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Abstract—Most existing available-bandwidth measurement
techniques are justified using a constant-rate fluid cross-traffic
model. To achieve a better understanding of the performance of
current bandwidth measurement techniques in general traffic
conditions, this paper presents a queueing-theoretic foundation
of single-hop packet-train bandwidth estimation under bursty
arrivals of discrete cross-traffic packets. We analyze the statistical
mean of the packet-train output dispersion and its mathematical
relationship to the input dispersion, which we call the probing-re-
sponse curve. This analysis allows us to prove that the single-hop
response curve in bursty cross-traffic deviates from that obtained
under fluid cross traffic of the same average intensity and to
demonstrate that this may lead to significant measurement bias in
certain estimation techniques based on fluid models. We conclude
the paper by showing, both analytically and experimentally, that
the response-curve deviation vanishes as the packet-train length or
probing packet size increases, where the vanishing rate is decided
by the burstiness of cross-traffic.

Index Terms—Active measurement, bandwidth estimation,
packet-pair sampling.

1. INTRODUCTION

VAILABLE bandwidth of a network path has long been

the interest of measurement studies because of its impor-
tance to many Internet applications such as overlay routing,
server selection, congestion control, and network diagnosis.
Several measurement techniques have been developed over
the last few years, among which TOPP [17], pathload [8],
PathChirp [23], IGI/PTR [6], and Spruce [24] are the major
representatives. Most of the current proposals are based on
packet-pair or packet-train probing, where bursts of equally
spaced packets of uniform size are injected into the path of in-
terest, and the available bandwidth information is inferred from
the relationship between input/output inter-packet dispersions.
According to a commonly accepted notion, the available
bandwidth of a network hop is its residual capacity after trans-
mitting cross traffic. Since at any time instant, the hop is either
idle or transmitting packets at its capacity C, the instantaneous
link utilization U(t) can be viewed as an ON—OFF function of
time, i.e., U(¢t) = 0 if the link is idle at time ¢ and U(¢) = 1
if the link is busy transmitting a packet at time ¢. The average
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utilization U (¢, ¢t + 6) of the hop during time interval [¢,¢ + 6]
is then given by

1 [t
Ut,t+06) = 5 / U(z)dz. (1
Jt

The hop available bandwidth Bs(t) in [t, t + 6] is the average
unutilized capacity of the hop within that interval, i.e.,

Bs(t) = C(1 - U(t,t + ). @)

The available bandwidth of a network path is the minimum
available bandwidth of all traversed links. The link carrying the
minimum available bandwidth is called the tight link.

Note that Bs(t) varies over time ¢ as well as over a wide
range of observation intervals §. These dynamics make it an
elusive target to measure. To combat this difficulty, most ex-
isting bandwidth-measurement approaches use a constant-rate
fluid cross-traffic model to justify the design of their estima-
tion techniques. Under such fluid! cross-traffic, Bs(t) becomes
a constant for all ¢, and all ¢ and its relationship to the probing
input and output becomes easy to identify.

Although the experimental performance of recent proposals
as documented is encouraging, the rationale they are anchored
upon is not fully justified in general cross-traffic conditions.
To better understand the behavior and performance of existing
techniques, this paper presents a queueing-theoretic analytical
framework that allows an in-depth analysis of the asymptotic
behavior of single-hop packet-train bandwidth estimation under
bursty arrivals of discrete cross-traffic packets. Our analysis ad-
dresses two fundamental issues. First, given a cross-traffic arrival
process and fixed packet-train parameters (i.e., packet size and
train length), we demonstrate how the probing output relates to
the probing input. We investigate the output rate and dispersion
of individual packet-trains as well as their asymptotic average
as the number of packet-train samples approaches infinity. We
examine the functional dependency between the input and the
asymptotic average of the output in the entire input range. We
call this relationship the probing-response curve and show how
the available bandwidth information is embedded in it. Second,
we investigate how the response curve evolves with respect to the
changes in packet train parameters and cross-traffic burstiness.

Both questions are of central importance for the design of
available-bandwidth estimation methods. The answer to the first
question provides a theoretical foundation that extends the pre-
vious rationale based on fluid cross-traffic models. The answer
to the second question offers an insight into parameter tuning
strategies in the design of future measurement techniques. Even
though published research has produced a great deal of intuition

'We use the terms “constant-rate fluid” and “fluid” interchangeably.
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and empirical findings related to these questions, a mathemat-
ically precise explanation of the bandwidth sampling process
was not available until now.

While the eventual goal of our analysis is to understand
packet-train bandwidth estimation in multihop network paths,
single-hop results are indispensable in reaching this goal.
Moreover, the single-hop case on its own is an interesting and
complex problem calling for an elaborate discussion, which is
the focus of this paper. We extend the discussion to multihop
paths in a separate paper [14].

Under a theoretically and practically mild assumption, we de-
rive several important properties of the gap (and rate) response
curve. Our results show that the gap response curve in con-
stant-rate fluid cross traffic is the tight lower bound of that in
bursty cross traffic with the same average intensity. We show
that there is an input dispersion range where the real curve pos-
itively deviates from its fluid-based prediction. Most existing
proposals were designed without being aware of the response
deviation phenomenon, which sometimes makes them subject
to significant measurement bias.

Our analysis also discovers the source of this deviation and
arrives at its closed-form expression in the packet-pair case. We
show that the amplitude of the response deviation is exclusively
decided by the packet-train parameters and the available band-
width distribution and that it vanishes as probing packet size or
packet-train length increases. We also present an experimental
approach to compute with high accuracy the response curves
from a given cross-traffic trace. This allows us to empirically
validate our theoretical results, qualitatively observe the rela-
tionship between the response deviation and packet-train param-
eters in certain cross-traffic conditions, and evaluate the asymp-
totic performance of various available-bandwidth estimators.

The rest of the paper is organized as follows. In Section II,
we summarize the current measurement proposals and the fluid
models they are based upon or related to. In Section III, we
present our analytical framework of packet-train bandwidth es-
timation. Using this framework, we analyze major properties of
the response curves and the response deviation phenomenon in
Section IV. We provide numerical results of the response devi-
ation and examine its relationship to several deciding factors in
Section V. We explain the implications of our findings on some
of the current proposals in Section VI. Finally, we present con-
cluding remarks in Section VIIL.

II. BACKGROUND

[P-layer bandwidth estimation using packet-pairs originates
from the seminal work by Bolot [3], Jacobson [7], Keshav [10].
However, due to a lack of consensus on what available band-
width was and how to measure it, most of the original research
efforts in this area went into the measurement of bottleneck ca-
pacity [4], [11], [21]. The recent surge of available-bandwidth
estimation proposals stems from the fluid model developed in
bottleneck capacity estimation research [4], [17]. In what fol-
lows, we first briefly introduce this fluid model and then show
how the current techniques are related to it.

A. Fluid Model

Consider a single-hop path with capacity C' and assume that
cross traffic is a fluid with constant arrival rate A < C'. This fluid

assumption means that for any ¢ time interval, the amount of
cross traffic arriving at the link is 6 A. The available bandwidth
of the path is A = C — ), regardless of the observation time
instant or the observation time interval. Consider a probing train
of n packets with equal interpacket dispersion g; and packet size
s that passes though the path. The output dispersion go can be
expressed by the following piecewise linear function of gr:

s+ Agr 91,
gJgo — max | gr, T = s+Agr
C

Using packet-pairs (i.e., n = 2), the practical meaning of (3)
is as follows. The first packet p; arrives into the hop at time
a1 and experiences zero queueing delay due to the fluid nature
of cross traffic. Hence, it departs from the hop at time a; +
s/C'. The second packet p, arrives into the hop at time a1 + gj.
Before the hop can serve p,, the amount of data it has to transmit
during the time interval [aq, a1 + gr] is s + Agy. If this is done
before po arrives, i.e., gr > s/(C — ), then po also experiences
zero queueing delay, and we obtain go = g¢y. Otherwise, the
hop undergoes a busy period between the departures of the two
packets and the output dispersion is go = (s + Agr)/C. A
similar argument applies to packet-trains of any length.

Model (3), which we term the single-hop fluid gap response
curve, has several variants that exhibit more direct associations
with available-bandwidth estimation. One such variant is the
rate response curve depicting the functional relationship be-
tween the input probing rate r; = s/gy and the output rate

ro = 3/!]01

. CT] rr,
ro =min | ry, = Crr
i+ A P

Since the rate response curve is not linear, Melander et al..
proposed in [17] to use a transformed version of (4), which de-
picts the relation between 71 /ro and r;:

rr rr+ A 1, rr <C— A\
= (1LE2) = B, BEETL O
We next explain how various types of bandwidth information
is embedded in fluid response curves. First, note that each of
the three fluid curves contains two segments and that the input
rate at the turning point between the two segments is equal to
the available bandwidth of the path, i.e., A = C' — A. Second,
observe that the segment in the input rate range (A, co) carries
information about hop capacity C and cross-traffic arrival rate \.

We next discuss how current techniques are designed to extract
available bandwidth from fluid response curves.

g1 > ==
0

y g1 < C—\-

T]SC—)\
p>C—x @B

B. Measurement Techniques

Recently, Jain and Dovrolis presented a classification of ex-
isting measurement techniques [9]. Techniques that use a single
input rate are called direct and those using multiple input rates
are called iterative.

Several direct probing methods are Delphi [22], IGI [6],
Spruce [24], and the work in [5]. These approaches use one
point of the response curve where the input rate ry is higher
than the available bandwidth. They assume that the hop ca-
pacity C' is known or can be measured separately (e.g., using
existing capacity estimation tools such as path rate). Hence,
every packet-train sample of these methods can generate an
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estimate of the cross-traffic arrival rate during the sampling
interval [a1, a1 + (n — 1)g;], where a4 is the arrival time of the
first packet in a train to the tight link. These tools obtain a final
estimate of A\ by averaging multiple probing samples, and the
available bandwidth is computed by subtracting the estimated
cross-traffic arrival rate from the known link capacity C'. Direct
probing methods differ among each other in the input probing
rate they choose, packet-train parameters, and the assumptions
they make on cross-traffic.

Representative iterative methods are TOPP [17], pathload [8],
and PTR [6]. Iterative methods do not assume the knowledge of
link capacity. They send packet-trains at multiple input probing
rates, either to locate the turning point in the response curve
(e.g., pathload and PTR) or to extract both C' and A from the
linear segment in the input rate range (A, co) (e.g., TOPP). Note
that compared to PTR, pathload locates the turning point by de-
tecting a trend of increasing one-way delay among the probing
packets in a train, instead of comparing the output rate of the
packet-train to its input rate. Hence, even though pathload is re-
lated to the fluid response curves presented previously, it is not
directly based upon them.

C. Discussion

We make several observations regarding the current measure-
ment techniques to motivate our subsequent analysis. First, note
that in bursty cross traffic, both the available bandwidth and
cross-traffic arrival rate may exhibit a great deal of statistical
variability. Most existing techniques produce a single numer-
ical result for each run, which is interpreted as the average avail-
able bandwidth within the measurement duration.? Second, cur-
rent techniques assume that cross-traffic burstiness only causes
measurement variability, which can be smoothed out by aver-
aging multiple probing samples. This means that when a large
number of packet-train samples are used, the fluid model be-
comes a valid first-order approximation of the real stochastic
process. This assumption can be formalized as the following
equality:

(6)

s+ A
Elgo] = max (.6117 J)

c

where term E[go] is the statistical mean (or asymptotic average)
of output dispersions when a large number of packet-train sam-
ples are used. The term A should be viewed as the long-term av-
erage arrival rate of cross-traffic since a large number of packet-
train samples naturally extends the measurement duration to a
long time period.

However, there has been no analytical investigation regarding
the validity of (6) in general traffic conditions. A positive an-
swer to this question would lay a solid ground for the design of
available-bandwidth measurement tools and provide them with
an assurance of asymptotic accuracy. On the other hand, a nega-
tive answer would shed new light on the fundamental limits and
tradeoffs in probing-based measurement and give rise to new in-
sights into parameter tuning under diverse application require-
ments. To tackle this question, we present the necessary analyt-
ical framework in the next section.

2Note that pathload is an exception in the sense that it produces a variation
range of the §-interval available bandwidth within the measurement duration,
where 6 = (n — 1)g; is the sampling interval of each packet-train.
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Fig. 1. Single-hop probing model.

III. ANALYTICAL FRAMEWORK OF PACKET-TRAIN PROBING

This paper is an extension of our previous work [12]. Due to
limited space, the proofs of several lemmas and theorems are
presented in [13] and are omitted from this paper.

We present our analytical framework in four steps. First, we
define a set of random processes that model cross-traffic arrival
and hop available bandwidth. Second, we introduce a concept
we call probing intrusion residual to characterize the interaction
between probing packets and cross traffic. Using these defini-
tions, we derive in the third step a mathematical relationship be-
tween input and output packet-train dispersions. This result calls
for a certain understanding of the underlying processes sampled
by packet-train arrivals, which is the task of our final step.

A. Cross-Traffic Arrival

Our analysis focuses on the single-hop probing model in
Fig. 1. We assume infinite buffer space inside the router, a
work-conserving FIFO queueing discipline, and simple traffic
arrival (i.e., at most one packet arrives at any time instant). We
next identify a set of random processes that play a crucial role
in modeling packet-train probing.

Definition 1: Cross-traffic is driven by the packet-counting
process {N(t),0 < t < oo} and the packet-size process
{S,,1 < n < oo}. The cumulative traffic arrival
{V(t),0 < t < oo} is a random process counting the
total volume of data3 received by the hop up to time instant ¢:

N(t)

V()= S,

Note that V(¢) and N (t) are right continuous, meaning that
the packet arriving at ¢ is counted in V'(¢).

Definition 2: We define {Y;(t),0 < t < oo} as the average
cross-traffic arrival rate in the interval (¢,¢ + 6]:

CV({t+8) - V(t)
- 5

and call it the §-interval cross-traffic intensity process.
Definition 3: At time instant ¢, the hop-workload process
{W(t),0 < t < oo} is the sum of service times of all packets
in the queue and the remaining service time of the packet in
service.
Definition 4: We define {Ds(t),0 < t < oo} to be the dif-
ference between hop workload at times ¢ and ¢ + 0:

Yi(t)

Ds(t) =W(t+6) — W(t)
and call it the §-interval workload-difference process.

3In this paper, packet size and data are measured in bits.
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Definition 5: The hop utilization process {U(t),0 < t < oo}
is an ON—OFF process associated with {W (¢)}:

vo-{5 ¥920 o

and the 0-interval hop idle process
t+6
I(t,t+06) =Is(t) = 6 — / U(x)dz 8)
Jt

is the total amount of idle time of the forwarding hop in [¢, t+6].
We further call time interval [t, t + 8] hop busy period if Is(t) =
0 and hop idle period if 15(t) = 6.

Definition 6: We define { Bs(t),0 < t < oo} as the residual
bandwidth in the time interval [¢, ¢ + 4]:

Bs(t) =C (1 - % /t“r U(:E)dgj) - Ié(;)o )

and call it the 0-interval available bandwidth process.

The following lemma describes the relationship among the
three important processes Ys(t), Ds(t) and Bs(t).

Lemma 1: For all positive ¢ and ¢, the following holds:

Ds(t)C
s
Bandwidth estimation is essentially interaction of probe

packets with sample-paths of the processes we just defined. We
next examine certain properties of this interaction.

Bs(t) = C — Ys(t) + (10)

B. Probing Intrusion of Packet Trains

We use quadruple (a1, gz, s,n) to denote a probing train of
n packets pi1,pa,...,pn, Where a; is the arrival time of the
first packet p; at the hop, g7 is the interpacket dispersion at the
sender, s is the probe packet size, and n is the train length. Ar-
rival times of probing packets to the hop are denoted by a; =
ay + (i — 1)gr,i = 1,2,...,n. Departure times of probing
packets from the hop are denoted by d;,z = 1,2, ..., n. We de-
fine the output gap of a packet train as the average dispersion
between adjacent packets in the train:

_dn_dl
T on—1"

go (11)

In terms of rate, the input and output probing rates are r; =
s/grandro = s/go.

We use W(t) and I5(t) to respectively denote sample paths
of workload and hop idle time processes associated with the su-
perposition of cross traffic and probing traffic. Note that this su-
perposition only increases hop workload, i.e., for all Z, W(t) >
W (t). We next define more useful notation to help us examine
this intrusion behavior of packet train probing.

Definition 7: The intrusion range of probing traffic into W (¢)
is the set {t : W (t) > W (t)}. The intrusion residual function
is Wy(t) = W(t) — W(t).

Function W, (t) helps us understand the intrusion behavior
of the probing traffic into W (¢). Before the arrival of probing
packets, Wy(¢t) = 0. Upon every arrival of a probe packet,
Wa(t) gets an immediate increment of s/C, where s is the
probing packet size as before. In W (¢)’s busy periods without
additional probing packet arrival, Wy(¢) remains unchanged. In

Intrusion Residual Wy

time

Fig. 2. Illustration of intrusion residual function.

W (t)’s idle periods without additional arrival of probe packets,
Wa(t) deceases linearly with slope —1. Function Wy(t) is
monotonically nonincreasing between every two adjacent
probing packet arrivals. Fig. 2 illustrates this behavior, where
(t1,t2) and (t3,t5) are two busy periods in W (t), and (o, t3)
and (t5,t7) are two idle periods in W (t). Times t1,t4 and tg
are the instants of probing packet arrivals. Time ¢7 is the end
point of the intrusion range.

Based on the above observations and assuming a single probe
packet of size s arrives to the hop at time ¢, Wy (¢) can be ex-
pressed as follows:

0, t<to

Wa(t) = {max (0,2 = I(to,t)), t>to. %

When the hop is probed by a packet train (a1, g1, $,n), we
are often interested in computing function

Ri(a1) = Wa(a;) = Wa(ar + (4 — 1)g7) (13)

fori = 1,2,...,n, where f(a™) denotes the left-sided limit

lim, .- f(z). Metric R;(a1)* is the intrusion residual caused

by the first ¢ — 1 packets in the probing train (a1, gr, s,n) and

experienced by packet p;. In other words, the queueing delay of

p; in the hop is given by

W(a;) = W(az) + Wd(a;) = W(az) + Ri(al). (14)

The total sojourn time of p; at the hop is the sum of its service
time and its queueing delay

d; —a; = W(al) + Ri(al) + %

As a direct result of (12), R; can be recursively computed as
follows:

15)

0, 1 =1

Ri = {max (0./ &+ R — I(ai_l,ai)) , 1> 1. (16)

As shown in (14), the introduction of intrusion residual sep-

arates the queueing delay of a probing packet into two portions

with different statistical nature. This is one of our key results

that make in-depth analysis of packet-train bandwidth estima-
tion possible.

4When a, is irrelevant, we often write R;(ay) as R;.



922

C. Output Dispersion of Individual Packet-Trains

Our next lemma expresses the output dispersion of a packet-
train from two different angles. This result is the corner stone of
our later response-curve analysis.

Lemma 2: Let 6 = (n — 1)g;. When a hop with work-
load process W (t) is probed by a packet train (a1, g1, s, n), the
output gap go can be expressed as

_ Ys(ar)gr | s fg(al)
go=—"¢ teotu
Dg(al) Rn(al)
n

-1 n—1"

=gr+ a7

The most interesting feature of Lemma 2 is that its result
is unconditional, in the sense that it neither relies on any as-
sumption on the cross-traffic arrival pattern nor imposes any
restriction on packet-train parameters. In addition, Lemma 2
develops an avenue towards analytical understanding of the re-
sponse curve through (especially first-order) statistical proper-
ties of each individual terms in (17).

Also note that the four terms Ys(a1), Ds(a1), fg(al), and
R, (a1) in (17) are generated by sampling four underlying con-
tinuous-time sample paths Y3(t), Ds(t), Is(t), and R, (t) at
time instant a;. Hence, before examining the random samples
generated by packet-train probing, we first have to understand
several important statistical properties of the underlying contin-
uous-time processes being sampled.

D. Properties of Underlying Processes

We first make an assumption on cross-traffic arrival.

Assumption 1: There exists a constant A less than hop ca-
pacity C such that V(¢)/t — A ast — oc.

This assumption has a series of implications, First, it states
that the cross-traffic has a long-term average arrival rate \. This
further leads to the following result.

Lemma 3: The limiting time-average of any ¢-interval cross-
traffic intensity sample path is equal to A

1 t
E[Ys(t)] = tlim ;/ Ys(u)du=X Vé§>0. (18)
Proof: First, notice that
1/t ft+6 V(u)du f§ V(u)du
- | Y ==t -0 . 1
t,/o s(u)du 5t 5t (19)
Computing the limits, we get
1 [t OV (u)d
tl_i)noz ¥/0 Ys(u)du = tliglo w —0. (20)
Since V (¢) is a nondecreasing function, we can write
t+6
SV (1) < / V(w)du < 8V (t + 6). @1
t
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Finally, note that both §V'(¢) and 6V (¢ 4+ 6) have the same
limit when divided by 6t:

t+68
V(u)d
fm VO _ oy VO o S Vwdu
t—oo t t—o0o 6t t—o0 6t
< lim SV (t+96) ~ lim Vit+6)t+06
t—00 ot t—oo {4+ ) t
Vit
~ Jim YO, (22)
t—oo
Combining (20) and (22), we have for V6 > 0
I V(t
lim = [ Ys(u)du = lim ®) = (23)
t—o0 0 t—oo
which leads to the statement of the lemma. [ |

Throughout this paper, we adopt sample-path arguments and
use the notation of probability expectation as a shorthand repre-
sentation for sample-path limiting time-average.> Note that the
first equality in Lemma 3 is by definition and has nothing to do
with ergodicity.

The second important implication of Assumption 1 is the
workload stability of the forwarding hop.

Lemma 4: Given Assumption 1, the forwarding hop exhibits
workload stability, i.e., lim;—, ., W(¢)/t = 0.

Proof: See Appendix 1. ]

An immediate consequence of workload stability is the zero-
mean nature of Ds(t), formally stated as follows.

Lemma 5: If W(t)/t = o(1), the limiting time average of
any d-interval workload-difference sample path is zero:

t
EIDy(1)] = lim % /0 Ds(w)du=0 ¥5>0. (24

The next two results concern the available bandwidth process
Bg(t). Although Bs(t) does not explicitly appear in (17), it is
functionally related to two processes Is(t) and R, (t). Further-
more, the process Bs(¢) is important on its own right as it is the
target of our measurement.

Lemma 6: Under the assumptions of this paper, d-interval
available bandwidth converges to C' — ) as the observation in-
terval becomes large:

6131010 Bs(t)=C -\ Vt>O0. (25)

This result implies that a “good” measurement technique
should produce C' — X as its final estimate given a sufficiently
long measurement duration.

Lemma 7: The limiting time-average of any -interval avail-
able bandwidth process is C' — A, i.e.,

t
E[Bs(t)] = tli)rgo% /0 Bs(u)du=C — X ¥§>0. (20)

This result shows that first-order statistics of an available
bandwidth sample path do not depend on the observation
interval 6 and equal the average long-term available bandwidth.

5The limiting time-average of a sample path is the expectation of its limiting
frequency distribution [19, pp. 45-50]. Hence, it is also called the “sample-path
mean.”



LIU et al.: A QUEUEING-THEORETIC FOUNDATION OF AVAILABLE BANDWIDTH ESTIMATION: SINGLE-HOP ANALYSIS 923

On the other hand, note that any higher order sample-path
statistics of Bs(t) have a strong dependence on 6. We define a
function Ps(x) to describe the available bandwidth distribution
along sample path Bs(t):

t

Py(z) = lim ~ [ 1(Bs(u) < 2)du.

27
t—o0 0
In general, we can assume that the frequency distribution
function Ps(x) converges to the following step function as § —
00!

0, z<C—-2AX
We finish the section by deriving useful bounds on the re-
maining two terms Is(a;) and R,,(a;1) in (17) and leave their
detailed investigation for the next section. From (16), noticing
that I(a;—1,a;) is no less than zero and applying mathematical
induction to 7, we get 0 < R,, < (n — 1)s/C. Combining with
Lemma 2, we have.
Corollary 1: Let 6 = gr(n—1). Then, the following inequal-
ities hold:

Ds(ar)

n—1

Ds(ay)

n—1

+9r <90 <

s
tor+ & (29)

where the second inequality is tight iff Is(a;) = 0.

Our next lemma provides a bound for the term I (a;).
Lemma 8: Let § = (n — 1)g;. Then, we have

OS%SQI—%, gr > 30
jé(al) _0 < ( )
o1 — U gr >

Qle Qw

n—1

Collecting Lemmas 2 and 8 leads to the following result.
Corollary 2: When W (t) is probed by packet train
(a1, 91, s,m), the following holds:

?O _ Ya(ac})gf + %7 y gr < % 31
5 (a1) g n % < go < 5 (a1)g: +9r, g9r> %

With the basic analytical framework established in this sec-
tion, we are now in a position to derive the probing-response
curve of a single-hop path.

IV. PROBING-RESPONSE CURVES

The probing-response curve depends on a number of fac-
tors such as packet-train parameters, intertrain delay pattern,
and cross-traffic characteristics. We assume a Poisson arrival
of probe trains to the hop, because the asymptotic average of
Poisson samples converges to the limiting time average of the
sample path being sampled. This property is known as PASTA
(Poisson arrivals see time averages) [25]. The average rate of
Poisson sampling is assumed to be small enough so that depen-
dency between adjacent trains can be neglected.

We use ({T).},9r,s,n) to denote a probing train series
driven by a Poisson arrival process A(t) = max{m > 0: T}, <
t}. We use gg ) to denote the output gap of the kth probing train
(T, g1, s,n) in the series, i.e., ggc) = (dslk) - dgk))/(n —1).

The limiting average of the discrete-time sample-path ggc ) is
given by

LS~ 0
m > 90"

k=1

Elgo] = Tim (32)

We next derive several bounds on the response curve, show
examples of applying these bounds, and study packet-train pa-
rameter effect on the deviation of the response curve from its
fluid bound.

A. Bounds

We first obtain the upper and lower bounds on the gap re-
sponse curve.
Theorem 1: When W (t) is probed by a Poisson packet-train
series ({11}, g1 < s/C, s,n), the following holds:
gr\ | s

Elgo] = =+ =.

cTC (33)

Proof: Let § = (n — 1)gs. Then, using Corollary 2, con-
dition gy < & implies

[QIYé(Tm) + S}

_ 91BYs(Tn)] + 5

Elgo]=FE C

- (34)

Since {7, } is driven by Poisson arrivals, we have the following
due to the PASTA property:

EYs(Twm)] = E[Ys(t)]- (35)
Combining (34), (35), and Lemma 3, we get (33). |
Rearranging the result of Theorem 1, we get
Elgo]C — C -
)= ElgolC—s _ o [90 s] 36)
91 g1

which explains when and why the term (9o C — s) /gy can form
an unbiased estimator of cross-traffic intensity. We note that this
traffic intensity formula is used by several techniques and plays
an important role in available bandwidth estimation.

Theorem 2: When W (t) is probed by Poisson packet-train
series ({17, }, 91 > s/C, s,n), the following holds:

A+s . A s
max <gI e ,g1> < Elgo] < min <gI—|— %,g;—l— 6) .

Proof: Notice that from Corollary 2, when g7 > s/C
grEYs(T)] + s _ grE[Ys(t)] + s

E >
[90] > C c
grA+ s
=27 -, 37
c (37
Similarly, from Corollary 1, PASTA, and Lemma 5, we have
E[Ds(T,, E[Ds(t
E[go]Zgz+M:gI+M:gz (38)
n—1 n—1
Collecting (37) and (38), we get
A
max (%4}1) < Elgo]- (39)
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For the upper bound, from Corollary 2, PASTA, and Lemma
3, we get

Elgo] < g1 <1 + w>

:gl<1+%>291<1+%>' (40)

Then, from Corollary 1, PASTA, and Lemma 5, we obtain

E[Ds(T:)] . s

Elgo] < — c T
S EDO S g—g @
Combining (40) and (41), we get
Bloo] < min (0s(1+ o+ 5). @D
C C
Combining (39) and (42), the theorem follows. [ ]

Theorem 2 provides lower and upper bounds on E[go] when
g1 > s/C. Combining this result with the one in Theorem 1 for
gr < s/C, we get alower bound on E[go] in the entire probing
range 0 < gr < oo as follows:®

max (gIA+S7gI) , g1 > &
L(E[go]) = { staiA ¢ f
—c g < &
g1, gr > CS,)\
i 43
{ '+Cq'IA7 gr S CS_)\' ( )

This is exactly model (6) we are trying to validate. However,
Theorem 2 shows that (6) is a lower bound of E[go], which does
not necessarily equal to E[go]. Likewise, we can obtain from
the two theorems the entire upper bound of E[go] as follows:

min(gl-i-ﬂgﬂri); g > &
U(Blgol) = { min (g1 550+ 6 ¢
==, g <&
S )\ S
C + %7 gr S el
= .W-i-%; c<gr<% (44)
gr+¢&, 91> %

The real gap response curve is contained between these two
bounds. We define the response deviation 3(gr,s,n) as the
difference between the real gap response curve and the lower
bound given by (43). It can be expressed by the following using
Theorem 2, Lemma 2, and PASTA (where § = (n — 1)gr):

S

S E[Is(1)], g <
Blyr. s,n) = { ﬁE[Isn(t)]y gj 2 .

2 (45)
c-=\"

We next provide a closed-form expression for the packet-pair
(i.e., n = 2) response deviation to gain additional insight into
the nature of this phenomenon.

SFunctions L( f) and U ( f) denote lower and upper bound on f, respectively.
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B. Packet-Pair Closed-Form Expression

Notice that both R,, (%) and I5(t) can be expressed as deter-
ministic functions whose arguments are packet-train parameters
and the following (n — 1)-dimensional vector:

Bs(t)

Bg(t + 6)

B V() = (46)

Bs(t + (n —2)0)
In particular, when n = 2, § is simply gy and the vector

(46) degenerates to a scalar, which allows us to obtain simple
expressions for Is(t) and Ry(t):

I5(t) = max <0, %) (47)
Ry(t) = max <0, ¢> : (48)

Consequently, we have the following result regarding the
packet-pair probing-response curve.

Theorem 3: Assuming that W (t) is probed by Poisson
packet-pair series ({T},},91,5,2), let § = g and denote
by Ps(x) the frequency distribution function of sample-path
process Bs(t). Then, the following holds:

Elgo] =

C p—
gI)\+s+/ i) Sdpé(w)

C 55 C

s/6 . §
— g / 5 C‘T dPs (). (49)
JO

Itimmediately follows that the packet-pair response deviation
is

1 rC

& 6 —s)dPs(x), <
Blor,5,2) = Cfi/f;x AR, <

é ) (S_$5)dp6(x)7 gIZci)g

The response deviation phenomenon is one of the previously
unknown factors that can cause measurement bias for available
bandwidth estimation techniques based on (6). Even though a
closed-form expression of the response deviation for packet-
trains is complex in general, it is clear that the amount of devi-
ation is exclusively decided by the packet-train parameters gy,
s, n and the sample-path frequency distribution of the available
bandwidth vector (46).

Next, we show the full picture of response curves for both
gap-based and rate-based versions.

C. Full Picture

We now investigate the relationship between the response de-
viation given in (45) and the input gap gy while keeping all other
parameters fixed. We first examine packet-pair probing.

Theorem 4: When W (t) is probed by Poisson packet-pair se-
ries ({Tn}, g1, s, 2), the response deviation 5(gr, s,2) equals
zero when input gap gy € (0,s/C]; it is a monotonically in-
creasing function of gy in the input gap range (s/C, s/(C' — \)];
and it is a monotonically decreasing function of gy in the input
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Fig. 3. Illustration of various properties of response curves in the entire input range. (a) Response deviation, (b) gap-response curve, and (c) rate-response curve.

gap range (s/(C' — \),00). Furthermore, the response devia-
tion 3(gr, s, 2) monotonically converges to 0 as gy approaches
infinity. Finally, in the whole input-gap range (0, c0), the re-
sponse deviation is a continuous function of g;.

Packet-pair response deviation has very nice functional prop-
erties in terms of continuity and monotonicity. The deviation
B(gr, s,2) is a hill-shaped function with respect to gy as shown
in Fig. 3(a), where it reaches its maximum when g; = s/(C —
A). We also conjecture that the packet-train response devia-
tion B(gy, s, n) is also continuous and has similar monotonicity
properties described in Theorem 4. In Section V, we experimen-
tally observe this fact.

In summary, the response deviation is significant only in the
middle part of the probing range. We call this range the devia-
tion probing range. The full picture of the gap response curve
is illustrated in Fig. 3(b). The entire probing range (0, 0o) is di-
vided into three portions. Interval (0, s/C] is the nondeviation
region where traffic intensity formula (36) forms an unbiased
estimator of A. Interval (s/C, ) is a deviation region where
E[go] is larger than (6), but smaller than the upper bound in
(44). Finally, interval («, 00) is the second nondeviation probing
range where E[go] = gr. Theoretically, « can be infinitely large
and this range often does not exist. Practically, however, a suf-
ficiently small response deviation can be assumed to be zero.
Input dispersion g; = s/(C — A) = A is the point where the
response deviation is maximized and deviation offset point «
is never equal to A. Further note that the upper bound on the
gap-response curve given in (44) is actually not tight.

It is often more informative to look at the rate version of the
response curve rather than the gap version, because the former
has a direct association with our measurement targets: traffic
intensity and available bandwidth. Transforming (43) into the
corresponding rate version, we get the rate upper bound?’

( s ) {TI./ 0<r;<C =2\
U — - I
E[gO] A7

ry > C — A
Transforming (44) gives us the rate lower bound as

T, 0<r <A

(51

s rlr-II—C
L(E >: el A< <0 (52)
[90] Yo O <
rr+A T

"Note that existing tools compute the average output rate as s/ E[go] instead
of E[s/go]. This is because the rate curve is derived from the gap curve and
E[s/go] cannot be determined from E[go].

As illustrated in Fig. 3(c), along the vertical direction, the rate
response curve appears between the two bounds given above.
Along the horizontal direction, the curve shows one negatively
deviating probing region sandwiched by two nondeviation
regions.

D. Impact of Packet Train Parameters

First, we examine the impact of probing packet size on re-
sponse deviation. At any fixed input rate r, let s — oo. This
causes the sampling interval 6 = (n — 1)s/r to approach in-
finity at rate proportional to s. The following theorem states a
sufficient condition for the response deviation to vanish as s in-
creases.

Theorem 5: At any input rate 7, the response deviation van-
ishes as the packet size s increases if the following condition
holds:

1

Ps(r) — Poo(r) =0 (5) (53)

where Ps(x) is the frequency distribution function of Bs(t) and
P..(z) is the step function given in (28).

Proof: We first prove the case whenn = 2 andr < C' — .
In this situation, let = gy and observe that

s—x6dP5( ):é

B(;,S,E)z/o e T C./o Ps(z)dx. (54)

Hence, a sufficient and necessary condition for packet-pair re-
sponse deviation at input rate » < A to vanish as s — oo is

lim 6/ Ps(x)dz =0 (55)
0

5—o00
which can be satisfied when (53) holds because of the following
inequality, where we should recall that Po.(r) = 0:

0< 6/(: Ps(z)dz < 6r(Ps(r) — Poo(r)). (56)

Similarly, for any input rate € (C' — A, C1, a sufficient and
necessary condition for packet-pair response deviation to vanish
is

lim §
b—00

c
C—T—/ Ps(z)dz | =0 (57)



926

which can be satisfied when (53) holds because of the following
inequality, where P, (r) = 1:

0<6 (0 - r—/c P,s(a:)d:c> < 8(C = 1) (Pu(r) = P5(r)).

(58)
For the case of packet-train probing where n > 2, we refer the
reader to Theorem 8 in [13] for a detailed proof. |

Without getting into technicalities, we point out that (53)
is also a necessary condition for the response deviation to
vanish as s increases, given that Ps(z) is continuous. Note that
many cross-traffic arrivals produce a regenerative workload
(and consequently a regenerative link utilization process) in
the forwarding hop (e.g., Poisson and ON-OFF traffic used in
the experiments of this paper). In this case, we can apply the
regenerative central limit theorem [26, p. 124] to show that the
frequency distribution function of Bs(t) converges exponen-
tially to the step function (28), which is much faster than the
convergence speed required by (53). Therefore, larger probing
packet size implies less response deviation in these cases.

Theorem 6: When hop utilization process {U () } is regener-
ative [26 p. 89], Ps(r)— Poo(r) is an asymptotically exponential
function of 4, i.e., there exists a positive constant k such that

Ps(r) — Pso(r) = O(e™*?). (59)
Proof: See Appendix II. [ |

To examine the impact of packet-train length, we first show
that when n — oo, the output gap converges to the fluid predic-
tion almost surely.

Theorem 7: Given Assumption 1 and an arbitrary input gap
g1, the output gap converges with probability 1 to the fluid
model (3) as n increases.

Proof: We first consider the case when gr > s/(C'— ). As
n — oo, the aggregated traffic has a long-term rate A + s/g; <
C. Hence, according to Lemma 4, our queueing system is stable
and produces the following:

W(ays+ (n—1)gr)

lim =0. (60)
Further note that
0 < Rp(a1) < W(ay + (n—1)gz). (61)
Dividing by n — 1 and taking the limit of (61), we get
R,
i (@) _ g (62)
n—oo N — 1
Combining (17) and (62), we have
Jim go = gr. (63)

Next, consider the case when g5 < s/(C — X). Asn — oo,
the aggregated traffic has a long-termrate A+s/g; > C, leading
to an unstable queue that grows unbounded:

W(ay+ (n—1)gr)
ar + (n —1)gr

(64)

lim

n—oo

=A+s/gr —C.
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Omitting certain details, we can show that there exists a constant
M such that

lim I(a1,a; + (n—1)gr) < M. (65)
Combining (17), (18), and (65), we get
Agr + s
Jim g0 = 25 )
Collecting both cases, we have proved the theorem. ]

Note that, in general, Theorem 7 does not necessarily imply
a vanishing response deviation as n — oo, which requires
proving a mean convergence rather than an almost-surely con-
vergence. However, the two convergence modes are equivalent
when taking into account a practical factor that the output gap
is uniformly bounded by a constant for any packet-train length
n. This is because, in practice, the cross-traffic arrival rate is
bounded by the capacities of incoming links at a given router.
Suppose that the sum of all incoming link capacities at the hop is
(. Then, Y5(t) is distributed in a finite interval [0, C;.]. Conse-
quently, the output gap go is also distributed in a finite interval
[s/C, max(gr, (s + grC4+)/C))]. Given this constraint, almost
surely convergence of Theorem 7 implies a mean convergence,
hence a vanishing response deviation when n tends to infinity.

E. Discussion

We now briefly mention how sensitive our results are with
respect to the assumptions made in this paper. First, this paper
assumed infinite buffer space in the hop. Hence, our results are
valid when buffer space is sufficiently large and packet loss can
be neglected. Otherwise, equality A = C' — X becomes invalid.
Analysis of the impact of buffer size on bandwidth estimation
requires future work.

Second, we assumed a Poisson intertrain probing pattern.
This can be relaxed to more general ASTA (Arrivals see
time averages) [16] sampling. Recent theoretical progress [2]
showed that in nonintrusive probing, ASTA was not unique
to Poisson arrivals, but was shared by a large class of other
sampling processes. Recall that our work assumed sufficiently
large intertrain delays (which is called rare probing in [2]). This
supports nonintrusiveness of our probing process and makes
our results applicable to a large number of non-Poissonian
sampling patterns.

Finally, we made a sample-path assumption on cross-traffic
and avoided the cross-traffic stationarity assumption, which was
commonly agreed upon in prior work. Our results are appli-
cable, but not limited to, stationary cross-traffic. For additional
comments on this issue, we refer the reader to [13].

Next, we present our experimental methodology for com-
puting the probing-response curve and study the deviation func-
tion experimentally.

V. NUMERICAL RESULTS

In this section, we first introduce an offline algorithm that can
compute with high accuracy the probing-response curves from
a given cross-traffic arrival trace. We then apply this method to
several types of cross traffic with different characteristics to ex-
amine the quantitative relationship between the response devia-
tion and the packet-train parameters.
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A. Computing Response Curves

Our offline algorithm computes single-hop response curves
based on cross-traffic packet arrival trace, packet-train param-
eters (s,n), and hop capacity C. Traffic traces provide arrival
time and packet size for every cross-traffic packet at the hop.
Given a sufficiently long trace, the frequency distributions of
the associated sample paths (such as Y5(t), Ds(t), and Bs(t)) in
that time interval become good approximations of their limiting
frequency distributions. Our offline algorithm approximates the
sample-path mean of g((Dk ) for any given input spacing gr. Next,
we briefly explain the structure of this algorithm.

We use T to denote a cross-traffic trace in the time interval
[0, 7]. Given Y7, and hop capacity C, the hop workload sample
path W (¢) in the interval [0, 7], denoted as W (¢){, can be com-
puted. The following corollary states basic properties of the
workload sample path.

Corollary 3: Hop workload sample path consists of alter-
nating busy periods and idle periods. Any busy period comprises
piecewise linear segments with slope —1.

Taking advantage of these functional properties and using a
proper data structure, we can represent W (t)J without losing
any of its information. Furthermore, we are able to retrieve
Ys(t), Ds(t), and Bs(t) for any ¢ in [0, 7 — 6;. In other words,
we keep the full information about Ys(#)57°, Ds(t)5*, and
Bs(t)§~° in the data structure of W (£)3.

Instead of approximating F [ggg )] using a finite number of
output dispersion samples, we approximate F[go(t)], the cor-
responding continuous-time sample-path mean, using the time
average of go(t) in a finite interval. Note that due to the ASTA
assumption, £/ [g(ok )] = E[go(t)]- Hence, a good approximation
of the latter sample-path mean also serves as a good approxima-
tion for the former. The continuous-time sample path go (¢) also
has certain “nice” properties as we state in the next theorem. The
proof is in constructive terms, which provides a concrete idea of
how our offline algorithm is designed.

Definition 8: Event points are the time instants at which the
workload sample path switches from a busy period to an idle
period or undergoes a sudden increment due to packet arrival.
An interevent interval is the interval between two adjacent event
points.

Theorem 8: The sample path go(t) consists of piecewise
linear segments with possible slopes 0, 1 and —1. For any two
time instants 0 < t; < t2, go(t) is continuous in the interval
(t1,t2) given that 1) ¢; and ¢, fall into the same interevent in-
terval of W (t) and 2) t; + (n — 1)gr and t5 + (n — 1)g; fall
into the same interevent interval of W (t).

Proof: See Appendix I in [15]. ]

Our algorithm computes go (£)7 """’ the sample path
go(t) in the time interval [0, 7—(n—1)g;], basedon Y7, C, s, n,
and gy. The computation makes use of the second formula in
(17), where R,, is computed recursively using (16). Further-
more, taking advantage of Theorem 8, we can represent the
sample-path information of go (t)g_(”’_l)g " to its full precision
in a proper data structure. We then compute the following:3

1 T—(n—1)gr
/ go(t)dt
T — (5 0

8Theorem 8 also allows an efficient computation of (67) with high accuracy.

(67)

Intensity funtion (mb/s)

26

0 20 40 60 80 100
Time (sec)

Fig. 4. Intensity function Z(¢) = V(¢)/t for the three traffic traces.

and use it as an approximation to

Elgo(t)] = lim - / " go(u)du,

T—00 T

(68)

It is clear that the precision of this approximation is mainly
decided by 7. Thus, we can pick a large enough 7 so that its fur-
ther increase would make little difference. It could sometimes
be impractical to have such a long trace; however, note that even
when (67) is not a good approximation of F[go(t)], it still rep-
resents a correct result in a hypothetical periodic cross-traffic
that repeats itself after every 7 time units. This is due to the fact
that in periodic cross traffic, the sample path go(¢) has a lim-
iting time average equal to its time average in one period.

B. Traffic Traces

We compute the probing-response curves using three dif-
ferent cross-traffic types: Poisson traffic with packet sizes (in
bytes) uniformly distributed in [1, 1500] (PUS), Pareto ON—OFF
traffic (POF), and a real traffic trace TXS-1148742649 (TXS)
from the National Laboratory for Applied Network Research
(NLANR) . Hop capacity C'is fixed at 10 mb/s. The cross-traffic
packet size is 750 bytes for POF. The average sending rate is
500 packets per second for PUS. The mean duration of POF
ON-OFF periods is 10 and 5 ms, respectively. The Pareto shape
parameter « for the duration of both ON—OFF periods is set to
1.9. In POF ON periods, the source sends CBR traffic at 750
packets per second. Given these settings, Both PUS and POF
cross-traffic satisfy Assumption 1 and have a long-term arrival
rate A equal to 3 mb/s. To facilitate comparison, we scale the
packet interarrival times in the TXS trace by a common factor
so that the average traffic arrival rate within the trace duration
is also 3 mb/s. We use random-number generators to produce
two packet-arrival traces for PUS and POF. These traces record
the time instants of all packet arrivals and their sizes within a
period of 100 s.

In Fig. 4, we plot the traffic intensity function Z(t) = V' (¢t)/t
for the three traffic traces. As shown in the figure, all traffic types
have the same long-term arrival rate 3 mb/s. However, there are
prominent differences in their convergence delays. Traffic trace
PUS converges very fast, in 10 s, reaching within 1% of A =
3 mb/s. The convergence delay of POF and TXS, however, is
much longer and equals about 60 s for the 1.5%-neighborhood
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Fig. 5. Rate response curve for the three cross-traffic traces. (a) Probing pairs
and (b) 16-packet trains (probing packet size is 750 bytes).

of 3 mb/s. Based on these cross-traffic characteristics, we choose
7 = 20 s for PUS and 7 = 60 s for POF and TXS.

In what follows, we first compute response curves for sev-
eral fixed packet-train parameters. We then provide numerical
results for the response deviation for a range of packet-train pa-
rameters to demonstrate their quantitative relationship. For each
response curve, we compute the mean output dispersion E[go]
at 140 equally spaced input rates from 1 to 14 mb/s. For each
input rate, we apply our offline algorithm to compute the numer-
ical integration of (67) as an approximation of E[go].

C. Results and Discussion

Fig. 5(a) shows rate response curves for the three traces when
the hop is probed using 750-byte packet pairs. Notice in the
figure that all three curves substantially deviate from the fluid
upper bound. The curve of TXS appears lower than those of PUS
and POF, indicating that TXS has the most deviation from the
fluid bound of the three traces. It is also interesting to note that
POF is much closer to the upper bound than PUS, which means
that the former suffers less response deviation than the latter.
This indicates that for fixed packet-train parameters, cross traffic
of more burstiness does not necessarily imply larger response
deviation. We explain the reasons for this in a short while.

Fig. 5(b) shows the rate response curves for the three traces
when the hop is probed using probing trains of 16 packets. Com-
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Fig. 6. Log-scale NDR for the three cross-traffic traces. (a) Probing train length
from 2 to 512 and (b) probing packet size from 50 bytes to 1500 bytes.

pared with the previous figure, all three response curves are
closer to the fluid upper bound. However, one observation is that
PUS approaches the fluid bound much quicker than the curves of
the other two traces. This shows that, as the probing train length
increases, the response deviation diminishes at a rate that de-
pends on the burstiness of cross traffic.

Since we constantly observe that the response curves suffer
the largest deviation when the input rate equals to the available
bandwidth, we define a metric called NDR (normalized devia-
tion ratio) to characterize the amount of deviation in a rate re-
sponse curve. Let r be the output rate s/ E[go] when the input
rate is A = C' — A\. We define

AC \ 7!

which is the distance of the actual curve to its upper bound di-
vided by the distance to its lower bound, given that the input
probing rate is equal to the available bandwidth A. The NDR
metric takes values in [0, 00), where larger NDR values indi-
cate more deviation in the response curve. We next investigate
the relationship between the NDR and packet-train parameters.

For all three traces, we computed the NDR using probing
packet sizes between 50 and 1500 bytes with a 50-byte step and
probing train lengths between 2 and 512 packets with a two-
packet step. Thus, in total, we have 256 x 30 = 7 680 different
packet-train parameter settings for each of the three traces. For
each parameter setting, we calculate the output rate r in (69)
using our offline algorithm.

Fig. 6(a) shows the NDR for the three traces using s = 750
bytes. In all cases, the NDR decreases as the probing train length
increases and this relationship appears to be a power-law func-
tion as confirmed by our log-log plot. Fig. 6(b) shows the NDR
for a fixed train-length of 16 packets and varying probing packet
size from 50 to 1500 bytes. We again observe a power-law de-
crease of NDR with respect to the increase in the probing packet
size. Modeling the relationship between NDR and packet-train
parameters s and n using function NDR = k/(s*'n2), where
k, aq, and ao are cross-traffic related parameters, we get

(69)

log(NDR) = log(k) — a1 log(s) — as log(n). (70)

We plot 3-D charts of NDR(s,n) and their contours on
log-log scale for all three traces to gain more insight into this
relationship. Fig. 7 shows two of them, i.e., NDR planes for
PUS and TXS. We use 3-D-fitting to find the parameters of the
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(a) PUS Plane
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Fig. 7. NDR(s, n) planes and contours for PUS and TXS. (a) PUS plane and
(b) TXS plane.

TABLE I
3-D-FITTING RESULTS FOR NDR PLANES

Method ay a2 log(k)
PUS 0.524 £ 0.008 0.539 £0.004 6.111 £ 0.077
POF 0.413£0.007 0.338+0.003 4.000 £+ 0.074
TXS 0.341 £0.016 0.379 £0.007 5.019 +0.143

three planes, where all least-square fitting errors are less than
5%, indicating that the power-law function (70) is a reasonable
model for NDR. Curve-fitting results are given in Table I, which
shows that traffic with more burstiness has smaller values of o
and «,. This explains why the response deviation in POF and
TXS is harder to overcome than that in PUS.

The experimental results we obtained agree with our ana-
lytical findings very well. Furthermore, they show that with
fixed packet-train parameters, more cross-traffic burstiness does
not necessarily imply more response deviation. However, in the
former case, this deviation is more difficult to overcome by in-
creasing the probing packet size or packet-train length.

To understand this phenomenon, recall that the notion of
traffic burstiness in this paper relates to how fast the traffic
becomes “smooth” with respect to the increase of observation
intervals rather than how “smooth” the traffic appears in a given
fixed observation interval. Hence, it is normal that for a given
observation interval, POF has smaller variance than Poisson
traffic and appears “smoother,” which leads to less response
deviation when packet-trains are constructed to sample the
traffic in such an observation interval. As the train length or
packet size increases, the observation interval increases and
Poisson traffic becomes smooth quicker than POF. Therefore,
the response deviation also vanishes quicker.

Even though we do not offer a precise interpretation for the
power-law relation between the NDR metric and packet-train
parameters, we believe that it is related to the evolving trend of
available bandwidth frequency distribution with respect to the
increase of observation interval. This view is supported by the
fact that the response deviation is exclusively decided by the
packet-train parameters and the available bandwidth distribu-
tion. This implies that there is no other factor that can decide
the NDR metric.

VI. IMPLICATIONS

Among the five representative proposals TOPP, IGI/PTR,
Spruce, pathload, and pathChirp, the first three directly fall
under the umbrella of our work, while the last two techniques
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Fig. 8. TOPP-transformed rate response curves.

TABLE II
TOPP RESULTS (IN mb/s) USING DEVIATION SEGMENTS IN FIG. 8 (CORRECT
VALUES: C' = 10 mb/s, A = 7 mb/s)

Method Estimated C  Estimated A  Estimated A
PUS 32.51 29.24 3.28
POF 23.38 18.36 5.02
TXS 29.59 28.16 1.43

have quite a few tunable parameters and their behavior is
beyond the scope of this paper.

A. TOPP

Fig. 8 shows the rate response curves for the three traces when
the hop is probed using 1500-byte packet-pairs (as suggested
in [18]). The curves are transformed to depict the relationship
between Elr;/ro] and r;. TOPP applies segmented linear
regression on this transformed curve to obtain the hop capacity
and cross-traffic intensity information. In the order of closeness
to TOPP’s expected piece-wise linear curve (i.e., fluid lower
bound) appear the response curves of POF, PCS, and TXS. TOPP
uses the second linear segment of the measured curve assuming
that it contains hop information. However, in practice, unless the
deviation is very small and undetectable, the second segment
may not be linear (such as in the figure) and may not coincide
with the fluid bound, which may mislead TOPP into believing
that the curve in the deviation range is the second linear segment
of the fluid model. In Fig. 8, all deviation ranges are very clear
and will be incorrectly acted upon by TOPP. Table II shows the
results of a linear regression applied to deviating response curves
in Fig. 8 using the basic algorithm in TOPP. As the table shows,
the available bandwidth is significantly underestimated, espe-
cially for the real traffic trace TXS. Both the hop capacity and
cross-traffic intensity are significantly overestimated. Hence,
to assure asymptotic accuracy, TOPP has to apply additional
techniques to bypass the segment in the deviating input range.

B. PTIR

PTR uses output rate s/FE[go] at the point of transition be-
tween the two linear segments in the response curve as an esti-
mate of available bandwidth. As we have established, this point
corresponds to the input rate at which the stochastic curve starts
deviating from the fluid bound and does not usually represent
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the available bandwidth of the path. Since this point is always
smaller than or equal to available bandwidth, PTR is a negatively
biased available-bandwidth estimator in all single-hop paths.

We examine the rate response curves for the three cross-traffic
traces using packet-train parameters s = 750 bytes and n = 64
packets, similar to the parameters used by PTR [6]. We find that,
for PUS and POF, these parameters are sufficient for reducing
the response deviation to a negligible level and producing ac-
curate estimation of available bandwidth from the output rate at
the deviation onset point. In both cases, the measurement bias
is around 0.5 mb/s (i.e., 7% of the actual available bandwidth).
For the real traffic trace TXS, the measurement bias becomes 3
mb/s, which is substantially higher and might be non-negligible
for certain applications. Our analysis also leads to recommenda-
tions that conflict with those stated in [6]—using larger packet
size (e.g., 1500 bytes) should reduce measurement bias and not
cause overestimation.

C. Spruce

Spruce uses (36) with input probing rate r; = C to estimate
cross-traffic intensity. Thus, it is unbiased according to Theorem
1, regardless of the packet-train parameters s and n. However,
by extending the analysis in this paper to multihop paths, it has
been shown in [14] that cross-traffic interference from nontight
hops can often cause significant amount of negative bias (often
more than the actual available bandwidth) into Spruce’s esti-
mator. We skip the details and refer the reader to [14] for a more
thorough discussion of this issue.

VII. CONCLUDING REMARKS

This paper focused on developing a theoretical understanding
of single-hop bandwidth estimation in nonfluid cross-traffic
conditions. Our main contributions include a queueing-theoretic
framework of packet-train bandwidth estimation, a thorough
investigation of the single-hop response deviation phenomenon,
and an experimental methodology that computes the response
curve with high accuracy from a given cross-traffic trace.

While we identified the response deviation phenomenon as
one potential contributing source of measurement bias, there are
certainly other important issues related to the performance of
measurement techniques such as multihop effects, timing errors,
and layer-2 effects [20]. Our future work involves extending this
analysis to multihop paths and understanding the behavior of
current measurement techniques in arbitrary network paths.

APPENDIX |
PROOF OF LEMMA 4

Proof: The proof is by contradiction. Suppose that W (t) /¢
does not approach 0 as ¢ — oo. Then, there exists a v € (0, \)
and an increasing sequence of time points {7,,n > 1} with
T — 00 as n — oo such that W(r,) > 7,y foralln > 1.

We define another sequence of time points {a,,n > 1},
where o, = sup{s : s < 7,,W(s) = 0}. Then it follows
that W(a,—) = 0 and that for any time instant s € [ay, 7],
W (s) > 0, which means that interval o, , 7,,] is a hop busy pe-
riod. Also, it is obvious that as n — o0, «,, — 00.

From Lemma 1, we can easily get the following:

W(an) = W(th) + V(an) = V() + Cltn — ap).  (71)
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Let € = «/3, for sufficiently large n, we have

A=€)a, < V(ay) < (A+e)ay, (72)
and

A=€)1, < V(1) < (A + ). (73)

Combining (71), (72), and (73), we get

W(an) > ym+ (A —€)a, — (A+ €)1 + C1 — )
=370 + (C = AN)(7T0 — ) — €(y + T0)

> YTy — €(an + Tn) > YTn/3 > v, /3. (74)

Now define a third sequence of time points {b,,n > 1} such
that «,, — by, is less than a constant « for all n and [b,,, ] is a
hop idle period. Then, it follows from (74) that

i (0 E 5 o

(75)

This contradicts Assumption 1, which implies the following:

V(an) — lim V(bn)

lim =\ (76)
n—oo Qp n— oo bn
Therefore, the term W (t)/t must approach 0 as ¢t — occ. [ |

APPENDIX II
PROOF OF THEOREM 6

Proof: When the hop utilization process {U(t)} is regen-
erative, the process {C'(1 — U(t))} is also regenerative with the
same stopping times and regeneration cycles. Further note that
the 6-interval available bandwidth B (t) is a time-average of the
regenerative process {C(1—U(t))}. According to the regenera-
tive central limit theorem [26, p. 124], the frequency distribution
Ps(z) converges to a Gaussian distribution N(C' — X, 02/§) as
0 approaches infinity, where o is a constant. This implies that
the mean of the Gaussian distribution remains C' — X for all 6,
while the variance is inversely proportional to . Therefore, for
sufficiently large ¢, we have

&&):%<l+mf<g:€%%&l§)> (77)

where erf is the Gauss error function.
According to the asymptotic series of erf(z) [1, pp.

297-309], we have
@(x}) -1, <0

erf(z) = (78)
) (_r—l) +1, z>0.
Combining (78) with (77), we have
Y r<C—2A
Py(r) = (e )1 (79)
1-0 (m) , > C -
where k is a positive constant given below:
(r=A"
k=-———. 80
557 (80)
Subtracting (79) from (28), the theorem follows. [ |
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