < 882 - 82? 06 882 - 811]?
. . : 12 . . . . . . .
for the_(_1|str|but|on of foward{reverse delays _and pack_;esl 0.90 0.41 0.00 0.82
probability. These are shown in Talplé Il and discussed inemor 0.05 0.12 0.02 0.07
detail next. Si3 | 0.90 | 0.45 0.37 | 0.09 0.01 | 0.10 0.1
, : 0.05 0.51 0.88 0.79
The first row matches exactly the assumed parametms 0.05 012 011 0.10
Hershel+ [[45]. The second row uses Pareto delays with mean|[~5, [ 0.3 | 060 065 | 033 007 | 0.34 081
500 ms and50% loss, emulating highly noisy network condi- 0.6 0.23 0.00 0.13
0.1 0.12 0.03 0.05

tions. The next row uses a shifteglerse-exponentidbrward
latency with CDFe~*(2~%) defined for—oo < = < 2, which
tests contrary-to-intuition examples where larger delayes )
more likely than smaller. We emplaoy = 2 and truncate this popularitya? = 1/n.
distribution at zero, obtaining the average forward SYNaglel ~ Results of this process withn = 2'® observations are
of 1.5 sec. The last case in the table examines smaller aver&jewn in TabléTll. In the first row, Hershel+ performs quite
delays than the assumed modein Hershel+, but couples it Well, achievingp' = 67%. Since Novell Netware is an easy-
with substantial loss. to-separate signature from the other two, Hershel+ resover
Our first databas®; contains truncated signatures of Linux¥s pretty accurately; however, it is utterly confused aboet th
3.2 (w1), Windows Server 2003.4,), and Novell Netwarews) frequency of the other two stacks. Applying hard EM increase
from Table[]. We retain the first two retransmission timeougccuracy, but full reconstruction of still proves difficult.
(RTOs), remove all fixed header features, and obtain tA@plication of [3) solves this issue.
fingerprints in Fig[ 2(d). Note that these Linux and Windows Swapping (a;,az), the second simulation in Table Il
signatures are pretty close to each other, albeit not icainti shows that Hershel+ is essentially guessing between Linux
however, they are quite different from Novell. The first #areand Windows, while hard EM is misled into divergence, where
distortionsS;; — S13 applied to this database are illustrated iff drops accuracy from8% to 6%. While (3) is immune to
the remaining subfigures, where we show the fifst samples divergence in this case, its estimate @fsuffers from non-
and remove observations with lost packets. negligible errors. The next two cases in the table are even
Define p? to be the fraction of correct classifications for anore difficult. They show that EM can be driven into inferior
given method during iteration, wheret = oo represents the States when the assumédgreatly deviates from that of the
convergence point of the underlying estimator (usu2lll-40 underlying network. In fact, application dfl(3) not only I&i
iterations). If the method does not perform iteration, onltp obtain vectors that resemble the true distribution, but also
p' is meaningful. We consider three techniques — Hersheharms performance of the system, i,62 < Pt
hard EM with multiple iterations, and soft EM if](3), all Itis interesting that hard-EM techniques, universallydise
using the same functiop(x’;|w;, #) and starting from uniform prior work [6], [7], [39], [45], [4€], [55], [57], may genetly



server packet was originally in positioh. In Fig.[3, for example, we

dil di2 diB
: havev; = (1,3). Then, if thej-th observation comes from
E \ VX '\ systemuw;, it follows that
i lost client & =T+ diy i+ Dy, =12, (). (13)

d,

(2]

=<

4
S0
o

I As in prior work [€], [45], [46], we assume no reordering
Fig. 3. Delay features (stack; produces observation’). due to the |a.rge.5pa_cmg between the packets (often several
seconds), which implies; (r +1) > v;(r). LetI'(s, j) be the
set of all monotonic loss vectors that start wjth| packets
be unsuitable for characterizing the fraction of hosts iagn and finish with|d}|. Then, the Hershel+ network classifier
each OS, especially if is highly skewed. Additionally, EM Usesp(dj|w;, 6a) equal to [45]
iteration is meaningful only whe# is either known a-priori,

. ||
or can be accurately extracted from the collected obsennsti 3 ,
We investigate the latter direction next. Z 7(7) Z pi(7) H faldj, =7 = diyry),  (14)
T YET(4,5) r=1
IV. NETWORK FEATURES wherep;(v) is the probability to observe loss patteyrunder
A. Distortion Model |d;| transmitted packets. To avoid clutter, we omit the formulas

] ] o ) ) . for handling random signaturek in Hershel+, which require
Our goal in this sect/|on is to estimate unknown distortiogy, eyra summation over all possible sub-OSes and normaliza
parameters) inside p(x|w;, ). Let featuresx; = (di;ui) on by the corresponding weights, but keep this functityal
consist of network components (i.e., delagls) and user- i, e code. For lack of a better assumption, Hershel+ uses
modified header values (i.a;). Since classification [45]. [46] pinomial pi(7), Erlang(2) fr(r), and exponentiafa (3), all
usually assumes that distortion is applied to each subveciih some fixed parameters. Sindg encapsulates the set of
independently, it follows that these distributions, our next goal is to recover them usikty E
p(Xlwi, 0) = p(djlwi, Qa)p(uflws, 0,),  (12) Meration.
whered,, 6, are the network/user distortion models, respec- N
tively. Each of them contains multiple PMFs (probabilitysea B- Intuition

functions) that we elaborate on below. Since in this sectionwe start with a heuristic explanation of the proposed update

we consider only the network component, we assume thigtmulas, which is followed by a more rigorous treatment.

p(uf|w;,0,) = 1 for all 4,7, i.e., all observed user featuresRecall thatfL(r) is an estimate oP(7; = ) during iteration

are the same and thus perfectly match all fingerprints. ¢ Then, one obvious approach is to set this value to the agerag
To understand the notation involved in expanding the firgobability that each observatignhas experienced a forward

factor in (12), examine Fig.13 where a host with networlatencyr, conditioned on the previous estimates of unknown
signatured; generates an observatidt;m. Measurement begins parameters, i.e.,

with a SYN packet, which takes some time to get to the target, .
followed by the server “think” delay before it generates the 41,y 1 gt ot
first SYN-ACK response. Database feature vectbrgonsist T ()= m ZP(Tj = 7dj, 04, 7). (15)
of departure timestamps from the server, whdfe = 0
for all i. Note thatd;,+1 — d;- is the r-th retransmission  Next, each database signature withriginal packets admits
timeout (RTO) of the stack, which was commonly used i2* — 1 unique loss patterns, where k goes as high as
early estimators[ 6], [53],.[46]. Recently, however, usage k... = 21 in the most recent effort in the field [45]. Estimat-
absolute timestamps;,. was identified[[45] as having certaining the probabilityp; () for each possible option is likely to
modeling advantages, which is our approach as well. produce too many unknown variables and lead to poor conver-

On the client side, arrival timestamp&, are measured gence of EM. Instead, suppose that(jl) patterns of losing
relative to the transmission time of the SYN. Assuffie packets out of: are equally likely and define the probability of
represents the sum of the forward delay, server think time, athis event to bey (¢), wherek = 1,2, ..., kpa.. The resulting
propagation/transmission delays of the reverse path,enfier reduction in the number of unknown variables is significant —
has some unknown distributiofy(7) = P(T; = 7). Further- from roughly2tme=+1 = 4M t0 just kpaz (kmaz —1) /2 = 210.
more, letA;;, Aj,, ... be iid queuing delays of the return pathDespite its simplicity, the framework of using,(¢) allows
with another unknown distributiorfa(6) = P(A;, = §). more general scenarios than the traditional iid Bernoutided
Then, assuming no loss,;, = T + d;» + Aj,.. In practice, used in previous literature [45], [46].
T, and A, are continuous variables, but it is convenient to To update distributiory;(¢), our approach involves com-
discretize them into small bins and directly work with PMFsuting the probability that observations experienced ffsé

To handle packet loss, assume thatis a random vector packets out oft transmitted, normalized by the probability
that maps the received packets in observajida their order that the original host semt packets in the first place. To
on the server, i.e.y;(r) = k means that the-th received express this mathematically, definé to be the number of

Jj=1



SYN-ACKs originated by the host in observatign Letting With the help of [I#), we get
1x be an indicator of evenk’, we get

|d}]
qt+1(€) ZJ 1 P( - k|9 t)1|d;|:k7Z (16) d/ |w17 ed Z .fT pz ) H ftA((Sij‘r'yr)a (26)
g 2o P(Yj = kl0g, f)ljar <k r=1
from which the estimated probability of pattesnis given by Which leads to
Q\tdi\( il =10 p(d] |wza9d me‘r'y (27)

pi(y) = (17)

G

and, Ieveraging]Z) for the denomlnator bfl(26),
Finally, updates to PMFf4(d) involve computing the

probability that one-way delay of each received packet Isqua Z Z” p”” = Zﬂmv’ (28)
0, normalized by the total number of packets collected during Zlm ple'y m
the scan, i.e., @ Moving on to the forward latency, notice that{15) becomes
m d)
15y = 2mimt 21 P(Bgs = 015, 00,08 o) it LS p(d)], 6, " )p(r]6h)
E AT =g Z AR,
C. Analysis _Z agp(dflwi, 7, 0%) f1(7)
To make the framework outlined above usable, our next d’|9t at)
task is to express the probability of events that cannot be St
directly observed (e.gY; = k, Aj, = §) using a recurrence —— Z iy Ty Zﬁwm (29)
that depends on only the distributions containeddin i.e., sz pwﬂ iy
t t t
(fr, fa-qi)- Let Next, the probab|I|ty that the host in observatiprsent k
Sijryr = djp — T — di (1) (19) packets is
be the one-way delas ;, conditioned oril; = 7, loss pattern gt = o
~, signaturew;, and observatiory. For brevny of notation, (¥; = kl6g, of ;p wildj, 03, @) Lja,j=
suppose) . refers to five nested summations, where “
igTys . alp (d} |wz,6‘d,a )Lja; =k
goes froml to n, j rolls from 1 to m, 7 moves over all - Z . (30)
bins of the PMF f(7), ~ iterates over all monotonic loss P p(d}|05, of)
vectors inT'(¢,7), and s travels from1 to_|d3|. If some of Using this, the numerator of 1L6) expands to
the variables are absent from the subscript, the correspgnd o o L
sums are omitted from the result. With this in mind, define ZD a;p(dj|wi, O, " ) Lar | =k—0,|d; |=k
|| ot p(d}|0h, at)
¢ = t 1JT r 20
Pijry ifr(r HfA Ty (20) = Zﬁfjml\d;\:k—é,ldilzk' (31)
1JTY
pi T . . .
iy o= p(wi, T, y]d), 05, ") = 277: (21)  Applying the same logic to the denominator Bf](16), we get
iry Pijry @24). Finally, updates to one-way delay admit the following
and consider the next result. interpretation
Theorem 2:Under network distortion, estimatoifg (3), {15), 5 b1
(@16), and [(IB) can be written as P(Aj, = 0|d), 04, at) = irv(l()ii/j‘lr;t 574;)75:5
p j d7a
t+1 22 :
;ﬂurw/? ( ) = Zﬂijr'y]-&jwys:(sv (32)
Ty
Hl Z ﬂmw (23)  which is a sum of match probabilities over all signatures; fo
iy ward latencies, and loss patterns that result in one-waydel
tp) = Zim ijf'yl|d;|:kfl,\di\:k 24 in the s-th received packet. Adding the two summations over
0. (£) = Siin ij‘r’y]“dl-|<|di‘:k ’ (24) 4, s and dividing by the total number of observed packets, we
T ! Vﬁ 1 __ get [25). [ |
fi(0) = =4 ””/5””3*‘5_ (25) While the result of Theoref 2 may appear daunting due to
Z_j |dj| the number of nested summations, its implementation in-prac
Proof: We start with the recurrence on. Keeping tice can be done with little extra cost compared to Hershel+.
distortion limited to network feature.](3) becomes Specifically, usage of_(14) irll(1) for ail j already requires

five nested loops. In the inner-most loop of that algorithm,
(25) adds one increment to a hash table that maintains the
PMF of one-way delay. Updates ih {22)-[24) are performed

et = 1§ alpl s 0)
CT & (e o)

j=1



TABLE IV 0.08 T 0.08 T T
CLASSIFICATION RESULTS OFNETWORK EM IN D
0.06 -------- (N o e‘stlmatedr 0.061-B----- (N Lo o e‘stlmatedr
Case| p! P> a®™® . ; : ; o PR : :
Si1 | 0.67 | 0.95 | 0.90,0.05,0.05 & 004 o=oeoe R X S P g 004y
S12 0.48 | 0.91 | 0.05,0.90,0.05 3 : §
Si3 | 0.45 | 0.95 | 0.90,0.05,0.05 0.02p=7mmem 7 A | LRy
S14 0.60 | 0.85 | 0.30,0.60,0.10 o ' o ; 0
0 1 2 3 4 0 1 2 3 4
seconds seconds
(a) reverse-expfr (caseSis) (b) Erlang(2) fa (caseSi3)

less frequently and, in comparison, consume negligibletim

The only caveat is that Hershel+ can be optimized [45] to ©° T e 025 A
remove the outer summation {n{14) whgnis Erlang(2) and o R S
fa is exponential. Our approach, on the other hand, requires | oalp-----i---ioooebonocd R 15 S S LA
hash-table lookup for both distributions. This makes itgk 2 ,| R O IO SO
iteration similar in speed to unoptimized Hershel+.

Theorem 3:lteration [22)425) is the EM algorithm for o e o
(04, ). % o0z o4 06 o8 1 ) 05 1

Proof: AssumeH; = (z;,T},,) are the hidden variables seconds seconds

that specify for observatiopits true OS, forward latency, and (c) Paretofr (caseSi4) (d) uniform fa (caseSia)

loss pattern, respectively. Further suppébe- (Hq, ..., H,,) Fig. 4. Recovery of delay parameters iy.
is the collection of hidden variables for the entire measure
ment. Then, the complete likelihood function is given by

trivially given by (22)-[28). A more interesting case is the

p(d’, H|04,q) == Hp(d},H|9d7a) loss PMF. Using substitution
j=1 k=2
i ar(k=1)=1=) a(0), (39)
= Hp(d/7|Hjaedaa)p(Hj|9daa)v (33) ;
j=1

in (38), we get forf =0,1,...,k — 2 that

where Q(04, ), at) _ Z 1\d’j\:k—e,|di|:k ¢
|| Aqi(£) & w0/
p(d;|Hja 04, ) = H fA(d;'r =T = dzj ;) (34) g/ =1 |ds|=k .
r=1 — Z m BTy (40)

p(Hjl0a, @) = az; fr(T))ps; (75)- (35) iy
Settingc to be the second summation [0 {40) and equating

Define the derivative to zero, we get
|} 1 kY o
iy = ai fr(T)pi(7) H faldy, =7 —diqy).  (36) qr(l) = - > Lja)|=k—¢,|d, =k <£) iy (41)
r=1 g

Since the PMFg;, must add up td, it follows that

k—1
k
c= > Liay=k—ta 1= <g> Bijrn

Following the proof of Theorerfil 1, the log-likelihood ex-
pands to

- =051
logp(d', H|fa, ) := Y log(p=, i, ;) o .
7 => Lias <k, ai|=k (Z) Bijry (42)
Ty
- Z Z log(pijry)1z;=i,Ty=7,7;=- . o _ .
§=1 ity Using this in [41) and cancelmdz) yields [23). Note that

(37) derivation of [25) is very similar. We omit it for brevity. m

The expected log-likelihood function is then given by D. Discussion

Q(04, |0, ") = Z1og(pijm)p(wi,7,7|d;,9f1,at) We revisit earlier simulations on datasét;, run (22)-
ity (25) over the same input, and show the result in Table IV.
_ Z 10g(pijm)ﬁfjw- (38) Compared to Tabledll, the derived EM estimator significantl

improves the accuracy of both classification and veetor

Note thatS1» contain43% of the observations with just one
Taking partial derivatives with respect tg and fr(7), we packet, i.e., zero RTOs. In methods that rely on RTO [6]} [46]

get a set of equations similar t6] (9)-{10). Their solution 53], these samples would be either discarded as impossible

1JTY



TABLE V

to classify or assigned to a uniformly random signature. In NETWORK PARAMETERS OF SCENARIO So
contrast, estimatof (22)-(P5) manages to do much better as i
learns distributions fr, fa,«) and makes the best decision Case| Delay q3 Loss a Loss

: e ; 1 | AsinSiz | BInT(3,0.3) 28% | BInT(4,0.3) 30%
possible under these conditions. The accuracy of estima e& Asin S1s | BINT(3.0.1) 10% | BinT(4.0.8) 66%

delay distributions is shown in Fifl 4. With the exception fsii Asin S12 | RevBin(3,0.1) 57% | RevBin(4,0.1) 65%
noise at the points of discontinuity of each density, fumasi | S2a | Asin Si3 | BinT(3,0.7) 54% | BInT(4,0.7) 61%
f22, fR match the true parameters quite well.

Recalling (18), whereT; + Aj, are always measured
together, it may not be obvious ho#; can be separated

TABLE VI
CLASSIFICATION RESULTS IN Do

from A;,. and why the result in Fid.14 is possible. Indeed, [Case| « Hershel+ | EM o, fr, fA Full EM

this is reminiscent of the classical deconvolution problem pt o [ p®  a® [ p*® a%
given observation{ X; + Y;}7,, where X; ~ Fx(z) and G20 | 090 1076003 1 0.70 - 0.68 1 091 0.9
Y; ~ Fy(z) are iid, determine the individual distributions 0.05 0.07 0.05 0.05

Fx, Fy. Deconvolution is generally unsolvable unless either | S22 | 0.90 | 0.45 0.34 | 0.13  0.06 | 0.97 0.90
Fx or Fy is known ahead of time. While our problem 0.05 0.47 0.84 0.05

L . o 0.05 0.19 0.10 0.05
is similar, there is a crucial difference — EM can see the —g—090 [ 045 036 | 010 006 | 090 0.90
same valueT; coupled withmultiple instances ofA ., for 0.05 0.46 0.90 0.05
r = 1,2,...,|d,|. As long asqy(k — 1) < 1 (i.e., packet 0.05 0.18 0.04 0.05

02, |dj| 9 q’“(. ) ( pa S24 [ 090 [ 042 033 | 0.14 0.10 | 0.92 0.90
loss leaves at least two packets in enough observations) and 0.05 0.38 0.88 0.05
m — oo, deconvolution is possible in our setting, but up to a 0.05 0.29 0.02 0.05

location shift, i.e., one of the estimated distributionsynine
shifted left by a constant and the other right by the same
amount. If we know that one of them starts at zero, it is done in isolation from the network features, i.e., using
possible to determine the shift after the fact. Furthermibre p(d’|w;, 04) = 1 for all 7, j. Assumeb > 1 user features,
both estimated densitieg>, f3° already begin at zero, nowhere each observation provides a constant-length vector
correction is needed. This is the case in Eig. 4 and later in ow; = (u};,...,u},). These include the TCP window size, IP
Internet scan. TTL (Time to Live), IP DF (Do Not Fragment flag), TCP
Since all signatures i, had three packets, it was easy tdMSS (Maximum Segment Size), and TCP options, for a total
figure out the number of them lost in eadh, which led to of b = 5 integer-valued fields. Since RST features depend on
¢° being perfectly accurate, regardless of whethet (24) wastwork loss, we delay their discussion until the next secti
used or not. In a more interesting database, which welgall Note that each field may be allocated a different number of
Linux is augmented with a fourth packet that follows aftebits in the TCP/IP header and the number of available options
a 3-second RTO. To experiment with different loss patterns, for », may depend o (e.g., two for DF and34K for
define BinTk, p) to be a binomial distribution with parametersiin).
(k,p) truncated to the rangl), & — 1]. Since the loss of all Modification to user features at the target host, which we
k packets cannot be observed, we avoid generating this casedel with a set of distributiond,,, can be accomplished
in the simulator. Additionally, suppose RevBinp) is the by manually changing default OS parameters (e.g., editing
reverse binomial distributiorsuch thatX ~ BinT(k,p) and the registry), using specialized performance-tuningveare,
Y = k—1- X impliesY ~ RevBin(k,p). With this in requesting larger/smaller receiver kernel buffers whitgting
mind, consider scenariS, in Table[M, which showsy, and on sockets (i.e., using setsockopt), and deploying netivost
the average observed loss rate among the signatureskwitBcrubbers [[12], [140],[143],[149],[154] whose purpose is to
packets. obfuscate the OS of protected machines. Besides intethtiona
Table[Vl shows classification results for three methods feature modification, distortio, may also accommodate
Hershel+, the partial EM framework without loss updategnknown network stacks that build upon a documented OS, but
(24), and the full algorithm from Theorelm 2. Not surprisingl change some of its features (e.g., new versions of embedded
Hershel+ again struggles to recover even when its classi- Linux customized to a particular device).
fication accuracy is pretty high. Omission 6f(24) does @eat Prior work either omits formally modeling user volatility
challenges for partial EM, where in all four cases it producgg], [7], [39], [55], [57], or assumes that;, stays the same
worse results than Hershel+. On the other hand, the fwith some probabilityr, and changes to another integer with
algorithm improves accuracy and delivers the exadespite probability 1 — 7, [45], [46]. While the latter approach works
complex underlying network conditions. The correspondingell in certain cases, it has limitations. Besides the faat+,
distributions ¢;° are shown in Tablé VIl. They all matchis generally unknown, binary decision-making fails to ¢eea
ground-truthg, with high precision. distribution over the available choices. For example= 0.9
assumes thaeach of the 65,534 non-default window sizes
occurs with probability).1. Instead, a more balanced approach
A. Distortion Model would be to assume a uniform distribution over the distartio
Our goal in this section is to expand the second factor possibilities and assign them probability — 7,,)/(a, — 1).
(@I2) and develop an estimator for its distortion model. ThiSecond, it is likely that certain devices are modified less

V. USERFEATURES
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TABLE VI TABLE VI

RECOVERY OFLOSSPMFS IN D2 USERFEATURES OFDATABASE D3
Case | Vector k=3 k=4 [6]S] Win TTL DF OPT MSS
So1 | a» | (0.35,0.45,0.19) | (0.24, 0.41,0.27,0.08) Linux 5792 64 1 MSTNW 1,460
¢ | (0.35,0.45,0.19) | (0.24,0.41,0.27,0.08) Windows | 16,384 128 0  MNWNNTNNS 1,380
Soo qr (0.73,0.24,0.03) (0.00, 0.04, 0.26, 0.69) Novell 6,144 128 1 MNWSNN 1,460
g | (0.73,0.24,0.03) | (0.00,0.04,0.26,0.69)
S25 | qr | (0.03,0.24,0.73) | (0.00,0.05,0.29,0.66)
g | (0.03,0.24,0.73) | (0.00,0.05,0.29,0.66) o ,
Soa ar (0.04,0.29,0.67) | (0.01,0.10,0.35,0.54) The next result follows from substitution df_(45%)-{46) into
qg° | (0.04,0.29,0.67) | (0.01,0.10,0.35,0.54) ) and [44), as well as earlier proofs of Theords 1[and 2.

Theorem 4:Under user distortion, estimatoifg (3) andl(44)

can be written as
frequently than others (e.g., due to firmware restricticars)

individual distortions are OS-specific, which implies that - i Zﬂ?,, (47)

should depend on Finally, the existing methods have no way ’ meY

of tracking the location and probability mass of distortion S BT,

which does not have to be uniform in practice (e.g., a non- it (y) = =1 Z;ff”*q’ (48)

default window size257 bytes is less likely thalb4K). mao;

To overcome these problems, assume tha{(y) is the Fyrthermore, this is the EM algorithm fg6,,, o).

probability that featurev of OS i is modified to become,

which gives rise to a set ofb distributions that comprise our ) )

user-distortion modef,,. Then, the proposed classifier can b&- Discussion

summarized by To evaluate the result of Theordm 4, we construct a new

b databaseDs, shown in Tabldé VI, by switching from RTOs
p(W|wi, 0,) = Hmv(u;v% (43) to user features. Note that this Linux signature ties Novell
' ot in DF and MSS, while Windows does the same in TTL. For

I . . simplicity of presentation, we use simulation scenariothwi
where modification to features is assumed to be independent. ) : o . .
= ¢, for all i, where ¢, is the probability with which

Note that doing otherwise does not appear tractable at tii . )
point (i.e., estimation of covariance matrices produces tée.akt]urev stays at Lhehd_efault_ vaIuef. "T his replace;, n&aﬁ%
many variables for EM to handle). \t,:lglei vectorg,, which is easier to follow across the different

The initial PMFsr?, of EM are set up to include0% of the
mass on the default value and split the remainder uniformly

We begin by discussing under what conditions the probleacross the viable alternatives. Since it is believed [4@it th
is identifiable, despite having a large number of unknowthe order of non-NOP options cannot be changed without
distributions. Assume;, := m;, (u;,) is the probability with rewriting the TCP/IP stack of the OS, we initialize), to
which featurev stays the same for O5 Because we do not allow only candidates compatible with the original,. For
know ahead of time the reasoning of the user for changing teeample, MST is feasible for Linux, but not the other two
features or the new values of modified fields, the estimatisignatures in Table_VIll. Note that any single option (M, S,
problem forr;, is unsolvable unless enough of the probabilityV) and the empty set are valid for all three OSes.
mass remains at the original location, i.g;, is above some  We use two models for generating noisy observations. The
threshold. From common sense, it is likely tha, > 0.5 first one, which we call RAND, picks uniformly from the
holds among the general population of Internet hosts; hewewspace of possible values observed in our Internet scanpexce
EM converges under even weaker conditions (e.g., whign OPT is limited to compatible subsets/supersets of the rmalgi
is the largest value in each PMF,). Coupling this with an We have5,695 candidates for Win, four for TTL, two for
initial state that satisfies the same constraint allows EM BF, 266 for OPT, and1,082 for MSS. Decisions are made
discover a unique solution. independently for each feature and each observatiop,

We define the estimator for user distortion as the probgbilitvhich models users “tweaking” their OS without coordingtin
to observey in featurev across all matches against @S.e., with each other or sharing a common objective. Even though

B. lteration

S (i, 6L, at) 1y — RAND can generate 3.1 billion unique combinationsu’,
Hl(y) = il 7/“ - Zf“_y_ (44) only a small subset is encountered by the classifier in our
Zj:l p(wiluj79u’a ) simulations below.

To allow simplification of this expression below, define ~ The second model, which we call PATCH, selects an al-
. ternative vector of features for each OSw; and switches
ottty t t o the default valueu;, to «?, with probability 1 — ¢, again
Pij = ipWjlwi, 0, 07) = o H mio (o), (45) independently for eachy. This represents deployment of
v=1

t software patches that change one of the features to an wpdate
T (46) value. The probability for a host to use multiple patche$iés t
iz DPij product of correspondind —¢,,)’s. For example, modification

fj = p(wilu;'v etua O‘t) =



TABLE IX
PATCHED USERFEATURES

TABLE XI
CLASSIFICATION RESULTS IN D3

11

Vector Win TTL DF OPT MSS Case | Hershel+ EM
uy 5,793 128 0 M 1,461 ot ot o> =
uy 16,386 32 1 M 1,382 S31 0.76 0.79 | 0.96 | (0-30,0.20,0.50, 0.40, 0.40)
uy 6,147 64 0 M 1,463 S30 0.29 0.32 | 0.91 | (0.00,0.00,0.10,0.20,0.00)
S33 0.31 0.50 1 (0.20, 0.20, 0.20, 0.20, 0.20)
TABLE X
PARAMETERS OFSCENARIO S3 TABLE XII
HANDLING OF RST RACKETS
Case| Model Feature stay prob., Popularity o
S31 | RAND | (0.3,0.2,0.5,0.4,0.4) | (0.90,0.05,0.05) RST present Action Multiphier ¢%.
S32 | RAND | (0.0,0.0,0.1,0.2,0.0) | (0.90,0.05,0.05) T I i
S33 | PATCH | (0.2,0.2,0.2,0.2,0.2) (0.7,0.2,0.1) i i . .
yes | yes - 7ri,b+1(uj,b+l)
yes | no | ignore RSTind/ | =, (u,. )
no yes — 1
to both Win and OPT affect§l — ¢1)(1 — ¢4) fraction of no | no - 1

hosts. Vectorau are non-adversarial and do not attempt to
confuse the classifier. We construct them by flipping the DF

flag, setting OPT to M, and addingto all remaining fields OS has a RST, but the signature does not, this indicates a
(modulo the max field value). The result is given in Tdblé [Xpossible interference from an intermediate device (e@S |

To estimate vecton;, in the classifier, we use a weightedsfter expiring connection state, scrubbers). In this cis,
average of feature non-modification across all OSes, i.fkely meaningless to use the temporal characteristicshef t
by = >imy @0}, OUr next scenaris; is detailed in TablEX RST, which is why we omit it fromd/ before computing
and the corresponding outcome is given by Table XI. We omjie loss and delay probabilities. However, multiplication
vector o since it matches ground-truth] very aCCUrately. ﬂ-f b1 (uj,b+1) is still warranted since we must assign a proper
Due to the new treatment of non-default features [inl (43)eight to this mismatch. The third row of the table correston
the first iteration of EM in Tablé XI is superior to Hershel+to packet loss, which is handled automaticallyjity), i.e., no
However, both are much worse than the last iteration. It Ehowqditional actions or multipliers are needed. Finally, thst
be noted that the second caSg, modifies Win, TTL, and row is identical to the setup assumed in preceding sections.
MSS in100% of the samples. Identifiability in such conditions
is helped by the fact that OPT is constrained to a subset of
the original string, which makes a certain fraction of ramtio B. Final Model
generated values feasible for only one OS. This allows EM to
learn to ignore (Win, TTL, MSS) and focus decisions on (DF, We now combine the developed network, user, and RST
OPT). Furthermore, when guessing is involved, EM uses fidodels into a single framework. Redefiniig](20) as
knowledge ofx to correctly pick the most-likely OS. It is also \ |
interesting thatSss is classified with100% accuracy once EM 2
gets a grasp on the new values in Tdble IX and their probgbilit Pijry = 3G (H va(ugv)) Fr(mpi(7) H FAQigryr)
of occurrence. v=l r=1 (49)

VI. COMPLETE SYSTEM
A. Reset Packets

allows us to computeﬁfim still via 21), as well as reuse

(22)-(28). However,[(48) requires an update to

Because loss of RST packets causes the corresponding user D! S gt
features (i.e., ACK/RST flags, ACK sequence number, window T (y) = == “j“:‘zﬂ Ty WTY (50)
size [46]) to be wiped out, there is dependency between ma;

distortion applied by the network and the user. As a resu\l/;[merev —1.2.....b+1. The final classifier, which we call

this case should be handled separately. The first modificati . . S
needed is to increase the length of network vectbrsand 'l(—)auldﬂ is applied after EM has converged and is given by
Pl 07,0%) = 3677,

™

d; to accommodate the RST timestamp. The second change
is to add RST values into user features. Since it is currently
believed that RST fields are unmodifiable independently of

each otherl([46], they can be combined into a single integer|; js easy to generalize our earlier results to cover the

and appended to user vectarsandu; in positiond + 1. complete model, as given in the next theorem without proof.

There are four possible scenarios for handling RST packets.—rheorem 5-Under both network and user distortion. esti-

They are shown in Table XIl, each with a certain probability, ; ;
' ator [21)4(2h),[(49)E(B0) is the EM algorithm f¢#, ).
1; that must be factored into the formulas developed earlier. HZD) HE0) g ®, )
When both the observation and candidate signature contain _ o .
. . . Henry Faulds was a Scottish scientist who extended the ioie¥élliam
RST, the Only multlpller needed is the prObab'“ty that thﬂersohel and proposed the first usable forensic fingerjtamtification

received feature was produced by that OS. If the sampledthod in 1880.

(51)
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TABLE XIlI

10° ‘ ‘
: : —actual
g | _ | INJECTIONCLASSIFICATION SUMMARY
210" " : i S R e
§ ) : ™~ e ] Size of Dy Injected samples| pl e | P E[¢°]
5102 378 (90%) 7,089 (2.8%) | 0.88 | 0.91 | 0.10 | 0.80
§ 336 (80%) | 49,648 (19.0%) | 0.87 | 0.89 | 0.11 | 0.74
@10'3 294 (70%) 60,058 (22.9%) | 0.87 | 0.89 | 0.11 0.73
= 210 (50%) | 91,408 (34.9%) | 0.91 | 0.91 | 0.11 | 0.72
10 . . . . . 126 (30%) | 189,293 (72.2%) | 0.95 | 0.93 | 0.17 | 0.60
10 10 10 10 10 10
rank of OS rank of OS
(a) Fauldsa (b) Hershel+o . ) o
008 , ‘ to signatures with similar RTO vectors as the true OS.

Instead of scrutinizin@1 different loss PMFs, suppose we
0.06 © estimated| | o estimated

compute a single metric — the fraction of packets dropped
within the entire observatior’, conditioned on at least one

i ' b a '
Z0.04 N — - ) , )
* ‘ | A ORS00 N SO SO N packet surviving. To this end, define during step
0.02 f---=n=rioffomo oo noe froasoes o1
0 3 4 3 4 Ly = Z éq’t“ (é) (52)
seconds seconds £=1
(c) Fauldsfr (d) Fauldsfa to be the average number of lost replies in signatures ivith
, _ packets. Then, taking an estimated ratio of all droppedgtack
Fig. 5. Results inDy. . .
to the total transmitted yields the expected loss rate
n trt
_ - Di1 a;Lig, _ (53)
C. Scaling the Database oss TS al|dy|

Due to the large number of features it combines, Faulds iSRecall that the simulation allowed loss to affect at most
not challenged by the previous toy databases. We therefgre 1 packets in OSes withd;| = k. Therefore, its ground-
switch to a more realistic set of signatures created by Platath packet loss should represent the same quantity_as (53)
in [45]. We call this databas®, and note that it contains Traces show thaf0.1% of the packets were dropped, which
420 stacks, among which some have the same exact Rfatches quite well againgfe,, = 69.3%.
vector and others overlap &l user features. The database was Since¢, = 0.8 was a constant in this simulation, it makes
constructed to ensure that signatures were sufficientljuei sense to compare it against feature-modification estimates
under delay distortion, but packet loss and user modifinatioaveraged across all fields and all OSes, i.e.,
were not taken into account. As a result, the database osntai i1 b1 n
a number of entries that \{vould_ be d|ﬁ|_cult to dlst_mgmsh E[¢!] = LZ% _ LZZ%‘@U- (54)
under the types of heavy distortion considered in this paper b+1 = b+1
Nevertheless, these tests should indicate how well Faulds - L
scales to larger databases and whether its recovery of tngesults show thaE_[¢v ] = 0:802' which Is very CI.OS? to
unknown parameter, 6) is affected by an increased unthe 2.1C.'[U61| \{alue. While there is some variation in individua
certainty during the match. ¢iv, 1t is Of little concern due to the small number of samples

We set popularityar to the Zipf distribution with shape seen by Faulds from these OSes.
parameterl.2 and continue usingn = 2'¥ observations,
which gives uss4K samples from the most common OS and®- Unknown Signatures
just49 from the least. We borrow the delay from casg (i.e., We recognize that having a database that knows all devices
reverse-exponential’ with mean1.5 sec, Erlang(2)A with on the Internet is near impossible. Therefore, infiltratin
mean0.5) and packet loss fronyss (i.e., reverse-binomial). samples from unknown signatures intd, which we call
Finally, we use RAND with stay probabilitg, = 0.8. injections is inevitable in practice. Understanding their impact

The first iteration of Faulds produces a respectaBlle= is our next topic.

0.42. This is gradually improved with each step, until con- Supposex’; is produced by some unknown QSthat does
vergence to a more impressiye® = 0.70. To make sense not belong to the databasexf is so different from the known
out of a>, we sort all signatures in rank order from the mostignatures thap(x|6", o*) = 0, i.e., it matches each OS with
popular to the least and plot the result in Hig. 5(a). Theprobability 0, its injection into the observation will contribute
is a strong match in the top-100, while the random nois®thing to updates ofa?, 6*) and thus will have no impact on
in the tail is explained by the scarcity of these OSes in thlassification decisions. In order to achieve a flat-out raisim
observation (i.e., below250 samples each). For comparisonef this type, either delay;;., must be negative for all, 7, y
the outcome of Hershel+ is displayed in part (b) of the figurer the product in[(49) must be smaller than the precision of
To complete the big picture, subfigures (c)-(d) show estdatfloating-point arithmetic.

of fr and fA. Despite an overaB0% classification mismatch, For injections Withp(x;-|9t,ozt) > 0 the situation is less
these PMFs are no worse than previously observed inFFig.cfear-cut. In some cases; may be close to an existing
which indicates that incorrect decisions overwhelmingbniv signaturew;, which makes injections minimally different from

v=1 i=1
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Fig. 6. Recovered delay und&2% injection. Fig. 7. Internet delay distributions.

VII. INTERNETMEASUREMENT

distorted instances of;. As a result, they do not negativelyA. Overview
impact EM or its convergence point. On the other hand, it is On December 14, 2016, we conducted a port-80 SYN scan
also possible that’; is a potential match to multiple unrelatedof all BGP-reachable IPv4 addresses on the Internet. Of the
OSes and the amount of distortion needed to make thensB IPs contacted, we gathered responses 6GriM hosts.
appear as<; is much greater than the underlyirtg If the Using a 16-core AMD Opteron @2.8 GHz, a parallelized
volume of injections is high, how likely is EM to introduceC++ version of Faulds was able to procels801 hosts per
bias into distributions of delay/loss to the point of impagt second. In large-scale classification, such as the one ptem
classification accuracy faron-injectedsamples? here, Faulds produces a huge volume of information in the
rﬁgrm of various PMFs and estimates. Due to limited space,
(i.e., special signatures crafted to cause maximum harm f present onIy_a brief reV_‘eVY of the obtained results and
ve more detailed analysis (including attempts to uncove

a given database and classifier) to be likely in practice a . X
instead focus on evaluating the effect of random subset E@ectlons and correct for them) for future work.We starthwi

moval from D,. Specifically, assume the simulator produce asic sanity checks of the estimated distortiand then delve
distorted observations using a0 network stacks; however, into classification resul:.

Faulds has access to only some of the original signatures. Fo . _

the next simulation, we use Pareftp and f, both with mean B. Network Distortion

0.1 seconds, iid packet loss &0%, and¢, = 0.8. Fig. [7(a) shows the recovered distributight using bin

Define p! to be the classification accuracy among nore2e 30 ms. Delays belows0 ms @9%) represent unloaded

- . . . servers in close proximity to the scanner, most likely withi
injected observations during stépand consider Table_XIll, . . ’

€ g stepand —. ' the continental US. Those in thi20 — 200 ms range 40%)
which shows the shrunk database size, number of injected:. : : .

18 . ndicate targets whose RTTs are consistent with destingtio
samples amongn = 2'° observations, and the output of. . -
) in Europe and Asia. The remaining cases covers longer paths,
Faulds. The result shows that removal of signatures does . L
scheduling delays, non-trivial CPU load on the server,

fcc?rr%: ifg\;\tfg‘;ggg?g'\gégpg%r?tTyaﬁgZ;agg ?r:glgzglbn;seand involvement of various backend databases to set up the
shrinks since it be.comes ;asier to classify among fewce?nnection. Overall, we obtaifi[7;] = 148 ms, 80% of the
options. Packet los;s. . also appears immune, except insamples b(.EIO\.’@OQ ms, and99.2% below 4.50 ms. Fig. 7(0)
the last row wherer2% of x’ contains observations from plots the distribution of one-way delag, in which 92% of

. . . the mass concentrates bel@® ms and97% below 100 ms.
unknown OSes. Its increase 0% is explained by more he average queuing deldSiA ;] — 15 ms also sounds quite
frequent matches that require high packet loss to be fmSib}easonablg q 9 i q
Finally, the feature-stay probability in the last columntlie ‘

most affected, which was also expected due to the increa JO examine packet loss, defiﬂp% n 2?21 O‘§1|di‘:’“ to be
) . P ?ﬁe estimated fraction of observations that use an OS kith
header-field mismatch.

packets. The top values &fare four (3° = 0.42, 112 stacks

Fig.[8 shows the two delay PMFs estimated by Faulds in Plata databasB,), six (55° = 0.31, 80 stacks), threerg° =
the last row of Tabld_XIll. Recovery is quite good, excepd.07, 72 stacks), and fiver°® = 0.04, 54 stacks). FiglB plots
for a slight bump in fo between200 and 400 ms. This the recovered loss PMFs for these value& ofach fitted with
shows that removing0% of the signatures iD, still leaves an iid binomial model and accompanied by the average loss
enough unique RTO vectors to produce highly accurate gesutiate L°/k from (53). First, it is interesting that the loss rate
In the actual Internet, however, we do not expect injectida heterogeneous, ranging frod3% in g to 12.6% in gs.
conditions to be anywhere near these levels becalge This phenomenon may be inherent to the signatures that map
contains an array of major network stacks (e.g., Window& eachk (e.g., certain printers cut the SYN-ACK sequence
Unix), printer firmware (e.g., HP, Lexmark, Brother), Ciscavhen their tiny SYN backlog queue overflows [45]), the load
equipment, and various derivative implementations that rwn the corresponding OSes, and host location on the Internet
on embedded devices. Seel[45] for more detalils. all of which suggests there is an extra benefit to estimating

We do not consider encountering of adversarial injectio
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Fig. 8. Internet packet-loss PMFs. Fig. 9. Internet distributionsr;; and ;5 (default values have an asterisk).

independently for differenk. Second, while in a few of the this stack with jumbo Ethernet frames enabled. Since this is
plots the binomial model shows a reasonable fit, this does @t inherent property of any database, it is important toaallo
universally hold. Finally, computindg (53) for the Interreetan great flexibility in the match process to accommodate such
yields an average loss rate 8f3% across all observations.scenarios.

This is consistent witl3.8% found in a Google study of SYN-

ACK retransmission rates [11]. D. Classification Results

) ) We define Faulds to be successful for sampléf the
C. User Distortion denominator of[{ll) is non-zero, i.ep(x;|6%,at) > 0. This
Computing [(54), we obtaif[¢;°] = 0.81, i.e., the average means that at least one OS matchés with a non-zero
probability to encounter a non-default value wi&¥%. Faulds probability. Using the Plata database wit?0 network stacks
produced420 x 6 = 2,520 distributions of user features,[45], Faulds successfully classifigg8.1M hosts (i.e.,93%).
among which we highlight several interesting cases, fogusiFrom a pure statistical point of view, the remainidaggM
on the two most volatile fields — Win and MSS — and limitinglevices should be assigned to the OS with the highgst
all PMFs to values above th&% likelihood. Since MSS But it is also likely these cases come from unknown stacks
sometimes depends on the MTU of the underlying data-lirdt observations with too much packet loss, in which case
layer and/or tunneling protocol (e.g., IPv6), this field magxcluding them from classification might be prudent as well,
experience fluctuation even if the OS does not allow explicithich is our approach below.
means for changing this value. The left side of Tablé_XIV shows the top ten OSes after
We expected devices with firmware restrictions that preveane iteration of Faulds. Note that the Plata database was
user access to the configuration of SYN-ACK parameters aoito-generatedrom a pool of devices found at a university
exhibit high ¢;,. One example is shown in Fif] 9(a) for anetwork. Even though this process [45] produced only a
popular Dell printer. Amon@76K occurrences on the Internet,high-level description of each OS, additionalanual effort
this device keeps the default window with probability can be used to provide each signature with a more specific
Intuition also suggests that general-purposes OSes are mia@rnel version and/or physical device. We consider thigess
susceptible to modification and/or existence of altereftiv orthogonal to the topic of the paper since Faulds operates on
patched versions. One example 28M hosts with Ubuntu TCP/IP signatures and its accuracy does not depend on the
Linux, where Fig[®(b) shows that Faulds discovdi$; of name affiliated with each fingerprist.
the cases with window size exactly half of the default (i.e., The dominance of Linux and embedded devices in Table
14,480 instead 0f28,960). A more dispersed case is Mac OXIVI(left) matches the statistics reported in prior work [27
X Server in part (c), which exhibits noticeable variation if45], [46], although a more interesting result is the amaoint
both Win and MSS. Its default values remain with probabilityelative change occurring in the classification as Fauldssgo
73% and89%, respectively. Finally, in subfigure (d), CentOShrough its iterations. Table X1V (right) shows the vector
(enterprise Linux) has its original combinatioi7 (896, 8,960) after 100 steps. The top Linux signature gais&%, Windows
occurring in onlyl% of the cases. We conjecture that the Plata in third place increases 8%, and two other Linux stacks
database [45], which was constructed from production @svicdrop 17% each. Further down the list, there is significant
in a large campus network, captured a non-standard ver§iomwmvement as well, where certain embedded systems, such as
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TABLE XIV
FAULDS CLASSIFICATION AT ITERATION 1 (LEFT) AND 100 (RIGHT)
oS ot Count oS 100 Count Change
Ubuntu / Redhat / CentOS | 0.224 | 14,098,093 Ubuntu / Redhat / CentOS 0.334 | 21,361,956 0.52
Ubuntu / SUSE / CentOS | 0.111 8,896,622 Embedded Linux 0.103 6,467,303 0.02
Embedded Linux 0.082 6,326,349 Windows 7 / 2008 / 2012 0.056 3,669,372 0.25
Windows 7 / 2008 / 2012 0.047 2,942,254 Schneider / APC Embedded 0.055 3,632,638 1.29
Ubuntu / Redhat / SUSE 0.037 2,408,386 — Ubuntu / Redhat / SUSE 0.031 2,001,329 —0.17
Schneider / APC Embedded 0.022 1,587,396 Windows XP / 2003 0.018 1,248,619 —0.05
Windows XP / 2003 0.021 1,314,967 Redhat / CentOS / SUSE 0.016 1,046,567 —0.17
Redhat / CentOS / SUSE | 0.018 1,254,797 Dell Laser / Xerox WorkCenters 0.015 976,717 0.25
Embedded Linux 0.015 1,044,028 Windows 2008 R2 / 2012 0.014 837,466 —0.08
Windows 2008 R2 / 2012 | 0.013 907,167 Cisco Embedded 0.013 824,039 2.29
TABLE XV TABLE XVII
TYPES OFDEVICESRUNNING WEBSERVERS OSES WITH EXPIRED SUPPORTLIFE CYCLES
Device Type Count Fraction oS Count Released
General purpose 42,277,294 67% Windows 2000 / XP / 2003 1,512,725 | 2000 / 2001 / 2003]
Switch/router/gateway/network controllgr 8,854,290 14% FreeBSD 7.3 /8.0 433,978 2010 / 2009
No label in database 7,038, 785 11% Windows Server 2003 SP1 SP2 195,169 2005 / 2007
Printers 2,813,292 4.5% Windows Server 2000 SP4/XP SP3 146,421 2003 / 2008
RAID controller/NAS 1,348,895 2.1% FreeBSD 6.4 71,190 2008
Video conferencing/telepresence 603,035 1.0% Solaris 9 / Solaris 10 78,269 2003 / 2005
Cyberphysical systems 91,033 0.14% Mac OS X 10.4 36,834 2005
IP phones 61,400 0.10% Windows 2000/XP SP1 9,623 2001 / 2002
Novell Netware OES 2 SP1 1,108 2005
TABLE XVI

UNPROTECTEDINDUSTRIAL AND ENTERPRISEDEVICES
operating systems (i.e., Windows XP/Server 2003) gained

Device Count Type . .

Polycom HDX 8000 HD 566565 Te|epyrzsence renewed attention. In Table XYII, we show several signature
Hickman ITV 450D _ 67,091 | Telepresence| that have reached the end of support and are no longer being
Cisco Unified IP Phone 7900 Series 27,151 | IP Phone patched to keep up with the latest vulnerabilities. These ar

AVTech RoomAlert/Rockwell Automation| 21,756 | Cyberphysical

Loytec L-DALI Lighting Control Systems| 20,517 | Cyberphysical obvious security threats; however, we find ovegM old
Codian Telepresence MCU 20,036 | Telepresence| Windows hosts still visible over the public Internét)0K
Polycom RealPresence Server 4000 18,977 | Telepresence|  FreeBSD, and8K Solaris. Faulds not only allows for a timely
AdTran IP Phone Manager 11,909 IP Phone .

HWg-STE: Ethernet thermometer 11,826 | Cyberphysical| Measurement of such devices, but also paves the way for
D-Link DCS Series Internet Camera 9,279 | Telepresence| scalable, low-overhead Internet characterization, rotbegice

identification, and better modeling of distortiérexperienced
by the numerous hardware artifacts found on the Internet.
Schneider APC (data-center hardware solutions), Delkgrin

and Cisco, increase their membership2sy— 229%. There is VIII. CONCLUSION
even more shuffle outside the tap; which underscores the | this work, we developed novel theory and algorithms
importance of using proper algorithms for estimating for improving OS-classification accuracy in single-probe fi

Table[XV splits all classified hosts into eight Categorie_’@erprinting, measuring one-way Internet path propertes]
The top two signatures are desktop/server OSes and varigigacting latent distributions of feature distortionm@iations
stacks from ngtwork—dewce manufacturers (|._e., switades  showed exceptional robustness of our EM techniques against
routers). In third place, there aregM hosts with no label, yarious types of noise, as well as injection of unknown desic
which means Faulds finds a matching signature for each A’ﬁplied to Internet scans, this methodology can be used to
them, but Plata does not know what these devices are. Tdi&ect vulnerable devices, as well as estimate stack piyula
bottom half of the table, with a substantial count of cybefetwork delays, packet loss, and header-tuning probiakilit
physical systems and office equipment, is more alarming.rytyre work involves construction of fingerprint databases
These oftentimes run on default manufacturer passwords gi¢h specimens that are pairwise separable under more com-
allow reconfiguration using a built-in webserver. Inveatigg pjex distortion than just delay, detection of unknown stack
further, TableLXV] shows the top-ten signatures from thesgnong the observations, automatic generation of sigrsture

categories, which include camera systems, building ighti for them, and extensive comparison against nmap.
controllers, and temperature monitors. They present high s
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