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Abstract— Many packet probing based available bandwidth es-
timation techniques have been proposed recently. However, their
performance evaluation procedures remain in a coarse-granular
fashion, which provide little information about the sources of
performance inadequacy. We initiate the effort towards fine-
granular performance metrics and evaluation procedures that
help identify the causes of measurement errors, that can be used
to retroactively optimize the design of measurement methods.
As the first step to this end, we propose a metric calledsingle-
hop potential, to assess the capability of bandwidth estimation
algorithms to reach the measurement target in an asymptotically
accurate manner. We propose off-line methodology to evaluate the
single-hop potential of various bandwidth estimators and show
how this procedure can help improve the design of measurement
techniques.

I. I NTRODUCTION

End-to-end estimation of the spare capacity along a network
path has recently become an important Internet measurement
research area. Current measurement techniques such as TOPP
[5], Pathload [2], IGI/PTR [1], Pathchirp [7], and Spruce
[8] are all based on packet probing, where measurement
packet streams are sent to the network path, and the inter-
packet delays of the streams when arriving at the other end
are used by some inference algorithm to estimate the path
available bandwidth. In this abstract, we also call the inference
algorithmsbandwidth estimators.

The devise of the techniques has to take into consideration
a long list of factors that may affect its measurement accuracy.
Practical issues include time measurement errors, OS context
switch compensation, layer two effects, etc. Algorithmically,
it is strongly desirable that in real Internet environments, the
estimator has the capability to reach the measurement targets,
and is robust to all kinds of noises. However, most of the
measurement techniques to date relied on constant-rate fluid
cross-traffic to justify the design of their bandwidth estimators.
Recent progress [3] starts showing that a good estimator in
fluid cross-traffic can actually perform quite poorly in bursty
cross-traffic. Hence, more understanding about the algorithmic
performance of bandwidth estimators in realistic cross-traffic
conditions is needed.

On the other hand, the current performance evaluation
procedures for available bandwidth techniques is very coarse-
granular. The common practice is to conduct Internet measure-
ment and compare the results to router MRTG data or TCP
throughput. The downside of coarse-granular evaluation is that
it does not help much to identify the exact reasons for measure-
ment inaccuracies, thus provides little guidance towards future

improvements. Furthermore, due to the dynamics of available
bandwidth, the results of coarse-granular evaluation are less
reproducible and can even become conflicting. Therefore,
we argue in favor for fine-granular performance metrics and
evaluation procedures. In stead of using a monolithic accuracy
metric, we advocate the identification of the major contributing
factors to the final accuracy and the proposal of individual
metrics for each factors. As an initial effort toward this
end, we first disregard all practical factors and solely focus
on the performance evaluation of bandwidth estimators. We
believe the isolation of algorithmic performance from practical
implementation issues is both feasible and advantageous. Note
that simulation-based evaluation can completely remove all
effects of practical issues and purely focus the investigation
on the algorithmic core of the measurement techniques. On
the other hand, the solutions to practical issues are universally
applicable to all measurement techniques and can be pursued
independent of the design of bandwidth estimators [6].

We propose two algorithmic metrics, single-hop potential
and multi-hop robustness, to evaluate the performance of
bandwidth estimators. We use the first metric to assess the
single-hop asymptotic accuracy; we use the second metric to
assess how much this accuracy is subject to non-bottleneck
link interference. We report preliminary results regarding the
first metric. The evaluation of the second metric is ongoing
and will be reported in the future.

In section II, we provide more details about this two metrics.
In section III, we propose evaluation procedures to assess
the single-hop potential of various bandwidth estimators. In
section IV, we provide preliminary results and discuss how
these results can help with the design of bandwidth estimators.
In section V, we briefly address our future work along this
direction and conclude.

II. PERFORMANCEMETRICS FORBANDWIDTH

ESTIMATORS

Before presenting the performance metrics, we examine sev-
eral issues in more detail. We first define available bandwidth
more formally to clarify the measurement targets of bandwidth
estimators.

A. Measurement Targets

The available bandwidth of a network hop is itsresidual
capacity after transmitting cross-traffic. Since at any time
instance, the hop is either idle or transmitting packets at its
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capacity speedC, the available bandwidthBδ(t) is the average
unutilized bandwidth over the time interval[t, t+δ]. Note that
Bδ(t) is a dynamic metric. It varies over timet as well as a
wide range of observation intervalδ. However, any individual
samples ofBδ(t) at a fixed time instance is unlikely to be
interesting to the applications. The long-term time average of
Bδ(t) (presumably in existence), denoted byA = Bδ(t), on
the other hand, is usually more relevant to applications and
more amenable for measurement. Hence, It is natural to set
A = Bδ(t) as the measurement target.

Similarly, we can define the cross-traffic intensityYδ(t) and
its long-term time averageλ = Yδ(t). Assumingλ ≤ C, the
relationship betweenλ andA is A = C − λ. This shows that
λ is an equally effective measurement target givenC known.
Note that most current estimation techniques also setA or λ
as their measurement goal, sometimes in an implicit way.

B. Bandwidth Estimators

Every measurement techniques have a bandwidth estimator
as its core. Some estimators have mathematical expressions ;
while others can only be described using computer algorithms.
Some estimators are inherently iterative, meaning that they
need to first decide the “proper” input probing construction
(usually the rate) before conducting measurements with that
input construction. Others are non-iterative, their input probing
constructions are predetermined. Table I shows an categoriza-
tion of bandwidth estimators.

TABLE I

CATEGORIZATION OF BANDWIDTH ESTIMATORS

Mathematically Expressed Algorithmically Expressed
Iterative IGI/PTR Pathload, TOPP

Non-Iterative Spruce Pathchirp

Due to the nature of the measurement targets (the fact
that they are time averages), one thing in common for all
bandwidth estimators is that they usually have to conduct
multiple runs of measurements and use the average of those
results to approachA or λ.

C. Performance Metrics

Single-hop potential is a metric assessing the asymptotic
performance of an available bandwidth estimator in single-hop
environments. That is, as the number of measurement runs be-
comes large, what value will the average of those estimations
approach to? An ideal estimator should be unbiased, meaning
that the asymptotic average of large number of estimations
should be able to reach the measurement targetsA or λ.

The significance of this metric is obvious. If the estimator
is inherently biased and does not have the capability to catch
the measurement target in a single-hop general cross-traffic
environments, it can naturally be one of the contributing
factors of measurement errors. An evaluation of single-hop
potential for available-bandwidth estimators helps to identify,
mitigate, compensate for, or even eliminate this type of errors.

The reason why we do not propose a metric called ”multi-
hop potential” is as follows. First, there is no theoretical

foundation supporting such a metrics to date. Second, we
expect much more involved evaluation procedures for a metric
like ”multi-hop potential”. Hence, we propose another metric
called ”multi-hop robustness” to capture how sensitive the
single-hop potential is to the cross-traffic interference from
non-bottleneck links. We argue that a metric like ”multi-
hop potential” can be viewed as a combination of the these
two metrics. In other words, multi-hop potential= single-hope
potential+ multi-hop robustness.

The evaluation and more details of second metric will be
reported in future work. In this abstract, we focus on the
evaluation of the first metric only.

III. E VALUATION PROCEDURE

We devise an off-line procedure to evaluate the single-
hop potential of given estimators based on cross-traffic packet
arrival trace and the hop capacityC. The trace file provides
information regarding the arrival time and packet size for every
cross-traffic packet.

We now introduce several notations to describe our evalua-
tion procedure. We use~x to denote the input probing packet
stream construction. This includes all relevant information
regarding the packet stream such as the inter-packet spacings,
the packet sizes, the number of packets in the stream, etc. We
use~y to denote the output probing packet stream construction
after~x pass through the single-hop path. We useΥτ

0 to denote
a cross-traffic trace in the time interval[0, τ ]. Note that~y is
a deterministic function of~x, the arrival timet to the hop of
the first packet in the stream~x, cross-traffic traceΥτ

0 , and hop
capacityC. We denote this function as:

~y = γ(~x, Υτ
0 , C, t). (1)

The bandwidth estimator can be viewed as another function
that takes~x and ~y as input and generate an estimation ofA
associated with time instancet. We denote the estimator as:

A(t) = ε(~x, ~y) = ε(~x, γ(~x,Υτ
0 , C, t)). (2)

The spirit of our single-hop potential evaluation procedure
is to computeA(t)τ

0 , the time average ofA(t) in a finite
time-interval[0, τ ], and examine whether this metric decently
approximates the measurement targetA or not. A decent
approximation indicates good single-hop potential of the band-
width estimatorε(~x, ~y).

The validity of our evaluation procedure is justified as
follows. Given an unbiased estimatorε(~x, ~y) and assuming
ASTA (Arrivals See Time Average) property1 [4], the limiting
time averageA(t)∞0 equals toA. In real testing, we can not
have an infinite long cross-traffic trace. Thus, we useA(t)τ

0 to
approximateA(t)∞0 . As long as we choose a sufficient largeτ ,

1Note that in real bandwidth measurement, only a set of samples ofA(t)
at discrete time instances can be collected. ASTA assumption implies the
equality of the asymptotic average of those samples to the long-term time
average ofA(t). By assuming ASTA, our evaluation does not capture the
measurement error introduced by non-ASTA inter-probing pattern. Using ns-
2 simulation to evaluate signal-hop potential will not be able to identify
weather the measurement error is due to ASTA bias or due to the problems
of bandwidth estimators.
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this should serve a good approximation. The way of choosing
τ is to make sure thatBδ(t)τ

0 is close enough toA or the
average cross-traffic intensity in[0, τ ] is close enough toC−A.

Again note that the computation ofA(t)τ
0 is again ap-

proximate. We sampleA(t)τ
0 at a set of equally spaced time

instances and use the average of those samples to approximate
A(t)τ

0 . We make sure the number of samples is large enough
so that when it is doubled, the result is of little difference.

Note that the functionγ(~x,Υτ
0 , C, t) is deterministic and

can be easily computed algorithmically. We omit the technical
details but remind readers of the fact that the evaluation
procedure involves intensive computation but no event-based
simulation. The estimatorε(~x, ~y) is essentially the algorithmic
core of each measurement techniques. For iterative measure-
ment techniques such as TOPP, Pathload, and Pathchirp, we
can compute the single-hop potential at a range of input packet
stream constructions and examine weather the construction
used by the measurement techniques has good single-hop
potential or not. This method separates the estimation part
from the iteration part in the measurement techniques and
make it possible to apply our evaluation procedure to both
iterative and non-iterative techniques.

IV. PRELIMINARY RESULTS

We already applied our evaluation procedure to several
bandwidth estimators such as TOPP, Spruce, IGI/PTR using
several different cross-traffic traces. Our evaluation generate
quite a few interesting results and bring new knowledge on
the behavior of those bandwidth estimators. We are currently
working on the evaluation of Pathload and Pathchirp estima-
tors.

In this abstract, we only report a small portion of the results
we obtained so far. We use a Poisson random number generator
to generate cross-traffic trace with exponentially distributed
inter-packet arrivals. The average arrival rate is 500 packet
per second. The packet sizes (in bytes) are decided by a
random variable uniformly distributed in[1, 1500]. Hence,
the long term cross-traffic intensityλ is 3Mbps. The hop
capacity is set to be 10Mbps. Thus, the available bandwidth
is A = C − λ = 7Mbps. We generated 100-second cross-
traffic traces, but we only used the traces of the first 20
second since the cross-traffic intensity in the first 20 second
is already extremely close to 3Mbps. We approximateA(t)200
by computing the values ofA(t) at 1000 equally spaced time
instances and taking the average of those 1000 samples. We
find doubling the number of samples produces a difference
less than 0.1% for all bandwidth estimators.

A. Spruce Estimator

Spruce sends probing packet-pairs of 1500B packet size
with intra-pair gapgI set to the hop transmission delay of
the packets/C. Each probing pair generates an available
bandwidth estimateAi based on the output intra-pair gapgO

using the following bandwidth estimator:

Ai = C

(
1− gO − gI

gI

)
. (3)
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Fig. 1. Single-hop potential evaluation of Spruce Estimator.

In our evaluation, we find the average of the 1000 samples
obtained using the above estimator produced unbiased estima-
tion for A = 7Mbps. We also tried to input probing packet-
pairs with different input gapgI and evaluate the single-hop
potential with those packet-pair constructions. Figure 1 shows
the average of the 1000 estimations with respect to the input
rate rI = s/gI . It shows that whenrI ≥ 8Mbps, Spruce
estimator is almost unbiased. WhenrI < 8Mbps Spruce
estimator is negatively biased, producing underestimation of
A. The amount of underestimation decreases linearly asrI

increases towardsA. This suggests that Spruce in fact can
reduce its probing rate with little compromise of the measure-
ment accuracy.

B. PTR Estimator

PTR sends probing packet-trains to the hop and uses the
output rate of the probing train as an estimator ofA:

Ai =
(n− 1)s

gO
. (4)

wheren is the number of packets in the train,s is the packet
size, andgO is the output spacing between the first and last
packet after the whole train leaves the hop.

PTR estimator is used at the point where output rate starts
to fall below the input rate (called the turning point). We
compute the average output gaps of 1000 samples and use
(4) to estimateA at different input probing rates. Figure 2
shows the estimation with respect to the input probing rate. It
shows that PTR is actually a negatively biased estimator at the
turning point. We also find that, as the probing packet size or
the packet train length decreases, the location of turning point
becomes further and further away from available bandwidth,
and the amount of bias increases. That suggests that in order to
produce accurate estimation, PTR has to use long probing train
and large packet size. It also reveals a fundamental tradeoff
between measurement accuracy and transient congestion in
PTR-based bandwidth estimation, which is not available in
Spruce.
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Fig. 2. Single-hop potential evaluation of PTR Estimator.

C. IGI Estimator

IGI also sends probing packet-trains to the hop and uses the
following formula as an estimator ofA:

A = C −
∑

yi>gI
(yi − s

C )
∑n−1

i=1 yi

. (5)

whereyi i = 1, 2, ...n−1 are then−1 inter-packet spacings
of the output probing trains.gI are the input inter-packet
spacing. Similar to PTR estimator, IGI is also used at the
turning point. We compute the IGI estimations at different
input probing rate points. Figure 3 shows the estimation with
respect to the input probing rate. It shows that IGI produce
good estimation at the available bandwidth input rate point,
not the turning point. Again note that when the input rate is
small, IGI is not a converging estimator and the estimation
results are unstable. In this testing, we used packet train of
64 packets as suggested by [1]. When shorter packet trains
are used, the turning point will be associated with a smaller
rate and the stability problem of IGI estimator becomes more
apparent. This suggests that in order to produce stable and
accurate results, IGI also has to use long packet train and large
probing packet size. Finally, notice that when the input rate is
larger thanA, IGI becomes stable but produces positive biased
estimation ofA, which overestimates available bandwidth.

V. CONCLUSION

We proposed a metric called single-hop potential and its
associated evaluation procedure to test the asymptotic behavior
of various bandwidth estimators. This allows retroactively
parameter tuning to optimize the bandwidth estimation tech-
niques. We expect that it is especially useful for estimation
techniques like Pathload and Pathchirp. Those techniques in-
volves a lot of heuristic parameters. Our evaluation procedure
can be used to find out the single-hop potential with various
heuristic parameter settings and choose the one that provides
the best single-hop potential, which is our work currently un-
der way. On the other hand, note that the single-hop potential
also depends on the cross-traffic nature. By comparing the
testing results using different cross-traffic types, we might
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Fig. 3. Single-hop potential evaluation of IGI Estimator.

be able to confirm our conjecture that heuristic parameters
in Pathload and Pathchirp do not have an optimal settings
for arbitrary cross-traffic. This will potentially reveal some
fundamental limitations of the current bandwidth estimation
techniques.
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