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A Stochastic Foundation of Available Bandwidth
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Abstract—This paper analyzes the asymptotic behavior of
packet-train probing over a multi-hop network path carrying
arbitrarily routed bursty cross-traffic flows. We examine the
statistical mean of the packet-train output dispersions and its
relationship to the input dispersion. We call this relationship the
response curve of path . We show that the real response curve

is tightly lower-bounded by its multi-hop fluid counterpart ,
obtained when every cross-traffic flow on is hypothetically re-
placed with a constant-rate fluid flow of the same average intensity
and routing pattern. The real curve asymptotically approaches
its fluid counterpart as probing packet size or packet train
length increases. Most existing measurement techniques are based
upon the single-hop fluid curve associated with the bottleneck
link in . We note that the curve coincides with in a certain
large-dispersion input range, but falls below in the remaining
small-dispersion input ranges. As an implication of these findings,
we show that bursty cross-traffic in multi-hop paths causes nega-
tive bias (asymptotic underestimation) to most existing techniques.
This bias can be mitigated by reducing the deviation of from
using large packet size or long packet-trains. However, the bias is
not completely removable for the techniques that use the portion
of that falls below .

I. INTRODUCTION

END-TO-END estimation of the spare capacity along a net-
work path using packet-train probing has recently become

an important Internet measurement research area. Several mea-
surement techniques such as TOPP [13], Pathload [5], IGI/PTR
[4], Pathchirp [15], and Spruce [16] have been developed. Most
of the current proposals use a single-hop path with constant-rate
fluid cross-traffic to justify their methods. The behavior and
performance of these techniques in a multi-hop path with gen-
eral bursty cross-traffic is limited to experimental evaluations.
Recent work [8] initiated the effort of developing an analyt-
ical foundation for bandwidth measurement techniques. Such
a foundation is important in that it helps achieve a clear under-
standing of both the validity and the inadequacy of current tech-
niques and provides a guideline to improve them. However, the
analysis in [8] is restricted to single-hop paths. There is still a
void to fill in understanding packet-train bandwidth estimation
over a multi-hop network path.

Recall that the available bandwidth of a network hop is its
residual capacity after transmitting cross-traffic within a certain
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time interval. This metric varies over time as well as a wide
range of observation time intervals. However, in this paper, we
explicitly target the measurement of a long-term average avail-
able bandwidth, which is a stable metric independent of obser-
vation time instants and observation time intervals [8]. Consider
an -hop network path , where the ca-
pacity of link is denoted by and the long-term average
of the cross-traffic arrival rate at is given by , which is as-
sumed to be less than . The hop available bandwidth of is

. The path available bandwidth is given by

(1)

The hop , which carries the minimum available bandwidth, is
called the tight link or the bottleneck link.1 That is

(2)

The main idea of packet-train bandwidth estimation is to infer
from the relationship between the inter-packet dispersions

of the output packet-trains and those of the input packet-trains.
Due to the complexity of this relationship in arbitrary network
paths with bursty cross-traffic flows, previous work simplifies
the analysis using a single-hop path with fluid2 cross-traffic,
while making the following two assumptions without formal
justification: first, cross-traffic burstiness only causes measure-
ment variability that can be smoothed out by averaging multiple
probing samples and second, non-bottleneck links have negli-
gible impact on the proposed techniques.

The validity of the first assumption is partially addressed in
[8], where the authors use a single-hop path with bursty cross-
traffic to derive the statistical mean of the packet-train output
dispersions as a function of the input probing dispersion, re-
ferred to as the single-hop response curve. The analysis shows
that besides measurement variability, cross-traffic burstiness can
also cause measurement bias to the techniques that are based on
fluid analysis. This measurement bias cannot be reduced even
when an infinite number of probing samples are used, but can be
mitigated using long packet-trains and/or large probing packet
size.

This paper addresses further the two assumptions that cur-
rent techniques are based on. To this end, we extend the asymp-
totic analysis in [8] to arbitrary network paths and uncover the
nature of the measurement bias caused by bursty cross-traffic
flows in a multi-hop network path. This problem is significantly
different from previous single-hop analysis due to the following
reasons. First, unlike single-hop measurements, where the input

1In general, the tight link can be different from the link with the minimum
capacity, which we refer to as the narrow link of P .

2We use the term “fluid” and “constant-rate fluid” interchangeably.
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packet-trains have deterministic and equal inter-packet separa-
tion formed by the probing source, the input packet-trains at any
hop (except the first one) along a multi-link path are output from
the previous hop and have random structure. Second and more
importantly, the multi-hop probing asymptotics are strongly re-
lated to the routing pattern of cross-traffic flows. This issue
never arises in a single-hop path and it has received little atten-
tion in prior investigation. However, as we show in this paper, it
is one of the most significant factors that affect the accuracy of
bandwidth measurement in multi-hop paths.

To characterize packet-train bandwidth estimation in its most
general settings, we analyze several important properties of the
probing response curve assuming a multi-hop path with ar-
bitrarily routed bursty cross-traffic flows. We compare with
its multi-hop fluid counterpart , which is a response curve
obtained when every cross-traffic flow in is hypothetically
replaced with a fluid flow of the same average intensity and
routing pattern. We show, under an ergodic stationarity approx-
imation of the cross-traffic at each link, that the real curve
is tightly lower bounded by its fluid counterpart and that the
curve asymptotically approaches its fluid bound in the en-
tire input range as probing packet size or packet-train length in-
creases.

Most of the existing techniques are based on the single-hop
fluid response curve associated with the bottleneck link in .
Therefore, any deviation of the real curve from the single-hop
curve can potentially cause measurement bias in bandwidth
estimation. Note that the deviation can be decomposed as

(3)

The first term is always positive and causes asymptotic
underestimation of for most of the existing techniques. This
deviation term and its resulting measurement bias are “elastic”
in the sense that they can be reduced to a negligible level using
packet-trains of sufficient length.3 For the second deviation term

, we note that both and are piece-wise linear curves.
The first two linear segments in associated with large input
dispersions coincide with (i.e., ). The rest of the
linear segments in associated with small input dispersions ap-
pear above (i.e., ). The amount of deviation and the
additional negative measurement bias it causes are dependent on
the routing patterns of cross-traffic flows, and are maximized
when every flow traverses only one hop along the path (which
is often called one-hop persistent cross-traffic routing [2]). Fur-
thermore, the curve deviation is “non-elastic” and stays
constant with respect to probing packet size and packet-train
length at any given input rate. Therefore, the measurement bias
it causes cannot be overcome by adjusting the input packet-train
parameters.

Among current measurement techniques, pathload and PTR
operate in the input probing range where coincides with ,
and consequently are only subject to the measurement bias
caused by the first deviation term . Spruce may use
the probing range where . Hence it is subject
to both elastic and non-elastic negative measurement biases.
The amount of bias can be substantially more than the actual

3The analysis assumes infinite buffer space at each router.

available bandwidth in certain common scenarios, leading to
negative results by the measurement algorithm and a final
estimate of zero by the tool.

The rest of the paper is organized as follows. Section II
derives the multi-hop response curve assuming arbitrarily
routed fluid cross-traffic flows and examines the deviation
term . In Sections III and IV, we analyze the deviation
phenomena and convergence properties of the real response
curve of a multi-hop path with respect to its fluid counterpart

. We provide practical evidence for our theoretical results
using testbed experiments and real Internet measurements in
Section V. We examine the impact of these results on ex-
isting techniques in Section VI and summarize related work
in Section VII. Finally, we briefly discuss future work and
conclude in Section VIII.

An earlier version of the this paper appeared in [9]. Interested
readers can also refer to [10] for the technical proofs that are
omitted in this paper.

II. MULTI-HOP FLUID ANALYSIS

It is important to first thoroughly understand the response
curve of a network path carrying fluid cross-traffic flows,
since as we show later, the fluid curve is an approachable
bound of the real response curve . Initial investigation of the
fluid curves is due to Melandar et al. [12] and Dovrolis et al.
[1]. However, prior work only considers two special cross-traffic
routing cases (one-hop persistent routing and path persistent
routing). In this section, we formulate and solve the problem
for arbitrary cross-traffic routing patterns, based on which, we
discuss several important properties of the fluid response curves
that allow us to obtain the path available bandwidth information.

A. Formulating A Multi-Hop Path

We first introduce necessary notations to formulate a
multi-hop path and the cross-traffic flows that traverse along
the path.

An -hop network path is a se-
quence of interconnected First-Come First-Served (FCFS)
store-and-forward hops. For each forwarding hop in , we
denote its link capacity by , and assume that it has infinite
buffer space and a work-conserving queuing discipline. Suppose
that there are fluid cross-traffic flows traversing path . The
rate of flow is denoted by and the flow rate vector is given
by .

We impose two routing constraints on cross-traffic flows to
simplify the discussion. The first constraint requires every flow
to have a different routing pattern. In the case of otherwise, the
flows with the same routing pattern should be aggregated into
one single flow. The second routing constraint requires every
flow to have only one link where it enters the path and also have
only one (downstream) link where it exits from the path. In the
case of otherwise, the flow is decomposed into several separate
flows that meet this routing constraint.

Definition 1: A ow aggregation is a set of flows, represented
by a “selection vector” , where
if flow belongs to the aggregation and if otherwise. We
use to represent the selection vector of the aggregation that
contains flow alone.
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There are several operations between flow aggregations. First,
the common flows to aggregations and form another aggre-
gation, whose selection vector is given by , where the op-
erator represents “element-wise multiplication.” Second, the
aggregation that contains the flows in but not in is given by

. Finally, note that the traffic intensity of aggregation
can be computed from the inner product .
We now define several types of flow aggregation frequently

used in this paper. First, the traversing flow aggregation at link
, denoted by its selection vector , includes all fluid flows

that pass through . The matrix
becomes the routing matrix of path . For convenience, we de-
fine an auxiliary selection vector .

The second type of flow aggregation, denoted by , includes
all flows entering the path at link , which can be expressed as

given the second routing constraint stated
previously. The third type of flow aggregation, which includes
flows that enter the path at link and traverse the downstream
link , is denoted as , where .

The cross-traffic intensity at link is denoted by . We
assume for . Since none of the links in

is congested, the arrival rate of flow at any link it traverses
is . Consequently, we have

(4)

We further define the path configuration of as the following
matrix

(5)

The hop available bandwidth of is given by .
We assume that every hop has different available bandwidth, and
consequently that the tight link is unique. Sometimes, we also
need to refer to the second minimum hop available bandwidth
and the associated link, which we denote as ,
and , respectively. That is

(6)

where is the index of the tight hop.

B. Fluid Response Curves

We now consider a packet-train of input dispersion (i.e., inter-
packet spacing) and packet size that is used to probe path

. We are interested in computing the output dispersion of the
packet train and examining its relation to . Such a relation is
called the gap response curve of path . It is easy to verify that
under fluid conditions, the response curve does not depend on
the packet-train length . Hence, we only consider the case of
packet-pair probing. We denote the output dispersion at link
as or for short, and again for notational convenience
we let . Note that corresponds to the notation

we have used previously.
Based on our formulations, the gap response curve of path

has a recursive representation given below.
Theorem 1: When a packet-pair with input dispersion and

packet size is used to probe an -hop fluid path with routing

matrix and flow rate vector , the output dispersion at link
can be recursively expressed as

(7)

where is

(8)

Proof: Assume that the first probing packet arrives at link
at time instance . It gets immediate transmission service

and departs at . The second packet arrives at
. The server of needs to transmit amount of data

before it can serve the second packet. If this is done before time
instant , the second packet also gets immediate service
and . Otherwise, the sever undergoes a busy period
between the departure of the two packets, meaning that

. Therefore, we have

(9)

This completes the proof of the theorem.
As a quick sanity check, we verify the compatibility between

Theorem 1 and the special one-hop persistent routing case,
where every flow that enters the path at link will exit the
path at link . For this routing pattern, we have

(10)

Therefore, (8) can be simplified as

(11)

which agrees with previous results [1], [12].

C. Properties of Fluid Response Curves

Theorem 1 leads to several important properties of the fluid
response curve , which we discuss next. These properties tell
us how bandwidth information can be extracted from the curve

, and also show the deviation of , as one should be aware of,
from the single-hop fluid curve of the tight link.

Property 1: The output dispersion is a continuous
piece-wise linear function of the input dispersion in the input
dispersion range .

Let be the input
dispersion turning points that split the gap response curve to

linear segments.4 Our next result discusses the turning points
and linear segments that are of major importance in bandwidth
estimation.

Property 2: The first turning point corresponds to the path
available bandwidth in the sense that . The first
linear segment in the input dispersion range
has slope 1 and intercept 0. The second linear segment in the

4Note that the turning points in F is indexed according to the decreasing
order of their values. The reason will be clear shortly when we discuss the rate
response curve.



LIU et al.: A STOCHASTIC FOUNDATION OF AVAILABLE BANDWIDTH ESTIMATION: MULTI-HOP ANALYSIS 133

input dispersion range has slope and intercept
, where is the index of the tight link:

(12)

These facts are irrespective of the routing matrix.
It helps to find the expression for the turning point , so that

we can identify the exact range for the second linear segment.
However, unlike , the turning point is dependent on the
routing matrix. In fact, all other turning points are dependent on
the routing matrix and can not be computed based on the path
configuration matrix alone. Therefore, we only provide a bound
for .

Property 3: For any routing matrix, the term is no less
than , which is the second minimum hop available band-
width of path .

The slopes and intercepts for all but the first two linear seg-
ments are related to the routing matrix. We skip the derivation
of their expressions, but instead provide both a lower bound and
an upper bound for the entire response curve.

Property 4: For a given path configuration matrix, the gap
response curve associated with any routing matrix is lower
bounded by the single-hop gap response curve of the tight link

(13)

It is upper bounded by the gap response curve associated with
one-hop persistent routing.

We now make several observations regarding the deviation of
(i.e., ) from . Combing (12) and (13), we

see that when . That is, the
first two linear segments on coincide with . When ,
Property 4 implies that the deviation is
positive. The exact value depends on cross-traffic routing and it
is maximized in one-hop persistent routing for any given path
configuration matrix.

Also note that there are three pieces of path information that
we can extract from the gap response curve without knowing
the routing matrix. By locating the first turning point , we can
compute the path available bandwidth. From the second linear
segment, we can obtain the tight link capacity and cross-traffic
intensity (and consequently, the bottleneck link utilization) in-
formation. Other parts of the response curve are less readily
usable due to their dependence on cross-traffic routing.

D. Rate Response Curves

To extract bandwidth information from the output dispersion
, it is often more helpful to look at the rate response curve,

i.e., the functional relation between the output rate
and the input rate . However, since this relation is not
linear, we adopt a transformed version first proposed by Me-
lander et al. [13], which depicts the relation between the ratio

and . Denoting this rate response curve by , we
have

(14)

This transformed version of the rate response curve is also
piece-wise linear. It is easy to see that the first turning point in
the rate curve is and that the rate curve in the input
rate range can be expressed as

(15)

Finally, it is also important to notice that the rate response
curve does not depend on the probing packet size . This
is because, for any given input rate , both and
are proportional to . Consequently, the ratio between these two
terms remains a constant for any .

E. Examples

We use a simple example to illustrate the properties of the
fluid response curves. Suppose that we have a 3-hop path with
equal capacity mb/s, . We consider three
routing matrices and flow rate settings that lead to the same link
load at each hop.

In the first setting that we call one hop (or, one hop persistent)
routing, the flow rate vector and the routing matrix

. Each cross-traffic flow traverses only one
hop along the path. In the second setting, each flow traverses no
more than two hops. Hence, we call it two hop routing. The flow
rate vector is and the routing matrix is given by

(16)

In a third three hop (or, path persistent) routing case, a flow can
traverse up to three links. The flow rate vector and
the routing matrix is given by

(17)

All three settings result in the same path configuration

(18)

The probing packet size is 1500 bytes. The fluid gap
response curves for the three routing patterns are plotted in
Fig. 1(a). In this example, all multi-hop fluid curves have 4
linear segments separated by turning points ms,
ms, and ms. The lower bound identified in Property
4 is also plotted in the figure. This lower bound is the gap
response curve of the single-hop path comprising only the tight
link .

The rate response curves are given in Fig. 1(b), where the
three turning points are 2 mb/s, 3 mb/s, and 6 mb/s, respectively.
Due to the transformation we adopted, the rate curve for one-hop
routing still remains as an upper bound for the rate curves asso-
ciated with the other routing patterns. From Fig. 1(b), we also
see that, similar to the gap curves, the three multi-hop rate re-
sponse curves and their lower bound (i.e., the transformed
rate version of ) share the same first and second linear
segments.
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Fig. 1. Example of multi-hop response curves. (a) Gap response curve. (b) Rate
response curve.

F. Discussion

We conclude this section by discussing several major chal-
lenges in extending the response curve analysis to a multi-hop
path carrying bursty cross-traffic flows. First, notice that with
bursty cross-traffic, even when the input dispersion and packet-
train parameters remain constant, the output dispersion becomes
random, rather than deterministic as in fluid cross-traffic. The
gap response curve , defined as the functional relation between
the statistical mean of the output dispersion and the input dis-
persion, is much more difficult to penetrate than the fluid curve

. Second, unlike in the fluid case, where both packet-train
length and probing packet size have no impact on the rate re-
sponse curve , the response curves in bursty cross-traffic
are strongly related to these two packet-train parameters. Fi-
nally, a full characterization of a fluid flow only requires one pa-
rameter—its arrival rate, while a full characterization of a bursty
flow requires several stochastic processes. In what follows, we
address these problems and extend our analysis to multi-hop
paths with bursty cross-traffic.

III. BASICS OF NON-FLUID ANALYSIS

In this section, we present a stochastic formulation of the
multi-hop bandwidth measurement problem and derive a recur-
sive expression for the output dispersion random variable. This
expression is a fundamental result that the asymptotic analysis
in Section IV is based upon.

A. Formulating Bursty Flows

We keep most of the notations the same as in the previous
section, although some of the terms are extended to have a dif-
ferent meaning, which we explain shortly. Since cross-traffic
flows now become bursty flows of data packets, we adopt the
definitions of several random processes (Definition 1–6) in [8]
to characterize them. However, these definitions need to be re-
fined to be specific to a given router and flow aggregation. In
what follows, we only give the definitions of two random pro-
cesses and skip the others. The notations for all six random pro-
cesses are given in Table I.

Definition 2: The cumulative traffic arrival process of flow
aggregation at link , denoted as
is a random process counting the total amount of data (in bits)
received by hop from flow aggregation up to time instant .

Definition 3: Hop workload process of with respect to
flow aggregation , denoted as indi-
cates the sum at time instance of service times of all packets

in the queue and the remaining service time of the packet in ser-
vice, assuming that flow aggregation is the only traffic passing
through link .

To simply analysis, we adopt the following “stationarity ap-
proximation” on cross-traffic flows.

Assumption 1: For any cross-traffic aggregation that tra-
verses link , the cumulative traffic arrival process
has ergodic stationary increments. That is, for any , the
-interval traffic intensity process is a mean-square

ergodic process with time-invariant distribution and ensemble
mean .

We explain this assumption in more details. First, the
stationary increment assumption implies that the increment
process of for any given time interval , namely

, has a time-invariant dis-
tribution. This further implies that the -interval traffic intensity
process is identically distributed, whose marginal
distribution at any time instance can be described by the same
random variable . Second, the mean-square ergodicity
implies that, as the observation interval increases, the random
variable converges to in the mean-square sense. In
other words, the variance of decays to 0 as , i.e.,

(19)

By making Assumption 1, we approximate both the arrival
and the departure process of any cross-traffic flow aggregation
at any link as stationary processes. This sets us free from the
complexity of analyzing tandem queue departure processes and
greatly simplifies later discussions. The major results we ob-
tained, however, still hold for non-stationary cross-traffic. We
address more on this issue in Section IV-D and leave its formal
discussion as our future work.

Our next assumption is that the queuing system at link
has evolved for a sufficiently long period of time and has by-
passed its transient state. Therefore, for any flow aggregation ,
the workload process “inherit” the ergodic station-
arity property from the traffic arrival process . This
property is further carried over to the -interval workload-differ-
ence process and the available bandwidth process

. This distributional stationarity allows us to focus
on the corresponding random variables , and

. It is easy to get, from their definitions, that the statis-
tical means of and are 0 and , respec-
tively.5 Further, the ergodicity property leads to the following
result.

Lemma 1: For any flow aggregation that traverses the path
at link , the random variable converges in the mean-
square sense to as , i.e.,

(20)

On the other hand, notice that unlike and
, the workload-difference process is

not a moving average process by nature. Consequently, the
mean-square ergodicity of does not cause the

5Note that the hop available bandwidth of link L that is of measurement
interest, given by A = C � xr can be less than C � xp.
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TABLE I
RANDOM PROCESS NOTATIONS

variance of to decay with respect to the increase of .
Instead, we have the following lemma.

Lemma 2: The variance of the random variable con-
verges to as increases:

(21)

To obtain our later results, not only do we need to know the
asymptotic variance of , and when ap-
proaches infinity, but also we often rely on their variance being
uniformly bounded (for any ) by some constant. This condition
can be easily justified from a practical standpoint. First note that
cross-traffic arrival rate is bounded by the capacities of incoming
links at a given router. Suppose that the sum of all incoming
link capacities at hop is , then is distributed in a
finite interval and its variance is uniformly bounded by
the constant for any observation interval . Similarly, the
variance of is uniformly bounded by the constant .
The variance of is uniformly bounded by the constant

for any , which directly follows from the defini-
tion of .

Finally, we remind that some of the notations introduced in
Section II-A now are used with a different meaning. The rate
of the bursty cross-traffic flow , denoted by , is the proba-
bilistic mean of the traffic intensity random variable ,
which is also the long-term average arrival rate of flow at any
link it traverses. The term becomes the long-term av-
erage arrival rate of the aggregated cross-traffic at link . The
term is the long-term average hop available band-
width at link . Again recall that we explicitly target the mea-
surement of long-term averages of available bandwidth and/or
cross-traffic intensity, instead of the corresponding metrics in a
certain time interval.

B. Formulating Packet Train Probing

We now consider an infinite series of packet-trains with input
inter-packet dispersion , packet size , and packet-train length

. The arrival of this packet-train series at path is described
by a point process , which has
a sufficiently large inter-probing separation. Let and

be the departure time instances from link of the
first and last probing packets in the th packet-train. We define
the sampling interval of the packet-train as the total spacing

, and the output dispersion as the
average spacing of the packet-train. Both
and are random variables, whose statistics might depend on
several factors such as the input dispersion , the packet-train
parameters and , the packet-train index in the probing
series, and the hop that the output dispersion is associated
with. Therefore, a full version of is written as .

However, for notation brevity, we often omit the parameters that
have little relevance to the topic under discussion.

We now formally state the questions we address in this
paper. Note that a realization of the stochastic process

is just a packet-train
probing experiment. We examine the sample-path time-average
of this process and its relationship to when keeping and
constant. This relationship, previously denoted by , is called
the gap response curve of path .

Notice that the ergodic stationarity of cross-traffic arrival, as
we assumed previously, can reduce our response curve anal-
ysis to the investigation of a single random variable. This is
because each packet-train comes to see a multi-hop system of
the same stochastic nature and the output dispersion process

is an identically distributed random se-
quence, which can be described by the output dispersion random
variable . The sample-path time average of the output dis-
persion process coincides with the mean of the random variable

.6 Therefore, in the rest of the paper, we focus on the statis-
tics of and drop the index .

In our later analysis, we compare the gap response curve of
with that of the fluid counterpart of and prove that the former
is lower-bounded by the latter.

Definition 4: Suppose that path has a routing matrix and
a flow rate vector and that path has a routing matrix and
a flow rate vector . is called the fluid counterpart of if 1)
all cross-traffic flows traversing are constant-rate fluid; 2) the
two paths and have the same configuration matrix; and 3)
there exists a row-exchange matrix , such that and

.
From this definition, we see that for every flow in , there is

a corresponding fluid flow in the fluid counterpart of such
that flow have the same average intensity and routing pattern
as those of flow . Note that the third condition in Definition 4 is
made to allow the two flows have different indices, i.e., to allow

.
A second focus of this paper is to study the impact of packet-

train parameters and on the response curves. That is, for any
given input rate and other parameters fixed, we examine the
convergence properties of the output dispersion random variable

as or tends to infinity.

C. Recursive Expression of

We keep input packet-train parameters , and constant
and next obtain a basic expression for the output dispersion
random variable .

Lemma 3: Letting , the random variable has the
following recursive expression

(22)

where the term is a random variable representing the extra
queuing delay (besides the queuing delay caused by the work-

6Note that the output dispersion process can be correlated. However, this does
not affect the sample-path time average of the process.



136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

load process ) experienced at by the last probing
packet in the train. The term is another random variable in-
dicating the hop idle time of during the sampling interval of
the packet train.

Note that there are two terms and , which did not ap-
pear in Table I. Interested readers can refer to Section 3.2 in
our single-hop analysis [8] for a detailed discussion of these
two terms. Both of these two random variables can be com-
puted given the inter-arrival structure of the probing train and
the available bandwidth process at link . We next present the
computation formulas while omitting their derivations.

To compute , we denote by the arrival time instant
of the th packet in the train at link . We use to denote
the extra queuing delay (besides the amount of queuing delay

) experienced by the th packet in the train at link
. Then, , and can be computed recursively in the

following, where :

(23)

The other random variable has a relationship with and
described in the following:7

(24)

Even though in theory all the terms in (22) can be computed,
the computation of and requires inter-arrival structure in-
formation of the packet train, which is hard to compute in prac-
tice. Note, however, that our goal in this paper is not to obtain
a computation procedure of the response curve . Instead, we
focus on analyzing the deviation phenomena and convergence
properties of . Lemma 3 is important and also sufficient to
serve this purpose.

Also note that due to the random input packet-train structure
at , all but the term in (22) become random variables.
Some terms, such as and , even have
two dimensions of randomness. To understand the behavior of
probing response curves, we need to investigate the statistical
properties of each term in (22).

IV. RESPONSE CURVES IN BURSTY CROSS-TRAFFIC

In this section, we first show that the gap response curve
of a multi-hop path is lower bounded by its

fluid counterpart . We then investigate the impact
of packet-train parameters on .

A. Deviation Phenomena of

Our next lemma shows that passing through a link can only
increase the dispersion random variable in mean, due to the zero
mean of and non-negative mean of , which im-
mediately follows from (23).

Lemma 4: For
.

Using the first part of (22), our next lemma shows that for
any link , the output dispersion random variable is lower
bounded in mean by a linear combination of the output disper-
sion random variables , where .

7Please refer to Section 3.3 of [8] for details

Lemma 5: For , the output dispersion random
variable satisfies the following inequality

(25)

From Lemma 4 and Lemma 5, we get

(26)

This leads to the following theorem.
Theorem 2: For any input dispersion , packet-train param-

eters and , the output dispersion random variable of path
is lower bounded in mean by the output dispersion

of the fluid counterpart of :

(27)

Proof: We apply mathematical induction to . When ,
. Assuming that (27) holds for ,

we next prove that it also holds for . Recalling (26), we
have

where the second inequality is due to the induction hypothesis,
and the last equality is because of Theorem 1.

Theorem 2 shows that in the entire input gap range, the piece-
wise linear fluid gap response curve discussed in Section II
is a lower bound of the real gap curve . Further, combining
Theorem 1, Lemma 4 and Lemma 5, We can obtain the devia-
tion between the real curve and its fluid lower bound . This
deviation, denoted by or for short, can be re-
cursively expressed in the following, where we let :

(28)

In what follows, we study the asymptotics of the curve de-
viation when input packet-train parameters or becomes
large and show that the fluid lower bound is in fact a tight
bound of the real response curve .

B. Convergence Properties of for Long Trains

We now show that when packet-size is kept constant, as the
packet-train length , the output dispersion random vari-
able of path converges in the mean-square sense
to its fluid lower bound , for any and any . This
means that not only converges to , but also the vari-
ance of decays to 0 as increases. We first prove this result
over a single-hop path. We then apply mathematical induction
to extend this conclusion to any multi-hop path with arbitrary
cross-traffic routing under the stationarity approximation.

Theorem 3: Under the stationarity approximation of this
paper, for a single-hop path with capacity and cross-traffic
intensity , for any input dispersion and
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probing packet size , the output dispersion random variable
converges to its fluid lower bound in the mean-square sense
as

(29)

Proof: First consider the case when . We
examine the output sampling interval random variable

. The key is to view the first and last packets in the
input packet-train as a packet-pair and view the other packets
in between as if they were from another cross-traffic flow .
The real cross-traffic and together form a flow aggregation
denoted by . Obviously, the packet arrival in is still ergodic
stationary. The long term arrival rate of is . The
workload-difference process is a zero-mean process. Ac-
cording to Lemma 3, can be expressed as follows:

(30)

where is the sampling interval of the input
packet-train, is the extra queuing
delay (besides the amount of queueing delay imposed by flow
aggregation ) imposed on the last probing packet by the first
probing packet in the train. The output dispersion

can be expressed as

(31)

Notice that, as increases, the second additive term converges
to 0 in the mean-square sense. That is,

(32)

where the first equality is due to Lemma 2. The third term on
the right hand side of (31) also converge to 0 in the mean-square
sense:

(33)

Combining (31), (32), and (33), we get

(34)

Now consider the case when . We again examine
the sampling interval , and according to Lemma 3, we have

(35)

The last term on the right side of (35) is the hop idle time during
the sampling interval of the packet-train, and can be computed
as . The output dispersion

can be expressed as

(36)

The first additive term in (36) converges in the mean-square
sense to as shown in the following:

(37)

where the second equality is due to the mean-square ergodicity
of the flow aggregation . The second term in (36) is determin-
istic, and its square converges to 0 as . The third term in
(36) converges in the mean-square sense to 0 when increases.
To show this, first notice that since the arrival rate of is greater
than hop capacity , we have

(38)

further notice that is distributed in a finite interval
and is always non-negative. Hence, (38) implies that the second
moment of also converges to 0 as increases:

(39)

This leads to the following:

(40)

Combining (36), (37), and (40), we get

(41)

Combining (34) and (41), the theorem follows.
Our next theorem extends this result to multi-hop path with

arbitrary cross-traffic routing.
Theorem 4: Under the stationarity approximation, for any
-hop path with arbitrary cross-traffic routing, for any input

dispersion and any probing packet size , the
random variable converges to its fluid lower bound in
the mean-square sense as :

(42)

Proof: We apply induction to . When , the conclu-
sion holds due to Theorem 3. Assuming that (42) holds for all

, we next show it also holds for .
We apply the same method as in the proof of Theorem 3. We

view the first and last probing packets and as a packet-pair,
and view the rest of probing packets in the train as if they were
from another cross-traffic flow . We denote the aggregation
of and as . Due to the “stationarity approximation”, the
traffic arrival in can be viewed as an ergodic stationary flow
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when is sufficient large. We now examine the average arrival
rate of at link . That is, we compute

(43)

where is the random variable indicating the volume of traffic
buffered between and in the outgoing queue of . Notice
that

(44)

where is the sampling interval of the
input packet-pair and at . Substituting (44) back into
(43), we get the following due to the induction hypothesis:

(45)

We now consider the case when . This leads to
due to Theorem 1. Further, from Lemma 3, we have

(46)

where is the extra
queuing at link (besides the queueing delay imposed by ag-
gregation ) imposed by on . Dividing at both sides
of (46), we get the following expression for :

(47)

As , the first additive term in (47) converges
to in mean-square sense due to the induction hypothesis.
The other two terms converge to 0 in the mean-square sense.
The proofs are similar to what is shown in (32) and (33), and
we omit the details. Hence, converges to in
the mean square sense

(48)

For the case when . From Theorem 1, we have

(49)

Further, according to Lemma 3, we have

(50)

where is the hop idle time of during the sampling interval
of the packet train, which can be expressed as

(51)

Dividing by both sides of (50), we get

(52)

The first additive term of (52) converges in the mean-square
sense to . We omit the proof details but point out
that it requires the condition that the variance of is uni-
formly bounded by some constant for all , which we have justi-
fied previously. The second term is deterministic, and its square
converges to 0 as . The third term converges to 0 in the
mean-square as increases. To prove this, we first show that

converges in mean-square to 0. Let be the
distribution function of , we have

(53)

where the interchange between the limit and the integration
is valid, because the second-order moment of is
uniformly bounded by for all . Next, recalling (51) and
using an argument similar to (40), we can easily get

(54)

Combining the results for all three additive terms in (52), we
conclude that when , converges in mean-square
to , which equals to due to (45) and Theorem
1. Combining the two cases, we complete the inductive step and
the Theorem follows.

Let us make several comments on the conditions of these
results. First note that in the multi-hop cases, the stationarity
approximation is needed even when cross-traffic routing is
one-hop persistent. The reason is that when is large, the
probing packet-train is also viewed as a flow, whose arrival
characteristics at all but the first hop are addressed by the
stationarity approximation. Second, we point out again that the
key in these two proofs is to view the first and last packets in
the train as a packet pair and view the other probing packets
as a cross-traffic flow. This makes tractable the analysis of the
extra queuing delay term and the hop idle time term in
Lemma 3.

Theorem 4 shows that when the packet-train length in-
creases while keeping constant, not only converges to
its fluid bound , but also the variance of decays to 0. This
means that we can expect almost the same output dispersion in
different probings.

C. Convergence Properties of for Large Packet Size

We now state without proof the condition under which the
curve deviation vanishes as probing packet size

approaches infinity which keeping and constant.
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Assumption 2: For any flow aggregation at link , De-
noting by the distribution function of the -interval
available bandwidth process , we assume that for
all , the following holds

(55)

Recall that the mean-square ergodicity assumption we made
earlier implies that as the observation interval gets large, the
random variable converges in distribution to .
Assumption 2 further ensures that this convergence is fast in the
sense of (55).

Our next theorem states formally the convergence property
of the output dispersion random variable when

increases.
Theorem 5: Given stationarity approximation and Assump-

tion 2, for any -hop path with arbitrary cross-traffic routing,
for any input rate , the output dispersion random variable
of path converges in mean to its fluid lower bound :

(56)

The asymptotic variance of when increases is upper
bounded by some constant :

(57)

In [10], we proved this result in a special case of packet-pair
probing and one-hop cross-traffic routing. The proof, however,
can be easily extend to the general setting stated in the above
theorem. Note that the bounded variance, as stated in (57), is
an inseparable part of the whole theorem. This is because in a
mathematical induction proof, the mean convergence of to

can be obtained only when the mean of converges
to and when the variance of remains bounded, as
probing packet size .

Even though in practice, packet size is limited by path MTU,
Theorem 5 is still important because it justifies using large
probing packet size in bandwidth estimation.

D. Discussion

Among the assumptions in this paper, some are critical in
leading to our results while others are only meant to simplify
discussion. We point out that the distributional stationarity as-
sumption on cross-traffic arrivals can be greatly relaxed without
harming our major results. This can be intuitively understood
when noting that the response curve deviation phenomena are
caused by cross-traffic burstiness and that the curve convergence
properties result from the diminishing burstiness of cross-traffic
in asymptotically long observation time scales. None of these
facts depends on traffic stationarity. Hence, the same results
can be obtained without using the stationarity approximation.
However, this comes at the expense of much more intricate no-
tations and derivations. This is because when cross-traffic ar-
rivals are allowed to be only second-order stationary or even
non-stationary, the output dispersion process will no
longer be identically distributed. Consequently, the analysis of

probing response curves cannot be reduced to the investiga-
tion of a single output dispersion random variable. Moreover,
we also have to rely on an ASTA assumption on packet-train
probing [8] to derive the results in this paper, which we have
avoided in the present setting.

On the other hand, the mean-square ergodicity plays a central
role in the proofs for Theorem 5 and Theorem 4. A cross-traffic
flow with mean-square ergodicity, when observed in a large
timescale, has an almost constant arrival rate. This “asymptoti-
cally fluid like” property, is very common among the vast ma-
jority of traffic models in stochastic literature, and can be de-
coupled from any type of traffic stationarity. Consequently, our
results have a broad applicability in practice.

Next, we provide experimental evidence for our theoretical
results using testbed experiments and real Internet measurement
data.

V. EXPERIMENTAL VERIFICATION

In this section, we measure the response curves in both
testbed and real Internet environments. The results not only
provide experimental evidence to our theory, but also give quan-
titative ideas of the curve deviation given in (28). To obtain the
statistical mean of the probing output dispersions, we rely on
direct measurements using a number of probing samples. Even
though this approach can hardly produce a smooth response
curve, the bright side is that it allows us to observe the output
dispersion variance, reflected by the degree of smoothness of
the measured response curve.

A. Testbed Experiments

In our first experiment, we measure in the Emulab testbed
[3] the response curves of a three-hop path with the following
configuration matrix (all in mb/s) and one-hop persistent cross-
traffic routing

(58)

We generate cross-traffic using three NLANR [14] traces. All
inter-packet delays in each trace are scaled by a common factor
so that the average rate during the trace duration becomes the
desired value. The trace durations after scaling are 1–2 minutes.
We measure the average output dispersions at 100 input rates,
from 1 mb/s to 100 mb/s with 1 mb/s increasing step. For each
input rate, we use 500 packet-trains with packet size 1500 bytes.
The packet train length is 65. The inter-probing delay is con-
trolled by a random variable with sufficiently large mean. The
whole experiment lasts for about 73 minutes. All three traffic
traces are replayed at random starting points once the previous
round is finished. By recycling the same traces in this fashion,
we make the cross-traffic last until the experiment ends without
creating periodicity. Also note that the packet-trains are injected
with their input rates so arranged that the 500 trains for each
input rate is evenly separated during the whole testing period.

This experiment not only allows us to measure the response
curve for , but also for any packet-train length such
that , by simply taking the dispersions of the
first packets in each train. Fig. 2(a) shows the rate response
curve for , and 65 respectively. For com-
parison purposes, we also plot in the figure the multi-hop fluid
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Fig. 2. Measured response curves using different packet train-length in the Em-
ulab testbed. (a) One-hop persistent routing. (b) Path-persistent routing.

curve , computed from Theorem 1, and the single-hop
fluid curve of the tight link . The rate response curves

is defined as follows:

(59)

First, note that the multi-hop fluid rate curve comprises four
linear segments separated by turning points 36 mb/s, 56 mb/s,
and 76 mb/s. The last two linear segments have very close slopes
and they are not easily distinguishable from each other in the
figure. We also clearly see that the rate curve asymptotically
approaches its fluid lower bound as packet-train length in-
creases. The curves for and almost coincide with
the fluid bound. Also note that the smoothness of the measure-
ment curve reflects the variance of the output dispersion random
variables. As the packet train length increases, the measured
curve becomes smoother, indicating the fact that the variance
of the output dispersions is decaying. These observations are all
in agreement with those stated in Theorem 4.

Unlike single-hop response curves, which have no deviation
from the fluid bound when the input rate is greater than the
link capacity, multi-hop response curves usually deviate from
its fluid counterpart in the entire input range. As we see from
Fig. 2(a), even when the input rate is larger than 96 mb/s, the
measured curves still appear above . Also observe that the
single-hop fluid curve of the tight link coincides with the
multi-hop fluid curve within the input rate range but
falls below in the input rate range .

Finally, we explain why we choose the link capacities to be 96
mb/s instead of the fast Ethernet capacity 100 mb/s. In fact, we
did set the link capacity to be 100 mb/s. However, we noticed
that the measured curves can not get arbitrarily close to their
fluid bound computed based on the fast Ethernet capacity.
Using pathload to examine the true capacity of each Emulab
link, we found that their IP layer capacities are in fact 96 mb/s,
not the same as their nominal value 100 mb/s.

In our second experiment, we change the cross-traffic routing
to path-persistent while keeping the path configuration matrix
the same as given by (58). Therefore, the flow rate vector now
becomes (20, 20, 20).

We repeat the same packet-train probing experiment and the
results are plotted in Fig. 2(b). The multi-hop fluid rate curve

still coincides with in the input rate range (0,56). When
input rate is larger than 56 mb/s, the curve positively deviates
from . However, the amount of deviation is smaller than that

Fig. 3. Measured response curves of two Internet paths in RON testbed. The
path from lulea to CMU was measured on Jan. 16, 2005; and the path from
ana1-gblx to Cornell was measured on April 29th, 2005. (a) Lulea! CMU. (b)
Ana1-gblx! Cornell.

in one-hop persistent routing. The measured curve approaches
the fluid lower bound with decaying variance as packet-train
length increases. For and , the measured curves
become hardly distinguishable from . Also notice that the
measured curves exhibit more variance, probably because this
routing pattern introduces more inter-flow correlation.

We have conducted experiments using paths with more hops,
with more complicated cross-traffic routing patterns, and with
various path configurations. Furthermore, we examined the im-
pact of probing packet size using ns2 simulations, where the
packet size can be set to any large values. Results obtained (not
shown for brevity) all support our theory very well.

B. Real Internet Measurements

We conducted an extensive packet-train probing experiment
with a coverage of more than 270 Internet paths in the RON
testbed to verify our analysis in real networks. A detailed discus-
sion about this measurement study will be reported in a separate
paper. In what follows, we show the results for only two Internet
paths. Since neither the path configuration nor the cross-traffic
routing information is available for these paths, we are unable to
provide the fluid bounds. Therefore, we verify our theory by ob-
serving the convergence of the measured curves to a piece-wise
linear curve as packet-train length increases.

In the first experiment, we measure the rate response curve of
the path from the RON node lulea in Sweden to the RON node
at CMU. The path has 19 hops and a fast-Ethernet minimum ca-
pacity, as we find out using traceroute and pathrate. We probe
the path at 29 different input rates, from 10 mb/s to 150 mb/s
with a 5 mb/s increasing step. For each input rate, we use 200
packet-trains of 33 packets each to estimate the output probing
rate . The whole experiment takes about 24 minutes.
Again, the 200 packet-trains for each of the 29 input rates are
so arranged that they are approximately evenly separated during
the 24-minute testing period. The measured rate response curves
associated with packet-train length 2, 3, 5, 9, 17, and 33 are
plotted in Fig. 3(a), where we see that the response curve ap-
proaches a piece-wise linear bound as packet-train length in-
creases. At the same time, response curves measured using long
trains are smoother than those measured using short trains, in-
dicating the decaying variance of output dispersions. In this ex-
periment, the curve measured using probing trains of 33-packet
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length exhibits sufficient smoothness and clear piece-wise lin-
earity. We have observed two linear segments from the figure.
A further investigation shows that the fluid bound of this 19-hop
path only has two linear segments.

Based on (15), we apply linear regression on the second linear
segment to compute the capacity and the cross-traffic inten-
sity of the tight link and get mb/s and
mb/s. Using these results, we retroactively plot the single-hop
fluid bounds and observe that it almost overlaps with the mea-
sured curve using packet-trains of 33-packet length. Notice that
the bottleneck link is under very light utilization during our
24-minute measurement period. We can also infer based on our
measurement that the available bandwidth of the path is con-
strained mainly by the capacity of the bottleneck link and that
the probing packet-trains have undergone significant interaction
with cross-traffic at non-bottleneck links. Otherwise, according
to Theorem 3 in [8], the response curves measured using short
train lengths would not have appeared above the single-hop fluid
bound when the input rate is larger than the tight link capacity
96 mb/s. We believe that the tight link of the path is one of the
last-mile lightly utilized fast-Ethernet links and that the back-
bone links are transmitting significant amount of cross-traffic
even though they still have available bandwidth much more than
the fast-Ethernet capacity. Also notice that similar to our testbed
experiments, fast-Ethernet links only have 96 mb/s IP-layer ca-
pacity.

We repeat the same experiment on another path from the
RON node ana1-gblx in Anaheim California to the Cornell
RON node. This path has 21 hops and a fast-Ethernet minimum
capacity. Due to substantial cross-traffic burstiness along the
path, we use packet-trains of 129-packet length in our probing
experiment. The other parameters such as the input rates and the
number of trains used for each rate are the same as in the pre-
vious experiment. The whole measurement duration is about 20
minutes. The measured response curves are plotted in Fig. 3(b).
As we see, the results exhibit more measurement variability
compared to the lulea CMU path. However, as packet-train
length increases, the variability is gradually smoothed out and
the response curve converges to a piece-wise linear bound,
where we can observe three linear segments this time. The
second linear segment roughly falls into the input rate range
from 50 mb/s to 100 mb/s. We again apply linear regression
on the second segment of the response curve measured using
packet-train length 129 to obtain the tight link information. We
get mb/s and mb/s, suggesting a heavily
utilized (70%) non-access tight link, which differs from the
fast-Ethernet narrow link.

VI. IMPLICATIONS

We now discuss the implications of our results on existing
measurement proposals. Except for pathChirp, all other tech-
niques such as TOPP, pathload, PTR, and Spruce are related to
our analysis.

A. TOPP

TOPP is based on multi-hop fluid rate response curve with
one-hop persistent cross-traffic routing. TOPP uses packet-pairs
to measure the real rate response curve , and assumes that the

Fig. 4. Illustration of two types of curve deviations.

measured curve will be the same as when a large number of
packet-pairs are used. However, our analysis shows that the real
curve is different from , especially when packet-trains of
short length are used (e.g., packet-pairs). Note that there is not
much path information in that is readily extractable unless it is
sufficiently close to its fluid counterpart . Hence, to put TOPP
to work in practice, one must use long packet-trains instead of
packet-pairs.

B. Spruce

Using the notations in this paper, we can write spruce’s avail-
able bandwidth estimator as follows:

(60)

where the probing packet size is set to 1500 bytes, the packet-
train length , and the bottleneck link capacity is as-
sumed known.

It is shown in [8] that the spruce estimator is unbiased in
single-hop paths regardless of the packet-train parameters and

. This means that the statistical mean of (60) is equal to for
any and any . In a multi-hop path , a necessary
condition to maintain the unbiasedness property of the spruce
estimator is

(61)

This means that at the input rate point , the real rate response
of path must be equal to the single-hop fluid rate response at
the tight link of .

This condition is usually not satisfied. Instead, due to The-
orem 2 and Property 4, we have

(62)

This implies that (60) is a negatively biased estimator of .
The amount of bias is given by

(63)

The first additive term in (60) is the measurement bias caused
by the curve deviation of from at input rate , which van-
ishes as due to Theorem 4. Hence we call it elastic
bias. The second additive term is the portion of measurement
bias caused by the curve deviation of from at input rate

, which remains constant with respect to the packet-train pa-
rameters and . Therefore it is non-elastic. We illustrate the
two types of curve deviations in Fig. 4. Note that when
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TABLE II
SPRUCE BIAS IN EMULAB AND INTERNET EXPERIMENT (IN mb/s)

, non-elastic bias is 0. Further recall that
as stated in Property 3. Hence, a sufficient condition for zero
non-elastic bias is . Conceptually, elastic deviation
stems from cross-traffic burstiness and non-elastic deviation is
a consequence of multi-hop effects.

In Table II, we give the amount measurement bias caused by
the two types of curve deviations in both the Emulab testbed
experiments and the real Internet probing measurement on the
path from lulea to CMU. Note that in the testbed experiment
using a 3-hop path with one-hop persistent routing, spruce suf-
fers about 84 mb/s measurement bias, which is two times more
than the actual path available bandwidth 36 mb/s. In the second
Emulab experiment using path-persistent cross-traffic, the mea-
surement bias is reduced to 38.8 mb/s, which however is still
more than the actual available bandwidth. In both cases, spruce
estimator converges to negative values. We used spruce to esti-
mate the two paths and it did in fact give 0 mb/s results in both
cases. For the Internet path from lulea to CMU, spruce suffers
24 mb/s negative bias and produces a measurement result less
than 70 mb/s, while the real value is around 94 mb/s. We also
use pathload to measure the three paths and observe that it pro-
duces pretty accurate results.

The way to reduce elastic-bias is to use long packet-trains
instead of packet-pairs. In the lulea CMU experiment, using
packet-trains of 33-packet, spruce can almost completely over-
come the 24 mb/s bias and produce an accurate result. How-
ever, there are two problems of using long packet-trains. First,
there is not a deterministic train length that guarantees negli-
gible measurement bias on any network path. Second, when
router buffer space is limited and packet-train length are too
large, the later probing packets in each train may experience fre-
quent loss, making it impossible to accurately measure .
After all, spruce uses input rate , which can be too high for
the bottleneck router to accommodate long packet-trains. On the
other hand, note that non-elastic bias is an inherit problem for
spruce. There is no way to overcome it by adjusting packet-train
parameters.

C. PTR and Pathload

PTR searches the response curve for the first
turning point and takes the input rate at the turning point as
the path available bandwidth . This method can produce
accurate result when the real response curve is close to ,
which requires packet-train length to be sufficiently large.
Otherwise, PTR is also negatively biased and underestimates

. The minimum packet-train length needed is dependent on
the path conditions. The current version of PTR use packet train
length , which is probably insufficient for the Internet
path from pwh to CMU experimented in this paper.

Pathload is in spirit similar to PTR. However, it searches
for the available bandwidth region by detecting one-way-delay

increasing trend within a packet-train, which is different from
examining whether the rate response is greater than
one [6]. However, since there is a strong statistical correlation
between a high rate response and the one-way-delay
increasing tend within packet-trains, our analysis can explain
the behavior of pathload to a certain extent. Recall that, as
reported in [5], pathload underestimates available bandwidth
when there are multiple tight links along the path. Our results
demonstrate that the deviation of from in the
input rate range gives rise to a potential underesti-
mation in pathload. The underestimation is maximized and
becomes clearly noticeable when non-bottleneck links have the
same available bandwidth as , given that the other factors
are kept the same.

Even through multiple tight links cause one-way-delay in-
creasing trend for packet-trains with input rate less than , this
is not an indication that the network can not sustain such an input
rate. Rather, the increasing trend is a transient phenomenon re-
sulting from probing intrusion residual, and it disappears when
the input packet-train is sufficiently long. Hence, it is our new
observation that by further increasing the packet-train length,
the underestimation in pathload can be mitigated.

VII. RELATED WORK

Besides the measurement techniques we discussed earlier,
Melander et al. [12] first discussed the rate response curve of a
multi-hop network path carrying fluid cross-traffic with one-hop
persistent routing pattern. Dovrolis et al. [1], [2] considered the
impact of cross-traffic routing on the output dispersion rate of
a packet-train. It was also pointed out that the output rate of
a back-to-back input packet-train (input rate , the ca-
pacity of the first hop ) converges to a point they call “asymp-
totic dispersion rate (ADR)” as packet-train length increases.
The authors provided an informal justification as to why ADR
can be computed using fluid cross-traffic. They demonstrated
the computation of ADR for several special path conditions.
Note that using the notations in this paper, ADR can be ex-
pressed as

(64)

Our work not only formally explains previous findings, but also
generalizes them to such an extent that allows any input rate and
any path conditions.

Kang et al. [7] analyzed the gap response of a single-hop
path with bursty cross-traffic using packet-pairs. The paper
had a focus on large input probing rate. Liu et al. extended the
single-hop analysis for packet-pairs [11] and packet-trains [8]
to arbitrary input rates and discussed the impact of packet-train
parameters.

VIII. CONCLUSION

This paper provides a stochastic characterization of
packet-train bandwidth estimation in a multi-hop path with
arbitrarily routed cross-traffic flows. Our main contributions
include derivation of the multi-hop fluid response curve as well
as the real response curve and investigation of the convergence
properties of the real response curve with respect to packet-train
parameters. The insights provided in this paper not only help
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understand and improve existing techniques, but may also lead
to a new technique that measures tight link capacity.

There are a few unaddressed issues in our theoretical frame-
work. In our future work, we will identify how various factors,
such as path configuration and cross-traffic routing, affect the
amount of deviation between and . We are also interested
in investigating new approaches that help detect and eliminate
the measurement bias caused by bursty cross-traffic in multi-hop
paths.
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