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Abstract—In this paper, we take the sample-path approach at the average unutilized bandwidth over some time interval
in analyzing the asymptotic behavior of single-hop bandwith § j.e.,
estimation under bursty cross-traffic and show that these rsults 1 [t+o
are provably different from those observed under fluid mode$ of Bs(t) = 0(1 _Z / U(Qc)dac)7 (1)
prior work. This difference, which we call the probing bias, is one 0 J
of the previously unknown factors that can cause measuremén ] ] ] o )
inaccuracies in available bandwidth estimation. We presenan Where B;(t) is the available bandwidth in time interval
analytical formulation of “packet probing,” based on which [t,¢+ 6], U(z) € {0,1} is the link utilization on-off function
we derive several major properties of the probing bias. We determined by the packet-arrival pattern of cross-tradiie] C
then experimentally observe the probing bias and investige s the hop capacity. The available bandwidth along a network
its quantitative relationship to several deciding factors such - o . .
as probing packet size, probing train length, and cross-tréfic path is the minimum ava_HgbIe bandv_wdth of all trqvers_edshop
burstiness. Both our analytical and experimental results sow The hop carrying the minimum available bandwidth is called
that the probing bias vanishes as the packet-train length opacket thetight hop
size increases. The vanishing rate is decided by the burstss of Note that Bs(t) varies over timet as well as over a
cross-traffic. wide range of observation intervals This dynamics make

it an elusive target to measure. To combat this difficulty,

|. INTRODUCTION most measurement proposals use a fluid cross-traffic model to

Available bandwidth of a network path has long been tH'Hs_tify the design of their estimation techniques. Undeshsu
interest of measurement studies because of its importancdl{id cross-traffic,B;(¢) becomes a constant for alland all
many Internet applications such as adaptive streaminglayve 9 @nd its relationship to probing input and output becomes
routing, congestion control, and network diagnosis. Hawgv €3SY to identify. Mea_s_urement techniques designed usiag th
available bandwidth is generally considered difficult toame M0del are then empirically extended to general bursty eross
sure due to its dynamics, especially in the Internet enviremt  traffic conditions.
where the end-to-end approach is advocated and often is thélthough the experimental performance of recent proposals
only choice available. Thus, until recently, most of theeggsh @S documented is encouraging, the rationales they are an-
efforts went into the measurement of the bottleneck capacfhoring upon are not fully justified in general cross-traffic
[2] [3] [9] [10] [18]. The recent surge of available bandwdt conditions. In_ this paper, we contribute analyt|cal_ |h$|_g‘h|0
estimation proposals stems from the rationales developedtfi€ @symptotic behavior of single-hop, packet-train badtw
bottleneck capacity estimation research. Among the recéffimation under bursty cross-traffic conditions. Thisstio
proposals, TOPP [12], SLoPS [7], PathChirp [20], IGI/PTR [5has two aspects. Fl_rst, given a crc_)ss-trafﬁc arr_|val preces
and Spruce [21] are the major representatives. Most of th&nd fixed probing train parameters _(|.e., packet size and tra
are based on packet-pair or packet-train probing, wherstourf€ngth), we analyze how the probing output relates to the
of equally spaced packets of uniform size are injected inR§OPing input. We investigate the output rate and gap for
the path of interest, and the available bandwidth inforomati individual packet trains as well as their asymptotic averag
is inferred based on the relationship between the input-int@S the number of probings approaches infinity. We examine
packet gaps and those of the output. the functional relation between the probing input and the

According to recently established notions, the availabfSymptotic average of the probing output in the entire input
bandwidth of a network hop is itsesidual capacity after range. We call this relation thprobing response curvand
transmitting cross-traffic. Since at any time instance b is §h0w thg difficulties in extracting the available bandwidth
either idle or transmitting packets at its capacity spéedhe information from the curve.
utilization of the hop can be viewed as an on-off functionrove Second, we investigate how the response curve evolves

time. The definition of the available bandwidth ought to lookith respect to the changes in packet train parameters and
cross-traffic burstiness. Both questions are of fundanhenta
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Xiliang Liu and Kaliappa Ravindran are with the Computer éBcie

Department, The City University of New York, New York, NY 108 USA method_s. The answer to the fir§t questi_on provides a theateti _
(e-mail: xliu@gc.cuny.edu, ravi@cs.ccny.cuny.edu). foundation that extends previous rationales based on fluid

Benyuan Liu is with the Computer Science Department, Usitierof  cross-traffic models. The answer to the second questiorsoffe
Massachusetts, Lowell, MA 01854 USA (e-mail: bliu@cs.@ul).

Dmitri Loguinov is with the Computer Science Departmentxdie A&M an |r15|ght mt(_) parameter tuning strategies in the measemem
University, College Station, TX 77843 USA (e-mail: dmiti@tamu.edu).  design. Published research has produced a great deal of



intuition and empirical findings related to these questiontarget server and recorded the spacing between the first and
however, neither their analytical foundation, nor a mathem last returning packet. The rate of the arriving echo streas w
ically precise explanation was available until now. used as an estimate of the available bandwidth. As pointed

Although our eventual goal is to understand the behavior ofit later by Dovrolis [2],cpr obe actually measured a metric
packet-train probing in multi-hop network paths, the ihsig called theasymptotic dispersion ratéADR), which doesnot
obtained in the analysis of a single hop is indispensable generally equal the available bandwidth. Paxon (1999) ddfin
reaching this goal. Moreover, the single-hop case on its ovand measured a relative available bandwidth mefrif18],
is an interesting and complex problem calling for an elatsoravhich approached 1 when the path was void of cross-traffic
discussion, which is the focus of this paper. and 0 when the path was close to 100% utilization.

Under two theoretically and practically mild assumptions, Melanderet al. (2002) studied the relationship between the
we derive several important properties of the gap (and raigput and output rates; andro of probing trains in a single-
response curve. Our results show that the rate response cimep path and presented the following FIFO fluid model [13]:
in constant-rate fluid cross-traffic is the tight upper bowhd
that in bursty cross-traffic with the same average intengiy
show that there is a probing input range where the real curve
negatively deviates from its fluid-based prediction. Wel cal rr+A
this deviation theprobing bias Most existing measurementwhereC and ) are the hop capacity and cross-traffic intensity
technigues make use of the curve in that range without bei( rate) respectively. Applying math induction to the seis
aware of the actual bias, which sometimes makes them subjggént hops along the path, we get the main model of measuring
to significant measurement inaccuracy. the available bandwidthl » of an arbitrary multi-hop patt®:

Our analysis also discovers the source of the probing
bias and arrives to its closed-form expression for arhjtrar
probing constructions. We show that the amplitude of the C
probing bias is exclusively decided by the probing consioac rr+
and the available bandwidth distribution. We also presewhereb is the second minimum residual link bandwidth along
an experimental approach to compute the probing bias gath P and C is the capacity of the tight hop.
given traffic traces. This allows us to empirically validate Based on (2) and (3), Melandet al. proposed a mea-
our theoretical results, qualitatively observe the refahip surement technique called TOPP (Trains of Packet Pairs)
between the probing bias and probing train constructions [i4]. TOPP first collects the output rates of probing packet
certain cross-traffic conditions, and evaluate the asytitptopairs for a series of equally spaced input rates in some
performance of various available-bandwidth estimators. interval[r7*", r7%2]. In the subsequent analysis phase, instead

The rest of the paper is organized as follows. In section @ using (3), TOPP uses the piece-wise linear relationship
we survey the current measurement proposals and show thetwveenr; /ro andr;:
they are all related to one rationale, which we later inspect
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under general cross-traffic conditions. In section 3, waetidle rr 1 rr < Ap

the measurement targets and present the analytical fdandat =N rr A : 4)
. . . . To —+= b>r;>Ap

of packet-train probing. In section 4, we analyze the major cC C

properties of the response curves and probing_bias. In_ossecti TOPP identifies the second segment in the curve using
5, we propose two experimental methods, period testing agderal empirical methods and applies linear regression to
trace driven testing, to observe the probing bias and examigyculate the capacitg’ and cross traffic intensity of the

its relationship to several deciding factors. We explaig thight link. Hence,Ap = C' — \ is obtained.

implications of our findings on some of the current proposals ongther recent proposal is SLoPS (Self Loading Periodic
in section 6. Finally, we present the concluding remarks Bireams) by Jairet al. (2002) [7]. SLoPS is implemented

section 7. in a tool calledpat hl oad and is based on the observation
that one-way delays of packets in a probing train show an
I[l. BACKGROUND AND DISCUSSION increasing trend when the input rate of the probe traffic is
A. Related Work higher than the available bandwidth of the path. This ratien

, L i i is clearly true if cross-traffic is modeled as a fluid and
IP-layer bandwidth estimation and the idea of using pack enerally can be written as a variation of (4):

pairs to infer link capacity dates at least as far back as
1988 when Jacobson [6] designed the packet conservation rr {1 ry < Ap

principle of TCP to allow senders to indirectly infer the ro

: ®)
bottleneck/available bandwidth based on the spacing legtwe > 1 > Ap
the ACK packets. Keshav’s packet-pair flow control followed To measure available bandwidth in bursty cross-traffic,
in 1991 [8] and relied on fair queuing in all network routerspat hl oad adapts its input probing rate in a way similar to
Several years later, Cartet al (1996) developed a tool a binary search to locate the region where the one-way delay
called cprobe [1] to measure the available bandwidthof the probing packets is just about to show an increasing

Cpr obe bounced a short train of ICMP echo packets off theend or the two statistical tests used can neither detect



input cross- output cross-

an increasing trend, nor detect a non-increasing trend with ’ -
traffic traffic

sufficient confidence. That region is then taken as the range

of the available bandwidth of the path.
Pat hChi rp [20] is a proposal to improv@at hl oad’s
measurement speeéat hChi r p uses probing trains with

exponentially decreasing inter-packet spacing and catiesi| — N
available bandwidth from thqueuing delay signaturef the input probe X output probe
arriving chirp. traffic router of capacity” traffic

Hu et al [5] (2003) analyzed the interaction betweer%_ 1 Sinale-hop orobing model
probing pairs and CBR cross-traffic using a single-hop pathg' ' gle-nop probing '
They proposed the following gap formula under the condition

that the packets in each probing pair share the same hop busy
period: to understand whether (2) is the asymptotic behavior of @lack
_ s A 6 train probing or not. A positive answer to this question vabul
Jo=a + c’ (©) lay a solid ground for the design of available bandwidth
where go is the output gapg; is the input gap between themeasurement methods and provide them with an assurance
packet pairs is the packet size of probe traffic. The paper [5f asymptotic accuracy. On the other hand, a negative answer
also proposed a packet-train based estimator called Gl tMgpuld shed new light on the fundamental limits and tradeoffs
measures the cross-traffic intensity, which can be viewed iasprobing-based measurements, giving rise to new insights
an empirical extension of (6). parameter tuning under certain application requiremeaives.
As an alternative to IGl, [5] suggested to use a methdtext present the necessary analytical foundation to tabide
called PTR (Packet Transmission Rate), in which the outp@estion.
rate of the probing train is used as an estimatordgf. The
authors [5] showed that both IGI and PTR produce accurate I11. ANALYSIS OF PACKET PROBING
results at theurning point where the input gag; startsto
become the same as the output gap
Notice that IGI/PTR is also related to model (2), whic
shows that theturning pointis where bothr; and ro are

equal to the available bandwidthi — \. Equation (6) is the probing model in Figure 1. We use the quadrufle, g, s, n)

“gap” version of the second part of (2). : .
Spruce [21] is another measurement proposal that use3 denote a probing train of packetspi,ps, ..., p,, where
is the arrival time of the first packet; to the hop,g;

. . . a1
packet-pairs. Like IGlspr uce assumes a single bottleneck Ll oo .
link whose capacityC' can be estimated beforehand. Spruc:é :Eg t':];enr Ipe ?]thﬁt 'Srr;]aéC::r?i’VI; tt?riep;()tbtf‘epﬁgkegfs Itﬁeé’ arrzotl)in
sends probing pairs with intra-pair ggp set to the bottleneck ackets are de?\otéd By — ay+(i—1)gr,i — 1 S n 'FI)'he g
link transmission delay of the packet and inter-pair dektyts b . y=a gt = 2,2, 51

; o : .. departure time of probing packets from the hop are denoted
an exponentially distributed random variable so as to raaint by d i— 1.9 n. We define theoutput aapof a packet
the average probing rate below05C. Each probing pair Y @it = 52,1 put gap P

generates an available bandwidth estimajecomputed by: gz:g ?S theaveragespacing between adjacent packets in the

A =c(1-22=4), ) 90 (8
gr
Spr uce averages the last 100 samples4fto arrive at an  In terms of rate, the corresponding averageut andoutput
estimation ofAp. Observe thaspr uce anchors its rationale rates are given by:
on (6) with g; = s/C, wheres is the probing packet size.

In this section, we present an analytical formulation of
rgJacket probing, identify measurement targets, and derive
closed-form relation between probing input and output for
individual packet trains. Our analysis focuses on the shingip

dn —dy

n—1"

. -1
There are other measurement proposals such as Delphi [19] rr = > ro = - H
go n — A1

and the work in [4]. These proposals assume specific cross- g1
traffic processes, which allows them to either directlyraate We start from the gap version of (2), namely, we first
cross-traffic intensity or reconstruct its parameters oarger investigate the validity of the following model:

timescale based on the sampled traffic in small time interval

9)

S
The packet probing part however is similar to thasgfr uce g1 gr > o
and is related to (6). Elgol=9{ s g\ s (10)
=+ g <
C C C-A
B. Discussion in a single hop path and then come back to its rate version.

In summary, most of the recent proposals anchor their rati8ince we are now dealing with bursty cross-traffic, neither
nales directly on (2) or a model closely related to it. Howevecross-traffic intensity nor probing output gap is a constant
(2) is only fully justified based on a fluid cross-traffic modelMeanwhile A andE[go] can be viewed as the time averages of
in which the arrival rate of cross-traffic is constant at mtlés traffic intensity and output gaps. Detailed connotationsuab
t and equals\. For general bursty cross-traffic, it is importanthese two terms are clarified at later proper times.



A. Problem Formulation 35 %0

Throughout the paper, we assume infinite buffer capacity, “©

FIFO queuing, and a work-conserving discipline for the for-£ ,

warding hop. For the composition of cross-traffic and prgbin§
traffic, we assume simple traffic arrival, i.e., at most onekpa
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arrives at any time instance. ! 0
Definition 1: Cross traffic is driven by the packet counting ~ °° h h h NN
processN (t) and the packet-size proceSs. The cumulative T 20 0 a0 w0 00 a0 0 w0 5o
traffic arrival V(¢) is a random process counting the total Time (ms) Time (ms)
volume of data received by the router up to time instance  (a) Exponential on-off (b) CBR
& Fig. 2. (a) The first 50 ms of the workload sample-pHith{¢) of exponential
N() on-off ns-2 traffic C' = 10 mb/s, s = 750 bytes); (b) Hop workload/¥V (¢)
V(t) = Z Sh. (11) of CBR ns-2 traffic ¢' = 2.4 mb/s,s = 1500 bytes).
n=1

Note thatV/(t) and N (¢) are right continuous, meaning that = Finally, note that botV () andéV (¢ + 6) have the same
the packet arriving atis counted inV/(¢). Unlike conventional |imit when divided bydt:
traffic modeling, we make no assumption @(¢t) or S,.

Instead, our assumption is made fo(t). m Vi) lim SV (t) < Lim f:” V(u)du
Assumption 1:Cross traffic exhibits “intensity stability,” t—oc ¢ tooo 0t T t—oo ot
which means thatim,_,, V (t)/t exists and is less than the < lim SV(E+6) _ lim V(t+6)t+4
hop capacityC. T tooo ot too t+40 t
This higher level assumption can accommodate a broad V()
: ) = lim —=. a7)
range of traffic types and, at the same time, detach the model t—oo

from the underlying details of traffic arrival. We define @os Combining (15) and (17), we have fob > 0:

traffic intensity\ in (10) as the limit ofV/(¢) /t ast — oo. This

definition reveals a mathematical essence of one’s intuitiv lim 1 th(u)du — lm @ — (18)
notion of average traffic intensity. Further, as we next show t—oo t f tooo T ’

the time average of cross-traffic intensity metricsanbitrary

. Ol . . which leads to the statement of the lemma. [ |
fixed observation interval is the same as this limit. Throuahout this paper. we use the notation of brobabilit
Definition 2: We defineY;(t) as the average cross-traffic 9 Paper, P y

. . . . - expectation as a shorthand representation for sample-path
arrival ratg n the |pt(3rva(t,t+ 9 and call it the B-interval limiting time averagé Lemma 1 reveals that to measure
cross-traffic intensity” process:

A, instead of conducting one observation in a very large

_ time interval (which is often not practical), we can conduct
V(t+6)-V(t) e L pres .
Ys(t) = — (12) observations in arbitrarily small time intervals and useirth
average to approach it. This has significant implication on
Given this definition, we have the following result. probing based measurement as we show later.
Lemma 1:The limiting time averageF[Y;(t)] of any o- A look back at assumption 1 further confirms its mildness.
interval cross-traffic intensity sample-path is equahto Since A is one of our measurement targets, the intensity

stability assumption basically says that the measureraeget

¢ needs to exist.

EYs(0)] = lim + [ Vs(u)du=A ¥>0. (13)

t=oo t J Our next assumption is related to the forwarding hop.
Definition 3: Hop workload proces$¥V (¢) is the sum at
Proof: First, notice that: time instancet of service times of all packets in the queue
. ris 5 and the remaining service time of the packet in service.
1/ Ys(u)du — S, T Vwdu  [§V (u)du 14y Note that'V (t) is also right continuous. Two examples of
tJo o ot ot ' hop workload sample-path are shown in Figure 2.
) o Assumption 2:The forwarding hop exhibits workload sta-
Computing the limits, we get: bility. That is, limy_,c W (t)/t = 0.
L ft+6 (u)d Workload stability means tha¥/(t) = o(t). Note that given
tliff,lo ?/0 Yi(u)du = tli>I£lo t = —0. (15) Assumption 1, workload stability is satisfied in most preati

1n fact, the limiting time average of a sample-path is theegxgtion of its
SinceV(t) is a non-decreasing function, we can write: limiting frequency distribution [15, pages 45-50]. Henites also called the
“sample-path mean.” This paper is purely sample-path haeed we avoid
t+6 addressing any probabilistic nature of the underlying oamcprocess. The
§V(t) < / V(u)du < §V(t + 6). (16) ftl);stdzgrt:{?ilgz in Lemma 1 has nothing to do with ergodicityisitan equality
' .



situations and that Assumption 2 is formally stated only for Definition 6: A é-interval available bandwidth process

convenience of presentation. B;(t) is a process indicating the residual bandwidth in the
We next define a process especially useful in characterizitugne intervallt, ¢ + ]

how cross-traffic changes the gaps of probing packet pairs.

t+5
Definition 4: A 4-interval workload-difference process — By(1) 1- _/ _ Lo (24)
Ds(t) is the difference between the hop workload at titne g
andt + ¢:

In our next lemma, we present the relationship among cross-
Ds(t) = W(t+0) — W(1). (19) traffic intensity, hop workload, and available bandwidth in
arbitrary finite time intervals.

One important implication of workload stability relevaiot t Lemma 3:For all £ > 0 andd > 0, the following holds:

probing based measurements is the zero-mean natubg(of.

It is formally stated as follows. Bs(t)s Y5(t)o
. - . 0= — Ds(t . 25
Lemma 2:AssumingW (t) = o(t), the limiting time aver- C s() + C (25)
age E[Ds(t)] of any é-interval workload-difference sample-  Proof: Note that the total hop idle time ift, ¢ + 9] is
path is zero: Bs(t)s
Is(t) = =5 (26)

E[Ds(t)] = lim - / Ds(u)du =0, Yo > 0. (20)

t—oo t

The amount of data transmitted by the hogtirt + 4] is given
by the workload change in the hop (taking into account the

Proof: By the definition of D;s(¢), we have s
new arrivals):
)

E[Ds(t)] = EW(t+0) - W() (W(t) — W(t+6))C + V(t+6) — V(2)
- MW%+W—2W@J . = -Ds()C + Y505, (27)
. W(u+ 6)du . W (u)du
= tlggo o W - tlgglo 0 t( which follows from the definitions oDs andY; in (19) and
t+6 5 (12). Dividing (27) byC, the hop working time is
. ft W (u)du . fo W (u)du
= lim — lim Ys(t)d
t—o00 iis t t—o00 t _D(s(t) O ) (28)
W(u)d
= tlim Ji ; ) -0=0. (21) Since the sum of hop working time in (28) and hop idle time
> in (26) must be equal té, we immediately get the statement
The last equality holds sinc@’ (t) = o(t). B of the lemma. m

With these two assumptions, we next present a formulationNote that the termD;(t) escaped the formulation efforts of
of “available bandwidth” and show how it is related to crosgrior work. Although it is a zero-mean term, it is not uncon-

traffic and hop workload both in finite and asymptoticallyjitionally insignificant. For example, when tlaéstribution of

infinite time intervals. available bandwidth is of interest, this term must be takeao i
Definition 5: Hop utilization processU(¢t) is an on-off consideration.
process associated williy (): The next two theorems present the asymptotic relationship
between cross-traffic intensity and available bandwidtieyT
U(t) 1 w()>0 (22) explain when and why available bandwidth can be estimated
0 W(t)=0 by measuring cross-traffic intensify

Theorem 1:Under the assumptions of this pap&interval
available bandwidth converges t6 — \ as the observation
interval becomes large:

lim Bs(t) = C — A, ¥Vt > 0. (29)
d—ro00

and d-interval hop idle process

I(t,t +0) = Is(t) = 5-/ U(z)dx (23)

is a process indicating the total amount of idle time of the

forwarding hop injt, t+6]. We further call time intervalt, ¢ + Proof: Rearranging (25), we get:

“ o _ ; . - Dt

ii] Z(f)lop ;usy period” ifl5(t) = 0 and a “hop idle period Bs(t) = C — Yi(t) + 555)O. (30)
Under this picture, several properties of the workloafote that since we assumétl (¢) = o(t), we have:

sample-pathiv (¢) for non-fluid traffic become clear. First,

W (t) consists of alternating idle and busy periods. Second, in i Ds(t) = lim ( (t+9)-W(t )) =0. (31)

any busy periodWV (¢) is a series of piecewise linear segments 97> g 000 g

with slope —1 separated by type one discontinuity pointsturther, as an immediate consequence of Assumption 1, we
Third, any discontinuous point in W (t) corresponds to the have:
arrival of a packet. Assuming the packet sizesjsve havé lim Y5(¢) = A, Vt. (32)
W(d) —W~(d) = s/C. be0
Taking the limit of (30) and combining with (31) and (32), we
2= (a) denotes the left-sided limifimy o f(z). get (29). [ ]



Theorem 1 shows that given the two stability assumptions
we made, available bandwidth also exhibits stability amd, i
large time intervals, can be approximated By— A.

Note, however, that in cases when we are interested in
the available bandwidth in @mall é-intervaf, Lemma 3
suggests thaB;(t) cannotbe correctly estimated based on the
measurement of;(¢) alone. However, the following theorem
says that the limiting time average of available bandwidth
metrics in arbitraryd-interval can be estimated by measuring
cross-traffic. Bl t,

Theorem 2:The limiting time average®[B;(t)] of any o-
interval available bandwidth processds— \. That is,

Intrusion Residual Wy

time
t
E[B;s(t)] = lim l Bs(u)du =C — )X, Vé>0. (33) Fig.3. llustration of intrusion residual function.

t—oo t 0

Proof: This is a direct consequence from (30), Lemma 1

and Lemma 2. We leave the verification to the reader. m Definition 7: Theintrusive rangeof the probing traffic into

_ To summ_arize, our results_ show trmtailf’;\b_le bandwidth W(t), is the set{t : W(¢) > W(¢t)}. Theintrusion residual
in a large timescale or the first-order statistics of avai@b f,nctionis Wa(t) = W(t) — W(t).

bandwidth in arbitrary fixed time scale can be estimated Hase The functionW,(t) helps us understand the intrusion be-

on the measurement of cross traffic, while small timescaig,io of the probing traffic intd¥ (t). Before the arrival of
metrics and their higher-order statistics cannot be cotiec probing packetsiV, () = 0. It gets an immediate increment of
estimated solely ba_sed cross-trafflc_measur_ements. s/C upon every probing packet arrival, wherds the packet
Note that measuring cross-traffic intensiys not the only  gjze |nji/(¢)'s busy periods without additional probing packet
way to estimate available bandwidih Metric A = €' — A arrjval, W,(t) remains unchanged. IfV (¢)'s idle periods
can be directly estimated without knowing the valuesobr ithout additional probing packet arrivaly,(t) deceases
A, as is the case of SLoPS [7] and PTR [S]. Our discussion gfearly with slope—1. Functioni, () is monotonically non-
probing response curve in Section 4 will cover the them@t'cmcreasing between every two adjacent probing packetzstiv
aspects of both approaches. S Figure 3 illustrates this behavior, wheftg, t;) and(ts, t5) are
Despite the perplexing dynamics, we |dent|f|§d two Meqwo busy periods iV (), and(ts, t3) and(ts, t7) are two idle
surement targetsh and A = C — A, under mild traffic periods iniv (¢). Timest;, ¢4 andtg are the instants of probing

assumptions. These two targets are fairly stable in theesepg ket arrivals. Time; is the end point of the intrusive range.
that they are independent of any particular observatio® tim gased on the above observations 16f,(t), we state the
instancet and observation interval. Although other metrics following lemma without proof:

such as the variance and distribution of available bandwidt | emma 4:When W (t) is probed by a single packet of

might also be interesting, they are less stable becauseenf thj,¢ o arriving into the hop at time,

dependence ot Measurement of those targets is beyond the

scope of this paper. 0 t <to
We are now ready to derive the probing response curve Walt) = { max (0, S I(to,t)) t>1o

and show how these two targets, and A, are embedded C

in the curve. Before that, however, we must understand theWhen W (¢) is probed by a packet traituy, gz, s, n), we

interaction between the probing traffic and the cross-traffiare often interested in computing

Traffic interaction includes two parts: the way the probing _ _ ,

train changes the original hop workload and the way the eross Ri(ar) = Wy (a5) = Wy (a1 + (i = 1)gr) (35)

traffic changes the inter-packet gaps in the probing trafte Tfor ; — 1.2 ... n. Metric R;(a;)* is the intrusion resid-

latter is our interest, but its ana|ySiS relies on Unde[ﬁnﬂ] ual Causedby the firstz — 1 packets in the probing train

(34)

the former. {a1,91,8,n) and experiencedoy packetp;. In other words,
the queuing delay op; in the hop is given by:
B. Problng~lntru3|on~of Packet Trains W= (a) = Wia)+ Wy (ai)
We useW (t) and(t) to respectively denote the workload = Wi(a)+ Ri(ay). (36)

sample-path and the hop idle sample-path associated véth th
superposition of cross-traffic and probing traffic. Notettha The total sojourn time op; at the hop is the sum of its
traffic composition only increases hop workload. That is, feervice time and its queuing delay:
all t, W(t) > W (t). We next define useful notation that will

help us examine this intrusion behavior of packet train prgb (37)

di —a; = W(ai) + Ri(al) + %

3“Small” is relative to the convergence delay bi(t)/t. 4Whena is irrelevant, we often writeR; (a1) as R;.



As a direct result of Lemma 4R; can be recursively Substitute (45) back to (44), we proved the first equality in

computed as follows: (40). For the second equality in (40), first recall from (37)
0 . that:
=1
Rz-:{ max (O,%—FRi,l—I(ai,l,ai)) i>1 " (38) dk:ak+Rk(al)+W(ak)+%v k=1,2,...,n. (46)

Denoting s/C — I(a;_1,a;) by y;, the second part of Thus,
equation (38) can be expanded to the following non-recarsiv

form: d, —di = (an - al) + Rn(al) + D5(a1). (47)
izl izl Dividing both sides of (47) by, — 1, we get:
R; =max | 0,y;—1, Z yk,...,z:yk . (39) Cd-d Ds(a1)  Ro(ar)
k=ie2 k=1 go=——— =91+ + )
. .. . n—1 n—1 n—1
We next discuss the second part of traffic interaction. ] o
This proved the second equality in (40). [ ]

Lemma 5 shows that the output gap carries the information
) ) _aboutYs(ay), which is potentially useful in cross-traffic mea-
We first present a corollary. It is due to the work-conserving;rements. However, the output gap is also contaminated by
assumption. It says that the whole duration of any packetis s ihe noise information ofDs(ay), f(al, ap), and R, (a1). In
at the hop is a hop busy period. Lemma 2, we established the zero-mean nature for the first
Corollary 1: For any packet arriving into the hop at time pojse term. The other two terms can hauesitive means in
and departing from the hop at tinte+ 4, [¢,¢ 4 6] is @ hop pyrsty cross-traffic. That is exactly where the probing bias

busy period. _ o comes from, as we show later. Meanwhile, we examine several
Our next lemma describes the relationship between probifgeful bounds for these two terms.

input and output for an individual packet train. It is the rer From (38), noticing thatl(a;_1,a;) is no less than zero

stone of our probing analysis. Previous work only revealeg,q applying mathematical induction towe get0 < R,, <

this result under certain conditions [5], [16]. The full fice, (n —1)s/C. Combining with Lemma 5, we have:

although simple and important, has remained undocumentedCOrO”ary 2: Again assuming = g;(n — 1), the following
Lemma 5: Assumingd = (n—1)g; andW (t) is probed by  inequalities hold:

a packet traifas, g1, s, n), the output gago can be expressed

C. Output Gaps of Individual Probing Trains

. D D
as: M+QISQOSM+91+£- (49)
= n—1 n—1 C
_ Ys(a)gr | s | (a1, a4) _ o
go = — ‘Tt =1 The second inequality is tight iff (a1, a,) = 0.
Ds(a1)  Rn(ar) Now we get into the second noise itefu;, a,,). The next
= g1+ 1 o1 (40) lemma leads to a bound fdi(as, a,,).
Lemma 6:Fork =1,2,...,n— 1, we have:

Proof: Examine hop activity ofW(t) within the time
interval [dy, d,,]. Notice that(n — 1)s/C time units are spent I(ag,aps1) =0 gr <
on serving all probing packets except and that - s
Vian) — Via)  Ys(a)n—1)gr  Yi(ar)s ) 0 < I(ag,ar+1) < g1 o 9>
C B C - C Proof: First, due to the probing intrusion behavior illus-
time units are spent on serving the cross traffic that hageatri trated in Figure 3, we have:

at the hop during the time interval,, a,,]. Thus the total hop - s
working time in[d, d,,] is given by I(ak, ar+1) = max(0, I(ak, k1) — Cc - Ry),  (81)

Yg(a1)5+ (n—1)s (42) <
C C Wheng; < s/C, I(ag,ar+1) < s/C. (51) becomes 0. Thus,
Also notice thatf(dl,dn) is the total idle time of the hop the first part of (50) is proved.

during this time interval. Since the sum of the hop working Wheng; > s/C, note that
time in (42) and hop idle time must be equaldg — d;, we

(50)

QleQlw

where R, > 0 and0 < I(ak,akﬂ) < (ag41 — ak) = gi-

s
max (0, I(ak,ax+1) — = — Rk)

immediately have the following: C .
_ _ - < max(0, I(ag,ax+1) — =)
gy —dy = P DIYe(0) (02D g a0 43) (0 Ik, ax1) =
¢ ¢ < max(0, 91 — =) = g1 — — (52)
which leads to: - ’ C c’
do—di  grYs(a) s I(di,dn) This proves the second part of (50). [ |
go=-——1T=""71 ct— -1 (44)  Since the termi(as,a,) can be expressed as a sum:
Further, due to corollary 1, we get: . n-l
I(a1,ay,) = I(ag,ar + 1), (53)

I(dy,dy,) = I(a1,an). (45)

ol
Il

1



we get the following bounds on the noise teffa;, a,,)/(n— A. Frequency distribution and PASTA

1) after combining (50) with (53): Definition 8: For continuous-time sample-paify(t), define

= indicator function¥(z, ¢):
I(a1,ay) 0 9 < s
= I >~ —_—
n—1 C 1 X@t) <=z
~ . 54 = -
0 < I(a1,ay) < s S8 4) ¥(z,?) { 0 X(@t)>z ~ (58)
ST > 91 C g1 C

The frequency distribution functio®(z) of X (¢) is defined
Collecting Lemma 5 and (54), we get the following resultas following (assuming the limit exists fafz):

Corollary 3: WhenW (t) is probed by(a, g5, s,n), 1T
P(z) = lim —/ U (z,t)dt (59)
_ Ys(a1)gr 43 <5 T T Jo
Jo C C 9= C . (55) For discrete-time sample-path,,, define indicator function
Ys(a)gr | s Ys(a1)gr s as:
——— +t <90 —~—+9g91 91> 4
¢ c c c W) ={ b ST (60)
’ 0 X,>z °

We call (goC — s)/g; the intensity sampling estimator
(ISE). Corollary 3 implies that when ISE is used to estimaféhe frequency distribution functioR(x) of X,, is defined as
Ys(a1), itis ensured to be correct only whep < s/C. When following (assuming the limit exists fovz):
g1 > s/C, ISE’s correctness is not guaranteed and it tends to i
overestimat&’s(a;). The amount of overestimation, however, — lim 1 Z (61)
will not be more tharC — s/g;, as can be easily derived from koo k —
the inequality in Corollary 3.

Finally, we must also notice an important relationship For a sample-path of stochastic vector procg$s), we can
betweenR,,(a1) and I(a1,a,). By subtracting the two ex- similarly define its frequency distribution functiaf(z). The

pressions ofjo in (40) and combining Lemma 3, we get:  only trick is to interpret the< and > inequality symbols in
(58) and (60) as a relation for every corresponding componen

Han.a0) = Ba(ar) + I(ara) - L% (g6) inthe vector. L —
¢ Lemma 7:Assuming that X (¢) is a continuous-time
With the understanding of individual packet train probings@mple-path with frequency distributidh(z), T} is a Poisson

we are now in a position to derive the probing response curvaltival sample-path, then the discrete-time sample-pa(ti)
also has frequency distributioR(Z).

Lemma 7 basically says that Poisson sampling sees the
sample-path frequency distribution. Consequently, Poiss

The probing response curve depends on a number of facts@pPling also sees the sample-path time average, which is
such as probing construction, the inter-packet pattera, aifiSt the expectation of the sample-path frequency didiohu
cross-traffic characteristics. We assume a Poisson intdrigg  PASTA is a classic queuing theory result obtained in early
pattern, because the asymptotic average of Poisson sampR30's. Rigorously speaking, PASTA requires an assumption
converges to the limiting time average of the sample-pagRlled LAA (Lack of Anticipation Assumption) on the Poisson
being sampled. This property is known as PASTA (poiss(%rival process, and the result holds in "almost surely”ssen
Arrivals See Time Averages) [22]. The average rate of Paissthstead of pathwise sense. Practically, the Poisson psoces
sampling is assumed to be small enough so that the intBRverning packet train probing is mostly mauelependent
ference between adjacent trains can be neglected. We @&éhe cross-traffic arrival process, which is a conditionchnu
({T,.}, g1, 5,n) to denote a probing train series driven by gtronger than the LAA assumption. Hence, in Lemma 7, we
Poisson arrival process(t) = max{m > 0 : T, < t}. We avoid the technical rigor that has little practical imptioa.

use gg“) to denote the output gap of thg" probing train

(T, g1, 8,n) in the series, ieg(’C d® - d(k))/( —1). B. Bounds
The termE[go] in (10) is defined as the limiting average of

IV. PROBING RESPONSECURVES

the discretetime sample- paglg“) Cu\r/\\fz now obtain upper and lower bounds on the gap response
13 Theorem 3:WhenW (¢) is probed by a Poisson_packet-train
Elgo] = lim — S ey (57) series({T,,},gr < s/C, s,n), the following equality holds:
k=1 grA s
Elgo]l ="+ 3 (62)

As mentioned, we use the notation of probability expecta- C C’
tion to represent limiting time average, both for continstou
time sample-paths and for discrete-time sample-pathsdie n
introduce relevant concepts to characterize sample-patis-s Implies:

tics and formally state a simplified sample-path version of 91Y5(Tw) + 51 g1E[Ys(Tn)] + s

PASTA that we use in subsequent derivations. Elgo] = E[ c = C . (83)

Proof: Let § = (n — 1)g;. Using Corollary 3,g; < %




Since{T,,} is driven by Poisson arrivals, due to the PASTAThat is exactly model (10) we are trying to validate. However
property, we have: Theorem 4 shows that (10) islewer boundof E[go], which
_ does not necessarily equal #®[go]. Likewise, combining
EYs(Twm)] = E[Ys(0)). (64) Theorems 3 and 4, we have the entire upper bound summarized
Combining (63), (64), and Lemma 1, we get (62). ®m as follows:

Rearranging the result of Theorem 3, we get: A
Elgo]C — s goC — s min(gl(l—i-a),g]—i-%) gr > %
A= - B| ] ®5) U(Elgol) = § 4.\ -
g1 g1 g1 gr < =
which explains when and why ISE can form an unbiased esti- ¢ \ ¢
mator for traffic intensity and thus for the available bandhvi s gr < il
Theorem 4:WhenW (t) is probed by Poisson packet-train ¢ C/\ c
series({T}.}, gr > s/C, s,n), the following holds: = g+ % % <gr < % : (73)
giA+s . A s s s
< < = —. — >
maX( c ,91) < Elgo] < mln(gf(l + O),gl + C’) grts  grzy

Proof: Notice that whery; > s/C:

> grBlYs(Ty)l +s  grE[Ys(t)]+s  giA+s
© C - C T

The real gap response curve is contained between these
two bounds. We define the probing bi#g$g,, s,n) as the
difference between the real gap response curve and the lower

(66) bound given by (72). It can be expressed as following due to
Similarly, due to Corollary 2, PASTA, and Lemma 2, we havefheorem 4, Lemma 5, and PASTA:

Elg

E[Ds(T; E[Ds(t i _
Elgo] > g1 + [Ds(Tk)] _ [Ds(®)] _ (67) E[I(t,t+ (n—1)g;)] <2
n—1 -1 Blgr,s,n) = n—1 C—-Xx
Collecting (66) and (67), we get: o 1 ElR,(1)] oS
grA+s n—1 " H=C=X
max ( 791> < Elgol. (68) (74)
We next give a closed-form expression for the probing bias

For the upper bound of[go], first, from Corollary 3, and thus for the probing response curves.
PASTA, and Lemma 1, we get:

E[Y5(Ty)] C. Closed-from Expression
Elgo] < gr|\14+—F— . =
C Assumingd = gy, note that bottR,,(t) andI (¢, t+(n—1)d)
E[Y5(t)] A can be expressed aketerministicfunctions of an(n — 1)-
- 9 (1 T =gr\l+5 ) (69)  dimensional vector
Then from Corollary 2, PASTA, and Lemma 2, we get: ]?6(15)6)
S(n—1) /,\ Bs(t +
E|Ds(T; s B t) = 75
y Bs(t + (n—2)§
E[D(s(t)] S s s(t+(n ) )
= T,-1 TotuTate (70) ' The exact functional expressions, on the other hand, are not
Combining (69) and (70), we get: very |mportant.at this point. Therefore, we can introduce th
\ following notation:
. s ~ .
Blgo] < min (gf“ Tghert 5) - Itt+m-10) = B @),  (76)
This concludes the proof of this theorem. N Ra(t) = w(B{" ")), (77)

Theorem 4 provides both a lower bound and an upper bo
for E[go] wheng; > s/C. Combining the case wheqy <

s/C as is stated in Theorem 3, we get th

E|go] for the entire probing range < g; < oo as follows:

Unflere ©(.) and ¢(.) are some vector functions. It then
becomes apparent that the probing bias depends on the sample

Phth limiting frequency distribution of{" " (¢). Denoting by
P(;(”’l)(f) this distribution function, the probing bias can be

e lower bound

max (91/\ + S,gz) o> S expressed by the following vector integrals:
L(Elgo]) = <
go 5+ grA <5 1 S
— — n—1), -
C =z - 1/Q<p(w)dP§ @) < 5
5 _ —
gr gr > C \ ﬂ(glvsvn) = 1 dP( _1) s )
— - P)dps" (% >
= etam L (72) p ) A L GO s
gr <
C C—-A

5L(.) and U(.) denote lower bound and upper bound of a function

respectively.

where() is an (n — 1)-dimensional cubgo, C]"~*.
To better understand these results, we now consider a
degenerated case whemne= 2, i.e., the packet-pair probing
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Gap Lower Bound Rate Upper Bound
Gap Upper Bound Rate Lower Bound
Gap Response Curve ===s===: Rate Response Curve --------

s/C, onset of biased range

Asymptotic Average of Output Gaps E[gp]

=

“

2 —

& S . ;

0 . . o C, End point of bias range

g a, end point of bias range %

Cg_ C-\, maximum bias point

S Nz
...... /a, onset of biased range
<— s/(C-\), maximum bias point

0 sIC sIA
Input Gap g, Input Gap g, Input Rate r|
(a) gap probing bias (b) gap response curve (c) rate response curve

Fig. 4. lllustrations of (a) the gap probing bias, (b) gapoese curve, and (c) rate response curve in the entire imgger

case. Note that botl(#) and ¢ (#) become scalar functions It immediately follows that the packet-pair probing bias is

and have simple expressions with respecBidt): as following (whereg; = ¢):
c
4 B5 t)o — s 6 — s S
I5(t) = (Bs(t)) = maX(O, %) (78) /3/5 5 dPs(@) g1 < 57—
s — Bs(t)s Plans2) =9 " s s - ®9
Ra(t) = 9(Bs(1) = max(0,>—2222). (79) [t oz 5
0 —
Therefore, we have the following results for the packet-pai The probing bias is one of the previously unknown factors

probing response curve. causing measurement errors in available bandwidth estmat

Theorem 5:Assuming thatW(¢) is probed by Poisson techniques based on (10). Our closed-from expressions show
packet-pair serie§{T,,,}, g1, s, 2), observation interval = g;, that the probing bias is exclusively decided by the packet-
and thed-interval available bandwidth sample-pafit3(t) has train parameters and the available bandwidth sample-path

frequency distribution functioPs(z), the following holds:  distribution. Next, we show the full picture of the response
curves for both the gap version and the rate version.

grA+s Cxd—s
E = dP,
l90] C +/5/5 C 5(2) D. Full Picture
/0 s 26 We now investigate the relationship between the probing
= 91 +/ C dPs(z). (80) pias given in (74) and the input gap while keeping all other
0 . .
parameters fixed. We first present the results for the case of
Proof: We only need to show the following: packet-pair probing.
o Theorem 6:When W (t) is probed by Poisson packet pair
BlL ()] = / xd — SdP(;(x), (81) series{{Tm},gI, s,2), the propi_ng biag(gr, 5, 2) equals zero
si5 C when input gapy; € (0, s/CJ; it is a monotonically increasing
/6 ¢ _ 28 function of g; in the input gap rangés/C, s/(C — \)]; and
E[Ry(t)] =/ dPs(z). (82) it is a monotonically decreasing function ¢f in the input
0

gap range(s/(C — X), 00). Furthermore, in the whole input
Then combining Lemma 5, Lemma 1, Lemma 2, Lemma @ap rang€0, o), the probing bias is a continuous function of
and both equations above, we immediately get the theoreng;. Finally, bias3(gr, s,2) monotonically converges to 0 as

To prove (81), simply recall (78) and we have: g1 approaches infinity.
Proof: Wheng; € (0,s/C], 8(g1, s,2) equals to O due to
El;(t)] = F |max (0, Bs(t)d — s Theorem 3. Next, we prove the continuity and monotonicity
C properties of 3(gr,s,2). Let § = g;, we first show that
C o 5_s E[I;(t)] is a continuous and monotonically increasing function
= / dPs (). of ¢ in the rangey € (0, co). First, note for any) < A andt,
s/8 we have: ) )
For the second part, recall (79) and we have: 0 < Isia(t) — Is(t) < A (84)
s — Bs(t)o This difference defines a new sample-path, and we can com-
E[Ry(t)] = FE [max (O, T)] pute its time average as follows:
o3 s — 25 0 < Bllsa(t) - I5(t)] < A, (85)
= / dP(;(fL'). X X
0 which can be rewritten as:

This proved the theorem. [ 0 < Ell4a(t)] — E[I5(t)] < A. (86)
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This already proves the monotonicity 8115 (¢)] with respect 3(gr,s,n). Note that:
to . Further, by taking the limit of (86) wherh — 0, we B((n — gz, (n — 1)s,2)

have: -
lim (E[f5+A(t)] _ E[fg(t)]) —0. (87) = E[I(t,t+ (n—1)gr, (n — 1)gr, (n —1)s,2)](89)
A0 B(gr,s,n)
This proves the continuity of?[I5(t)] with respect tod in _ L E[I(t,t + (n—1gr, 91,5, n). (90)
the range(0, co). Similarly, we can prove the continuity and _ - 1
monotonic decreasing property &f R, (¢)] with respect tos  The idle time in (89) can be expanded as:
in the range(0, oo). Combining the monotonicity properties It t+ (n—1gr, (n—1)gr, (n —1)s,2)
for both E[R2(t)] and E[I5(t)], further recall (74), we proved (n—1)s
the monotonicity properties of(g;, s,2) described in this = max(0, I(t,t + (n —1)gr) — ). (91)
theorem. . L
Due to (56), the idle t 90 b ded as:
For continuity of 3(gr, s,2), note that whery = s/(C — ue to ( )~ @ idle time in (90) can be expanded as
§), the equalityE[R2(t)] = E[Is(t)] can be easily obtained I(t,t + (n—1)gr, 91,8,n)
from Theorem 5. Combining this result with the continuity of _ B _(n—1)s
E[I5(t)] and E[Ry(t)], we proved the continuity of(g;, s,2) =1t t+ (n=1)ar) c Ba(t). (92)

with respect tog; in the entire probing range. Combining (91) and (92), further noticing th&, (t) > 0, we
We next prove the asymptotic property 6{g;,s,2) as have forVvt,

gr — oo. First, note that due to (83), we have: it + (n— Dgr, (n — Dz, (n — 1)s,2)

/0 g < I(t,t -1 . 93
lim B(gr,s,2) = lim i xédPg(:v) s I t+ (=1, g1,5m) (93)
gr—eo 900 Jo c This leads to
s/8 s/é ~
= lim </ %dpg(x) — / %dﬂ;@)) E[I(t,t+ (n = L)gr, (n = 1)gr, (n = 1)s,2)]
7o \Jo 0 < E[I(t,t+ (n—1)g1, g1, 5,n)]. (94)
s/6 s/d Lo .
= 5hm %dpé(x) - 511m x_gdp(s(x)_(gg) Dividing both sides of (94) by, — 1, we get:
—o0 Jo —o0 Jo 1
-1 —1)s,2) < . 95
Note that the first item in (88) is zero: n— 1[3((71 Jar, (n = 1)5,2) < Blg1,,m) (%5)
s/6 Next we prove the second pafi(gr,s,n) < B(gr1,s,2).
lim %dpé(x) = lim %Pé(g) —0, Notice that fork = 0,1,...,n — 2,
—00 —>00 ~
0. . . I(t+kgfvt+(k+1)917917572)
and the second item in (88) is also zero: s
/ = max (I(t—i—kg;,t—i—(k—i—l)gl) - 5), (96)
s/d s/0 56 _
0 < lim I—gdPg(:zr) < lim S_dPs(z) I(t+ kgr,t + (k+ 1)gs,t,91,8,n)
d—o0 Jo C d—o0 Jo C

= max (I(t +kgr,t+ (k+1)gr) — % - Rk(t))(97)

Combining (96) and(97), noticing thdt,(¢t) > 0, we get:

Hence, the limit of3(g;, s,2) wheng; — oo is zero. This ~
concludes the Whoiz(%roof.) ! [ I(t + kgr,t + (k +1)gr.t, g1, 5,m)

Packet-pair probing bias has very nice functional propsrti < I(t+ kgt + (k+1)g1, 91,5, 2). (98)
in terms of continuity and monotonicity. The probing biaghis inequality also holds when we sum up all idle time from
B(g1,s,2) is a hill-shaped function with respect tgy as gk =0tok =n — 2:
shown in Figure 4(a), where it reaches its maximum when n—2
g1 = s/(C' — ). Our next theorem presents an inequality that Z f(t +kgr,t+ (k+1gr.t, g1, 5,n)
links the packet-train and packet-pair probing biases. k=0

Theorem 7:For anyn > 2, the following holds: n—

. S S
= Jim Z5(5) =0

1

n—1

2

<> It +kgrt+ (k+Dgr,g1,5,2).  (99)
B((n - 1)gla (n - 1)57 2) < ﬁ(gl, S, n) < B(gh S, 2)' k=0
Note that the left-side item in (99) is actualk(t,t + (n —

Proof: We prove the theorem wheg, < s/(C' — A). 1)g;, g5, s,n). Computing the limiting time averages of both

The proof whengr > s/(C — )) is very similar and sides in (99), we get:
we omit it. First, we slightly refine our notations. we use Blitt 1
I(to,t1,t, g1, 5,n) to denotel (to, t;) when the hop is probed [ (2’ +(n—1)gr,91,5,1)
by a single packet traint, g, s,n). Whent = t,, we - ~
omit the third parameterr;nd only \Zvrife{to,tl,gl, s,n). We < Z ElI(t+ kgr,t + (k+1)g1, 91, 5,2)]

. 1 k=0 )
now prove the first partmﬂ((n — Dgr,(n — 1)s,2) < = (n— DE[I(t,t+ g1,91,5 2)]. (100)
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Dividing (n — 1) at both sides of (100), we get: E. The Impact of Packet Train Parameters

We now examine the impact of probing packet size on

Blgr,s,n) < Bgr,5,2). (101) probing bias. First, we consider the rate response curve of
. ] o packet-pair probing. At any fixed input rate poink C— A, let
This proves the second inequality in this theorem. B o . . This causes the sampling interak= s/r approach

This result tells us that the packet-train probing biag, infinity proportionally. Recall (83), we have:
B(g1, s,n) has similar hill-shaped evolving trend with respect

to g; since it is both lower-bounded and upper-bounded by

"s—xd

hill-shaped functions. We conjecture that it is also combins B(f, s, 2) = / Sl dPs(x)
- L . : . r C
and has similar monotonicity properties described in Tagor , 0 -
rd — xd 0
6. = = dPs(z) = G (r —x)dPs(z)
In summary, the probing bias is significant only in the 0 . .70

middle part of the whole probing range. We call that range _9 (r/ dPs(z) _/ xdp(s(x)) (104)
the biased probing rangeThe full picture of the gap response ¢ 0 0

curve is illustrated in Figure 4(b). The whole probing ranggpplying integration by parts, we get:

(0, 00) is divided into three segments. Intenv@l s/C] is an . .

unbiased region where the ISE forml@go — s)/g; forms / xdPs(z) = rPs(r) _/ Ps(z)dx. (105)

an unbiased intensity estimator far Region(s/C,«) is a 0 0

biased region wheré’[go] is larger than what is given in Substituting (105) back to (104), we get

(10), but smaller than the upper bound in (73) and the ISE s s [T

formula overestimates. Finally, interval(«, oo) is the second ﬁ(—, s, 2) = 5/ Ps(z)dzx. (106)

unbiased probing range wheBgo| = g;. Theoretically, this " 0

range often does not exist due to infinite Practically, a  From (106), we get a sufficient and necessary condition for

sufficiently small bias is taken as none. The probing poiR@cket-pair probing bias at input rate< A to vanish when

s/(C — X), associated with available bandwidth, is the poirt = oc- r

where the probing bias is maximized and is not the same as lim 6/ Ps(x)dz = 0. (107)

the turning pointx. Further note that the upper bound of gap 0o Jo

response curve as given in (73) is actually not a tight boun@imilarly, for any input rate- > A, a sufficient and necessary
It is often more informative to look at the rate version ofondition for packet-pair probing bias to vanish is:

the response curve rather than the gap version, becausg it ha c

a direct association with our measurement interests: draffi Jm 5(C —r —/ Ps(z)dz) = 0. (108)

intensity and available bandwidth. Transforming (10) ithe "

decaying variance or gradually concentrating distributidnen

( . ) { rr 0<r; <C—)\ the observation interval becomes large, but also show suffi-
= (102)

- cient decaying speed. Our experiments show that crodgtraf
Elgol rr>C—A often satisfies these properties. Hence, larger probingepac
size usually implies less probing bias. The same conclusion
Although (102) looks similar to (2), they are in fact veryalso holds For packet train probing due to the following
different sinceE[ro| = E[s/go] # s/E|go] and E[ro] has a theorem.
different behavior from that of/E[go]. Our conclusions are  Theorem 8:For any input probing rate, If

meant fors/E , hot forE . Although TOPP proposes
5/ Elgol [s/90] g prop i B(§7572) _o, (100)
r

rr
C
rr+ A

(2) as its rationale, its actual implementation is howe\aeul 5y 00

on (102). It is important to clarify this confusion. then for packet train of any length, we have:
Transforming (73) gives us the rate lower bound as follows.

lim ﬂ(f,s,n) -0, Vn>2 (110)
7’10 5—00 r
r+C 0<ry<A Proof: Recall Theorem 7, we have:
s riC 1 (n—1)s s s
L = A<rr<C. 103 S YO R s O 2 hd
(E[go]) i C 1< (103) (. (0~ 1)s,2) < B(,5,1) < B(~,5,2).
riC C<rr Taking the limits of all three terms in the above inequalitgla
rrtA noticing (109), we get:
As illustrated in Figure 4(c), along the vertical directjtine 0< lim B(E, s,n) < 0. (111)
rate response curve appears between the two bounds given s=—oo T

above. Along the horizontal direction, the curve shows ornéence,lim, ., 3(2,s,n) = 0. This proves the theorem.m
negatively biased probing region sandwiched by two unkliase As to the impact of packet train length, (39) shows that
probing regions. R, depends on a partial sum of series of random variables
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yi,t = 1,2,...,n — 1 summed in the reverse order. This Finally, we made two sample-path assumptions on cross-
is a classic form in random walk theory [23], which dealtraffic and tried to avoid assuming cross-traffic statidyari
with partial sums ofi.i.d random variables. Although it is which was an assumption commonly agreed upon in prior
unlikely for y; = s/C — I(a;,a;11) to bei.i.d, we make work. Our results are applicable to but not limited to Staicy
this assumption to keep the derivations tractable and applpss-traffic. More information regarding this issue isegivn
random walk theory to conceptually understand the impact tbfe appendix.
train length on probing bias. Using the probing bias expoess  Next, we present our experimental methodology to compute
in (74), random walk theory says that #[y;] < 0, which is the probing response curve and observe the probing bias
the case wheg; > s/(C — A), R,, converges in distribution quantitatively.
to a finite-mean random variable as— co:

V. EXPERIMENTAL RESULTS

lim E[R,] < occ. 112 . . . .
>0 [Fn] < 00 (112) To characterize the probing bias, we need to obtain the
Consequently, limiting averages of the probing output. In this section, we
. E[R,] propose two experimental procedures to compute the probing
nhjfgo n—1 0. (113) response curves with supervised precision. The first proeed

is period testing applicable to periodic traffic such as CBR.

O<n theCoth(/e\r h;nd, whel [gi] > do’ das_iﬁ thebciglg W?enThe second procedure isace-driven testing applicable to
g1 < s/(C = A), Ry goes unbounde V.V't probability asaperiodic traffic. We first apply the former to CBR traffic to
n — oo. Note the following relationship betweeR,, and

i verify our analytical results. We then apply the latter teesal
I(a1, an): additional traffic traces to examine the relationship betwe
Fan, anp1) = max(O,I(an,anH) B % B Rn)- (114) probing bias and probing constructions.
Thus, there is a random point, such thati(a,,a,;) A Period Testing
becomes 0 ifn > ng. And thisng converges in distribution The CBR (Constant Bit Rate) traffic we consider here is
to a finite-mean random variable as— oo, Thus we have the one with a fixed packet size, fixed inter-packet delay,
and periodical triangle-wave workload sample-path shoined

lim E[I(ay,a,)] < oo, (115)

nyoo Figure 2(b). CBR cross-traffic is arguably the simplest type
. BIf ~0 116 of bursty traffic; however, it is also very important since we
e — 1 [[(a1,an)] = 0. (116)  pelieve that any available bandwidth estimation technigust

rI10e shown accurate in CBR cross-traffic before being tested in
nqore complex environments.

It is clear that CBR traffic satisfies both stability assump-
tions we made. Period testing on CBR traffic operates as
follows. Assume a scenario with CBR cross-traffic packes siz
s, inter-packet delayl’, hop capacityC, ands./C < T.

F. Discussion Without loss of generality, we let the first packet arrivehe t

We now briefly mention how sensitive our results are witfPUter at time instance 0. We divide the time inter{@IT’|
respect to the assumptions made in this paper. First, niptate Nt 7 equal-size sub-intervals. For all = 0,1,2..m —
the simple traffic-arrival assumption is made solely to dvoil: We compute the output gap)) of the probing train
getting into unnecessary technical details. Even whenhbat@'(2k + 1)/2m, g1, s,n). The average metrid ;"' 98 /m
arrivals are allowed, simple arrivals occur almost evergrgh of the output gaps is used as an approximationfo§o).
along the time axis, and all the results in this paper remalte departure time of the last packet in the probing train is
valid. calculated using (37), wher® (a,,) can be easily computed

This paper also assumed infinite buffer space in the hdple to the periodicity of the CBR workload sample-path. Also
Hence, our results are valid when buffer space is suffigienflote thatR, (a;) can be recursively computed using (38).
large and packet loss can be neglected. In the case of otHdius, period testing can be conducted using deterministic
wise, the equalityd = C' — )\ becomes invalid. The analysiscomputation without the use ofs2.
of the impact of buffer size on bandwidth estimation require The validity of period testing is due to the following
future work. theorem:

We further assumed a Poisson inter-probing pattern. ThisTheorem 9:Let E[go] be the asymptotic average of output
can be relaxed to more general ASTA [11] sampling and 88Ps When the hop is probed by Poisson packet train series
long as the sampling pattern has decent ASTA properties, &il'm}, 91, s,n). Let go(t) be the output gap when the hop
of our conclusions hold. In the case of non-negligible ASTA probed by a single packet traip, g, s, n). Assuming the
bias, most measurement techniques would fail and nothingrkload sample-pathl’(¢) associated with cross-traffic is a
interesting is left for discussion. ASTA bias is anotherrseu - o o

. In this paper, a traffic is called bursty if its cumulativeieat sample-path
of measurement error that has never been studied or e\mlua}?t) is not a linear function of. Hence, all but constant-rate fluid traffic is
before. We consider it beyond the scope of this paper. bursty.

This explains why the probing bias can be overcome by lo
packet trains. Even whey are noti.i.d random variables and
the above argument does not fully apply, it at least tells g w
the probing bias can be mitigated, which is quite non-inteit
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Fig. 5. Packet pair probing in CBR cross-traffic: (a) Ratgpoese curves, Fig. 6. Packet train probing in CBR traffic: (a) Gap responseves, and
(b) relative rate probing biases. C=10mb¥s;2.5mb/s. (b) rate response curves. C=10mb¥s2.5mb/s.

periodic function in the time interval), oc) and T is period Figure 5(b) shows theelative rate probing bias, defined as:

duration, the following holds: min(r rC ) B
LT DX¥r) Elgo) (120)
Blgol = 7 | golu)du. (117) CERY
’ S o

Proof: First notice that, due to the periodicity &% (¢),

the associated sample-paths suctDag) and ;(#) also have where the numerator is the absolute rate probing bias and the

. . denominator is the difference between the rate upper bound
the same periodicity for all > 0. Recall Lemma 5, which says . :
. T . and the rate lower bound when the input probing rate equals
go(t) is a deterministic function of those sample-paths. Thu

. o : . . . % the available bandwidtt’ — \. This difference is an upper
go(1) is also periodic with period duratioft. It immediately bound of absolute rate probing bias. Hence, the reIatiF\)/z bia

follows that:T metric takes values ifD, 1].
1 T | 4 As shown in Figure 5, the probing bias is clearly noticeable
T/O go(w)du = Tlggo T /0 go(u)du. (118) for all three cases. The biased regions are around (5 mb/s, 10

mb/s) fors = 1500 bytes, (3.5 mb/s, 10 mb/s) for = 750
bytes, and (1.7 mb/s, 10 mb/s) fer= 250 bytes. The relative
bias (120) also exhibits high amplitude up to 0.5-0.8, megni
that, at certain probing ranges, the rate response curees ar
much closer to the lower bound than to the upper bound.
Also note that as probing packet sizeincreases, both the
bias range and bias amplitude shrink. Further, the stranges
probing bias appears at the available bandwidth point for al
Fhree cases, which i85 mb/s in our case. Finally, the biases
gppear monotonic at both sides of the available bandwidth
probing point. These observations are in agreement with our

On the other hand, note that due to PASTA, we have:

Elgo] = lim 1/ go(u)du. (119)
T—00 T 0
Combining (122) and (119), we proved the theorem. =
Period testing essentially approximates the right-siela iin
(117) usingzzzo1 9o (T (2k+1)/2m)/m. This approximation
can be made arbitrarily precise by choosing sufficientlgéar
m. Next, we introduce two supervision strategies to he
decide the number of samples. Both are also applicable
to trace-driven testing.

) .- . . theoretical findings.
In the first method calledelf supervisionwe iteratively Fiaure 6 shows aap and rate response curves when the ho
double the number of samples and stop when there is little 9 9ap " P

or no difference between the results produced in conse}:uulfsl probed by packet trains. The probing packet siz@)ibytes.

iterations. In the second method calledjion supervisionwe he reason why we use small probing packet size is to show

make sure thatn is large enough so that the results of perio%alt long trains can compensate for the bias introduced by

) . . ; e small probing packet size. The figure shows the response
Festlng are in agreement with those predicted by (10) orX]'ocurves for train lengths 16, 64, and 256 packets. From Figure
in the unbiased probing range.

In our experiment, we choose = 1,500 bytes,C' = 10 6, we see that the probing bias is clear, but diminishes as tra

mb/s, and\ = 2.5 mb/s. Thus, the inter-packet spacing O#ength INcreases.

CBR cross-traffic ist.8 ms. Using our supervision strategies, _ _

we find that 500 samples can provide very good precision aRd Trace-Driven Testing

the results do not significantly differ from those obtainsihg 1) Traffic Traces: In this section, we compare probing

1,000 or more samples. biases using four different cross-traffic types: CBR traffic
Figure 5(a) shows the rate response curves when the Hamsson traffic with constant packet size (PCS), Poissdfictra

is probed by packet pairs. The legends are sorted in the samith packet sizes (in bytes) uniformly distributed [in 1500]

order as their corresponding curves appear vertically & tiPUS), and Pareton/off traffic (POF). Hop capacit¢' is fixed

figure, and we do this whenever possible for all figures tmt 10 mb/s. The cross-traffic packet size7is0 bytes for CBR,

make them easier to read. PCS, and then period of POF. The average sending rate is
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Fig. 7. (@) FunctionZ(t) shows the convergence delays, and (b) Functiokig. 8. Rate response curve for the four cross-traffic tra@gorobing pairs,
R(t) shows convergence errors for the four traffic traces. (b) 16-packet trains (probing packet size 750 bytes).

500 packets per second for CBR, PCS, and PUS. The meafrorollary 4: Let E[go] be the asymptotic average of output
duration of POFon/off periods is 10 and 5 ms, respectivelyd@Ps when the hop is probed by Poisson packet train series
The Pareto shape parametefor the duration of botron/off (1Zm}, 91, 5,1). Letgo(t) be the output gap when the hop is
periods is set td.9 so that their variance is infinite. In POFProbed by a single packet train gz, s, n). Then the following
on periods, the source sends CBR traffic at 750 packets piHds due to PASTA: .
second. Given t_he_se set_tmgs, all four cross-traffic typmseh Elgo] = lim 1/ go(u)du.
an average traffic intensity equal 3omb/s. T—=0 T Jo

Since all but CBR traffic have aperiodic hop workload Trace-driven testing essentially approximates the rigjdie-
sample-path, we cannot apply period testing to obtain thedém in (122) by computing the time average @§(t) in a
response curves. Instead, we employ trace-driven testingfihite time interval [0,%,]. The approximation can be made
compute the response curves for the other three traffic typggbitrarily accurate when sufficiently largg is used. We
We use RNGs (random number generators) to produce faooser, based on the convergence error functidft) of the
packet-arrival traces, one for each traffic type. Theseewragraffic traces, since a small value &f(t,) is a good indication
record the time instances of all packet arrivals and the&ssi that the traffic statistics if), to] has sufficiently converged to
within a period of 100 seconds. Before we explain how trac@s equilibrium statistics.
driven testing works, we first show that these traffic traces Oncet, is chosen, trace-driven testing computes the sample
satisfy the two cross-traffic stability assumptions we made average 37" ' go (to(2k + 1)/2m)/m and uses it as an

In Figure 7(a), we plot functiorZ(t) = V/(t)/t for the approximation of [,° go(u)du/to, wherem is decided by
four traffic traces. As shown in the figure, all traffic typeshe two supervision strategies discussed before. The com-
eXthIt IntenSItyStablhty despite the b|g diﬁerences in theirputation of the Output ga@ok) of the probing packet train
convergence delays. Figure 7(b) shows the intensity cenver, 2k + 1)/2m, g1, s, n) again relies on (37) and (38), where

(122)

gence error defined as: the workloadW (¢) at any time instance can be computed
IZ(t) — 3 mb/g based on cross-traffic trace and hop capacity.
R(t) = bl (121)  In our experiment, we choosg = 20 seconds for PCS

o and PUS, which leads t®(¢) < 0.01, andt, = 60 seconds

As demonstrated in Figure 7, CBR shows the fastest cog; pofF, which ensure®(t) < 0.015. For CBR, we still use
vergence speed. In abol seconds, CBR converges to the,erig testing. In what follows, we first compute the resgons
0.2%-neighborhood of the limiting value, i.€%(10) < 0.002.  ¢yrves for several fixed probing constructions. We thenystud
PCS and PUS also converge relatively fast, but much slowgg impact of probing constructions on probing bias.
than CBR. In10 seconds, bqth PCS and PUS converge to fche3) Results for Fixed Probing Constructiongigure 8(a)
1%-neighborhood of the desired 3 mb/s. PCS converges a litfigows the rate response curves for the four traces when the
faster than PUS but the difference is small. P_OF shows thgp is probed using packet pairs. We computed the output
§Iowest convergence speed. It reacheslthé-neighborhood |4t s/E[go] at 140 input rate points, from 1.0 mb/s to 14.0
in about60 seconds. mb/s with a 0.1 mb/s increment. We applied region supemisio

The four traffic traces also exhibitorkload stability when {5 decide the number of samples. That is, at each input rate
they are injected in a hop of capaci€y = 10 mb/s. This is jn [10.0 mb/s, 14.0 mb/s], the number of samples is made
theoretically provable. Using queueing theory, we candiye |arge enough so that the output ratéE[go] computed in
compute the limiting time average of the workload procesgace-driven testing is within the%-neighborhood of the value
for these four traffic types. The existence of workload lingt predicted by fluid model (102). This required 500 samples for
time average implies workload stability. More details areg cpRr, 1,000 samples for PCS and PUS, and 2,000 samples for
in the appendix. POE.

2) Testing ProcedureTrace-driven testing is grounded on  As showed in Figure 8(a), the rate response curve of POF
the following corollary: is virtually indistinguishable from that of CBR. The PCS and
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next investigate the relationship between NBR and pachkét-t
Fig. 9. NBR for the four cross-traffic traces: (a) probingrireength from parameters

2 to 512. (b) log scale plotting of (a). (c) probing packetesiom 50 bytes . .
to 1500 bytes. (d) log scale plotting of (c). For all four traces, we computed NBR using probing packet

sizes betweeh0 and 1500 bytes with50-byte increasing step
and probing train lengths between 2 and 512 packets with 2-

PUS curves are also very close to each other. However, itggcket increasing step. Thus, in total, we haeé x 30 =
interesting to note that the curve for POF is closer to ratesg0 different probing constructions for each of the four
upper bound than the curves for PUS and PCS, meaning thates. For each probing construction, we calculate theubut
it sufferslessprobing bias. This indicates that, for fixed packefater in (123) using trace-driven testing with 2,000 samples.
train parameters, cross-traffic of more burstiness does notigure 9(a) shows NBR for the four traces using= 750
necessarily imply larger probing bias. We explain the reasopytes. In all four traces, NBR decreases as the probing train
in a short while. length increases and this relationship appears to be a power

Figure 8(b) shows the rate response curves for the foggy function as is confirmed by our log-log scale plotting in
traces when the hop is probed using 16-packet trains. For fgure 9(b). Figure 9(c) shows NBR when train length is fixed
CBR trace, the response curve is almost unbiased and ha@‘tly]_s packets and the probing packet size varies fjomytes
distinguishable from the rate upper bound in the figure. Thg 1500 bytes . We again observe a power-law decrease of
probing biases are still clear for the other three traces; agBR with respect to the increase in the probing packet size as
those three curves are very close to each other. This shaMgwed in the log-scale plotting in Figure 9(d). Conjectgri
that, as the probing train length increases, the probing bigat the relationship between NBR, probing sizeand train
diminishes. For cross-traffic of different burstiness, d@in-  |ength/ can be modeled using functidiBR = k/(s*112),
ishing rate is different. The probing bias for POF vanishies ge get:
a rate lower than those of the other three.

4) Impact of Probing ConstructionSince we constantly log(NBR) = log(k) — a1 log(s) — az log(l), (124)
g? ?ﬁ;vz\t/gﬁ;g?g rbe;? (;)vr\]/isdeir:: u;;ﬁlst,syvze;gﬁ,‘?rge;te%gﬁ% e ?{To obtain further insight into this formula, we plot 3D cleart

NBR (Normalized Bias Ratio) to characterize the amount 8 NBR(s,1) on a log-log scalc_a for all four traces and indeed
bias in a rate response curve. Assuminis the output rate observed four flat planes. Figure 10 shows the four NBR

: ; . lanes.
E when the input rate ist = C — \, we define: P - ,
5/ Elgo] P We use 3D-fitting to find the parameters of the four planes.
NBR — A —AI;? 7 (123) All least-square fittir_lg errors are less th2fid, indicating that
r— the power-law function (124) is a reasonable model for NBR.
C+A Curve-fitting results are given in Table |, which shows that

which is the distance of the actual curve to its upper boutighffic with more burstiness has smaller values caf and
divided by the distance to its lower bound, given that the.. This explains why the probing bias in POF is harder to
input probing rate is equal to the available bandwidth overcome than those in the other three cross-traffic traces.
The NBR metric takes values i), co), where larger NBR  5) Discussion: The experimental results we obtained in
values indicate more probing bias in the response curve. Wace-driven testing agree with our analytical findingsyver
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3D-FITTING RESULTS FORNBR PLANES 15
[e%1 [ log(k) 1.4
CBR 1.103+£0.017 0.993+0.008 10.53 +0.175
PCS 0.562 £0.006 0.534+0.003 6.300 & 0.058 ~ 13 PUS ——
PUS 0.524+0.008 0.539+0.004 6.111 £+ 0.077 S PCS
POF  0.413 +0.007 0.338 +0.003  4.000 + 0.074 T 12 Egg
£ TOPP =
=11
well. Furthermore, our results show that with fixed probing 1
constructions, more cross-traffic burstiness does notssace
ily implies more probing bias. This probing bias, however, i 0.9
more difficult to overcome by increasing the probing packet 0 2 4 6 8 10 12

size or probing train length. Probing Input Rate T, (Mbps)

To understand this phenomenon, recall that traffic bursl;inqqg. 11,
relates to how fast the traffic becomes "smooth” with respect
the increase of observation intervals rather than how "ghfoo
the traffic appears given a fixed observation interval. Hence
it is usual that for a given observation interval, POF has

TOPP-transformed rate response curves.

TABLE 1l
TOPP RESULTS(IN MB/S) USING THE BIASED SEGMENT
(CORRECTVALUES: C = 10 MB/S, A = 7 MB/S)

smaller second order statistics than Poisson traffic andapp estimatedC” estimated\  estimatedA
"smoother”, leading to less probing bias when packet trains gEéF; %15%11 3-24;18 63-%
are constructed to gample the traffic in Sl_Jch an observation PUS 3251 59 24 398
interval. As the train length or packet size increases, the POF 23.38 18.36 5.02

observation interval increases, Poisson traffic becomestm

quicker than POF. Therefore, the probing bias is also oveeco

quicker. capacity and cross traffic intensity are significantlyeres-
Even though we do not offer a precise interpretation faimated To assure asymptotic accuracy, TOPP has to apply

the power-law relation between NBR metric and probingdditional techniques to bypass these segments in thedbiase

constructions, we believe that it is related to the evoltiregd probing range.

of available bandwidth frequency distribution with resptxr

the increase of observation interval. This view is supmbhbg B. IGI/PTR

the closed-form expression of probing bias, which shows tha

there is no other factor that can decide the NBR metric. PTR uses the probing output rat,E[go], at the turning

point to estimate the available bandwidth. As we estabtishe

the turning point usually is not the available bandwidthnpoi

It can be associated with a rate much smaller than available
Among the five representative proposals TOPP, IGI/PTBandwidth. Thus, theoretically-speaking, PTR isegatively

Sprucepaht | oad, andpat hChi r p, the first three directly piasedavailable bandwidth estimator in all single-hop paths.

fall under the umbrella of our work. The last two techniques As an estimator of cross-traffic intensity, the IGI formula

have quite a few tunable parameters and their behavior is

complex. We will consider them in our future work. Zl§i<n,di+rdi>gz C(dit1 —di = &)

dp — dy

VI. | MPLICATIONS

A=F

(125)

A. TOPP is negatively biased whep; < s/C. This is clear when
Figure 11 shows the rate response curves for the four tracesnparing (125) with the ISE equation (65), which has the
when the hop is probed using 500-byte packet pairs (as same numerator but smaller denominator than those of 1GI.
suggested in [14]). The curves are transformed using famiRecall that in [5], the I1GI estimator is applied at the tugin
(4) so that TOPP can apply segmented linear regressionpwint wherea,, — a1 = E|[d,, — d1]. In that case, IGI has the
obtain the hop capacity and available bandwidth infornmatiosame denominator, but a smaller numerator compared to ISE.
In the order of closeness to TOPP’s expected piece-wisarlinéccording to Theorem 4, ISE is a positively-biased intgnsit
curve appear the response curves of CBR, POF, PCS and P&imator at the turning point, which suggests that IGI can b
TOPP uses the second segment, assuming that it is the viesved as an estimator with a heuristical compensator fsr th
with the hop information. However, the biased probing randeas. We use trace-driven testing to examine the performanc
usually appears as the second segment unless it is very smfliGl's bias compensation. We use probing packet size 750
and undetectable. In Figure 11, all the biased ranges aye vhytes and train length 64 packet as suggested in [5]. For
clear and will be incorrectly acted upon by TOPP. Table Bomparison purposes, we also examine the ISE estimator and
shows the results of a linear regression applied to the thiaghe PTR available bandwidth estimator.
response curves according to the basic algorithm in TOPPFigure 12 shows these results for the four cross-traffic. The
As the table shows, the available bandwidth is significantfigure clearly shows that IGI provides a good estimate ofwros
underestimatedespecially for PUS and PCS. Both the hopraffic intensity)\ at the available bandwidth poidt = 7 mb/s,
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Fig. 12. Trace driven testing of three estimators: IGI, PaRd ISE: (a) using CBR, (b) using PCS, (c) using PUS, (d) uBiog-
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APPENDIX %= 180 : ‘ ‘ 180
A. Remarks on Cross-Traffic Stationarity S 170 ST e 7
Cross-traffic is stationary if the cumulative traffic arfiva S, 160 ¢ PCS | 160
process{V (¢)} has stationary increments, which also implies £ 150 1 150
that thed-interval cross-traffic intensity procedd;s(t)} is a g 140 L | 140
stationary process for afl > 0. Assuming ergodicity, station- _Tz 130 K ;i 1 130
ary traffic arrival leads to the intensity stability assuimpt g 120 | 120
made this paper. It is also well established that statiotraffic o 110 L | 110
arrival, when its long term rat# is less than the hop capacity 8 100 ¢ ey ) 1 100
C, leads to hop workload stability [15]. Hence, the results :'% 28 I ‘ ‘ ‘” 28
in this paper are applicable to stationary cross-trafficodin 0 20 40 60 80 100

experiment, the two cross-traffic PCS and PUS are stationary
cross-traffic.

Note that, however, a lot of traffic types that are suited fqrig. 13. Average hop workloadv(¢) for PCS, PUS, and POF.
stochastic modeling are non-stationa@n/off traffic is one
such example, which belongs to regenerative traffic anchofte
is at most asymptotically stationary. More examples inelud In POF, since packet size is constanii$0 bytes, the
time dependent Poisson traffic, transition-modulatedfitraf sample-path mean of packet service timeH$S,] = 6 x
and even most of the renewal traffic. By avoiding statiogaritl0~*s. The second moment of packet service timg[82] =
assumption, our conclusions are applicable to virtuallyi-ar 3.6 x 10~7s2. Further note that in POF, all packets come see
trary cross-traffic that can be stochastically modeled. fllee empty queue. Thusf[d,,| = 0 and we have:
stability assu_mptions are _a_llso arguably the weakest dondit E[W(#)] = 500 x 3.6 x 10~7/2 = 90ps. (129)
of cross-traffic measurability.

Time (sec)

We plot the average workload functionV(t) =
t : . .
B. Workload Stability of the Four Traces fO_W(u)du/t for the three cross_-traﬁlc traces in F|_gure 13.
It is clear that the plot agrees with queuing theoretic compu
We show that the four traffic traces used in the paper all leggtion.
to hop workload stability. We omit CBR due to its triviality. Theorem 10:If lim;_, o W(t) exists and is finite, theft,
For PCS, PUS, and POF, we first apply queuing theory fer vt > to, W (t) < /1.
calculate their hop workload time averages. We then prove Proof: Let
that the existence of workload time average implies wortloa
stability. lim W(t) = lim
We use~y to denote the average cross-traffic arrival rate t=roo t=roo
in packet per Secon(ﬂn to denote the packet-de|ay Samp|eSUppose theorem 10 does not hold, then there exists anénfinit
path,S,, to denote the packet service time sample-path. TBgMes{t,}, such thatim,, ., &, = oo andW (t,) > v/, for
following is a basic result in queueing theory [23, pages]279/n- Due to basic real analysis theorem,

E[W ()] = 7E[SqEld] +7E[S2)/2.  (126) AL

n—00 ln + Vin
We now apply (126) to calculate the workload sample-path - .
time-average for PCS, PUS, and POF. First notehat500 OWever, due to the sample-path propertiedioft),
packets/sec for all three traffic traces. tntn tn
/ W (u)du >

M = k. (130)

= k. (131)

In PCS, since packet size is constantly 750 bytes, the
sample-path mean of packet service tim&[§,,] = 6x10~4s
and E[S2] = 3.6 x 10~ "s%. Further note that due to PASTA,

W (u)du + %" (132)
0

Thus, we have

E[W(t)] = E[d,]. Hence, we have: - fé"*mw(u)du
E[W(1)] = 500 x 6 x 10~4 x E[W(£)] + 500 x 3.6 x 10~7/2. noee b+
(127) - 3 W (u)du tn
ComputeE[W (t)] from (129), we getE[W (¢)] = 128.57u s. = n oo tn +/tn + 2(tn + V)
In PUS, since packet size is uniformly distributed in 1
[1,1500] bytes, the sample-path mean of packet service time =k+ 3 (133)

is E[S,] = 6 x 10~*s. The second moment of packet servic
time is E[S2] = 4.8x10~"s2. Further note that due to PASTA,
E[W(t)] = E[d,]. Hence, we have:

?he contradiction proves this theorem. ]
Theorem 10 shows that when workload sample-path has a
finite limiting time average, then it is asymptotically bolau
E[W ()] = 500 x 0.0006 x E[W (t)] + 500 x 4.8 x 10~7/2. by v/t. This inmediately leads to the following:
(128) W)
ComputeE[W (t)] from (129), we getE[W (¢)] = 171.43u S. lim 5 0. (134)

t—o0



