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Single-Hop Probing Asymptotics in Available
Bandwidth Estimation: Sample-Path Analysis

Xiliang Liu, Kaliappa Ravindran, Benyuan Liu, and Dmitri Loguinov

Abstract—In this paper, we take the sample-path approach
in analyzing the asymptotic behavior of single-hop bandwidth
estimation under bursty cross-traffic and show that these results
are provably different from those observed under fluid models of
prior work. This difference, which we call the probing bias, is one
of the previously unknown factors that can cause measurement
inaccuracies in available bandwidth estimation. We present an
analytical formulation of “packet probing,” based on which
we derive several major properties of the probing bias. We
then experimentally observe the probing bias and investigate
its quantitative relationship to several deciding factors such
as probing packet size, probing train length, and cross-traffic
burstiness. Both our analytical and experimental results show
that the probing bias vanishes as the packet-train length orpacket
size increases. The vanishing rate is decided by the burstiness of
cross-traffic.

I. I NTRODUCTION

Available bandwidth of a network path has long been the
interest of measurement studies because of its importance to
many Internet applications such as adaptive streaming, overlay
routing, congestion control, and network diagnosis. However,
available bandwidth is generally considered difficult to mea-
sure due to its dynamics, especially in the Internet environment
where the end-to-end approach is advocated and often is the
only choice available. Thus, until recently, most of the research
efforts went into the measurement of the bottleneck capacity
[2] [3] [9] [10] [18]. The recent surge of available bandwidth
estimation proposals stems from the rationales developed in
bottleneck capacity estimation research. Among the recent
proposals, TOPP [12], SLoPS [7], PathChirp [20], IGI/PTR [5]
and Spruce [21] are the major representatives. Most of them
are based on packet-pair or packet-train probing, where bursts
of equally spaced packets of uniform size are injected into
the path of interest, and the available bandwidth information
is inferred based on the relationship between the input inter-
packet gaps and those of the output.

According to recently established notions, the available
bandwidth of a network hop is itsresidual capacity after
transmitting cross-traffic. Since at any time instance, thehop is
either idle or transmitting packets at its capacity speedC, the
utilization of the hop can be viewed as an on-off function over
time. The definition of the available bandwidth ought to look
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at the average unutilized bandwidth over some time interval
δ, i.e.,

Bδ(t) = C
(

1− 1

δ

∫ t+δ

t

U(x)dx
)

, (1)

where Bδ(t) is the available bandwidth in time interval
[t, t+ δ], U(x) ∈ {0, 1} is the link utilization on-off function
determined by the packet-arrival pattern of cross-traffic,andC
is the hop capacity. The available bandwidth along a network
path is the minimum available bandwidth of all traversed hops.
The hop carrying the minimum available bandwidth is called
the tight hop.

Note that Bδ(t) varies over timet as well as over a
wide range of observation intervalsδ. This dynamics make
it an elusive target to measure. To combat this difficulty,
most measurement proposals use a fluid cross-traffic model to
justify the design of their estimation techniques. Under such
fluid cross-traffic,Bδ(t) becomes a constant for allt and all
δ and its relationship to probing input and output becomes
easy to identify. Measurement techniques designed using this
model are then empirically extended to general bursty cross-
traffic conditions.

Although the experimental performance of recent proposals
as documented is encouraging, the rationales they are an-
choring upon are not fully justified in general cross-traffic
conditions. In this paper, we contribute analytical insight into
the asymptotic behavior of single-hop, packet-train bandwidth
estimation under bursty cross-traffic conditions. This question
has two aspects. First, given a cross-traffic arrival process
and fixed probing train parameters (i.e., packet size and train
length), we analyze how the probing output relates to the
probing input. We investigate the output rate and gap for
individual packet trains as well as their asymptotic average
as the number of probings approaches infinity. We examine
the functional relation between the probing input and the
asymptotic average of the probing output in the entire input
range. We call this relation theprobing response curveand
show the difficulties in extracting the available bandwidth
information from the curve.

Second, we investigate how the response curve evolves
with respect to the changes in packet train parameters and
cross-traffic burstiness. Both questions are of fundamental
importance for the design of available-bandwidth estimation
methods. The answer to the first question provides a theoretical
foundation that extends previous rationales based on fluid
cross-traffic models. The answer to the second question offers
an insight into parameter tuning strategies in the measurement
design. Published research has produced a great deal of
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intuition and empirical findings related to these questions;
however, neither their analytical foundation, nor a mathemat-
ically precise explanation was available until now.

Although our eventual goal is to understand the behavior of
packet-train probing in multi-hop network paths, the insight
obtained in the analysis of a single hop is indispensable in
reaching this goal. Moreover, the single-hop case on its own
is an interesting and complex problem calling for an elaborate
discussion, which is the focus of this paper.

Under two theoretically and practically mild assumptions,
we derive several important properties of the gap (and rate)
response curve. Our results show that the rate response curve
in constant-rate fluid cross-traffic is the tight upper boundof
that in bursty cross-traffic with the same average intensity. We
show that there is a probing input range where the real curve
negatively deviates from its fluid-based prediction. We call
this deviation theprobing bias. Most existing measurement
techniques make use of the curve in that range without being
aware of the actual bias, which sometimes makes them subject
to significant measurement inaccuracy.

Our analysis also discovers the source of the probing
bias and arrives to its closed-form expression for arbitrary
probing constructions. We show that the amplitude of the
probing bias is exclusively decided by the probing construction
and the available bandwidth distribution. We also present
an experimental approach to compute the probing bias in
given traffic traces. This allows us to empirically validate
our theoretical results, qualitatively observe the relationship
between the probing bias and probing train constructions in
certain cross-traffic conditions, and evaluate the asymptotic
performance of various available-bandwidth estimators.

The rest of the paper is organized as follows. In section 2,
we survey the current measurement proposals and show that
they are all related to one rationale, which we later inspect
under general cross-traffic conditions. In section 3, we identify
the measurement targets and present the analytical foundation
of packet-train probing. In section 4, we analyze the major
properties of the response curves and probing bias. In section
5, we propose two experimental methods, period testing and
trace driven testing, to observe the probing bias and examine
its relationship to several deciding factors. We explain the
implications of our findings on some of the current proposals
in section 6. Finally, we present the concluding remarks in
section 7.

II. BACKGROUND AND DISCUSSION

A. Related Work

IP-layer bandwidth estimation and the idea of using packet-
pairs to infer link capacity dates at least as far back as
1988 when Jacobson [6] designed the packet conservation
principle of TCP to allow senders to indirectly infer the
bottleneck/available bandwidth based on the spacing between
the ACK packets. Keshav’s packet-pair flow control followed
in 1991 [8] and relied on fair queuing in all network routers.

Several years later, Carteret al. (1996) developed a tool
called cprobe [1] to measure the available bandwidth.
Cprobe bounced a short train of ICMP echo packets off the

target server and recorded the spacing between the first and
last returning packet. The rate of the arriving echo stream was
used as an estimate of the available bandwidth. As pointed
out later by Dovrolis [2],cprobe actually measured a metric
called theasymptotic dispersion rate(ADR), which doesnot
generally equal the available bandwidth. Paxon (1999) defined
and measured a relative available bandwidth metricβ [18],
which approached 1 when the path was void of cross-traffic
and 0 when the path was close to 100% utilization.

Melanderet al. (2002) studied the relationship between the
input and output ratesrI andrO of probing trains in a single-
hop path and presented the following FIFO fluid model [13]:

rO =







rI rI < C − λ

C
rI

rI + λ
rI ≥ C − λ

, (2)

whereC andλ are the hop capacity and cross-traffic intensity
(or rate) respectively. Applying math induction to the subse-
quent hops along the path, we get the main model of measuring
the available bandwidthAP of an arbitrary multi-hop pathP :

rO =







rI rI < AP

C
rI

rI + λ
b ≥ rI ≥ AP

, (3)

whereb is the second minimum residual link bandwidth along
pathP andC is the capacity of the tight hop.

Based on (2) and (3), Melanderet al. proposed a mea-
surement technique called TOPP (Trains of Packet Pairs)
[14]. TOPP first collects the output rates of probing packet
pairs for a series of equally spaced input rates in some
interval[rmin

I , rmax
I ]. In the subsequent analysis phase, instead

of using (3), TOPP uses the piece-wise linear relationship
betweenrI/rO andrI :

rI
rO

=







1 rI < AP

rI
C

+
λ

C
b ≥ rI ≥ AP

. (4)

TOPP identifies the second segment in the curve using
several empirical methods and applies linear regression to
calculate the capacityC and cross traffic intensityλ of the
tight link. Hence,AP = C − λ is obtained.

Another recent proposal is SLoPS (Self Loading Periodic
Streams) by Jainet al. (2002) [7]. SLoPS is implemented
in a tool calledpathload and is based on the observation
that one-way delays of packets in a probing train show an
increasing trend when the input rate of the probe traffic is
higher than the available bandwidth of the path. This rationale
is clearly true if cross-traffic is modeled as a fluid and
generally can be written as a variation of (4):

rI
rO

=

{

1 rI ≤ AP

> 1 rI > AP

. (5)

To measure available bandwidth in bursty cross-traffic,
pathload adapts its input probing rate in a way similar to
a binary search to locate the region where the one-way delay
of the probing packets is just about to show an increasing
trend or the two statistical tests used can neither detect
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an increasing trend, nor detect a non-increasing trend with
sufficient confidence. That region is then taken as the range
of the available bandwidth of the path.
PathChirp [20] is a proposal to improvepathload’s

measurement speed.PathChirp uses probing trains with
exponentially decreasing inter-packet spacing and calculates
available bandwidth from thequeuing delay signatureof the
arriving chirp.

Hu et al. [5] (2003) analyzed the interaction between
probing pairs and CBR cross-traffic using a single-hop path.
They proposed the following gap formula under the condition
that the packets in each probing pair share the same hop busy
period:

gO =
s

C
+
λgI
C
, (6)

wheregO is the output gap,gI is the input gap between the
packet pair,s is the packet size of probe traffic. The paper [5]
also proposed a packet-train based estimator called IGI that
measures the cross-traffic intensity, which can be viewed as
an empirical extension of (6).

As an alternative to IGI, [5] suggested to use a method
called PTR (Packet Transmission Rate), in which the output
rate of the probing train is used as an estimator ofAP . The
authors [5] showed that both IGI and PTR produce accurate
results at theturning point where the input gapgI starts to
become the same as the output gapgO.

Notice that IGI/PTR is also related to model (2), which
shows that theturning point is where bothrI and rO are
equal to the available bandwidthC − λ. Equation (6) is the
“gap” version of the second part of (2).
Spruce [21] is another measurement proposal that uses

packet-pairs. Like IGI,spruce assumes a single bottleneck
link whose capacityC can be estimated beforehand. Spruce
sends probing pairs with intra-pair gapgI set to the bottleneck
link transmission delay of the packet and inter-pair delay set to
an exponentially distributed random variable so as to maintain
the average probing rate below0.05C. Each probing pair
generates an available bandwidth estimateAi computed by:

Ai = C
(

1− gO − gI
gI

)

. (7)

Spruce averages the last 100 samples ofAi to arrive at an
estimation ofAP . Observe thatspruce anchors its rationale
on (6) with gI = s/C, wheres is the probing packet size.

There are other measurement proposals such as Delphi [19]
and the work in [4]. These proposals assume specific cross-
traffic processes, which allows them to either directly estimate
cross-traffic intensity or reconstruct its parameters on a larger
timescale based on the sampled traffic in small time intervals.
The packet probing part however is similar to that ofspruce
and is related to (6).

B. Discussion

In summary, most of the recent proposals anchor their ratio-
nales directly on (2) or a model closely related to it. However,
(2) is only fully justified based on a fluid cross-traffic model,
in which the arrival rate of cross-traffic is constant at all times
t and equalsλ. For general bursty cross-traffic, it is important
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Fig. 1. Single-hop probing model.

to understand whether (2) is the asymptotic behavior of packet
train probing or not. A positive answer to this question would
lay a solid ground for the design of available bandwidth
measurement methods and provide them with an assurance
of asymptotic accuracy. On the other hand, a negative answer
would shed new light on the fundamental limits and tradeoffs
in probing-based measurements, giving rise to new insightsin
parameter tuning under certain application requirements.We
next present the necessary analytical foundation to tacklethis
question.

III. A NALYSIS OF PACKET PROBING

In this section, we present an analytical formulation of
packet probing, identify measurement targets, and derive
closed-form relation between probing input and output for
individual packet trains. Our analysis focuses on the single-hop
probing model in Figure 1. We use the quadruple〈a1, gI , s, n〉
to denote a probing train ofn packetsp1, p2, . . . , pn, where
a1 is the arrival time of the first packetp1 to the hop,gI
is the inter-packet spacing,s is the probe packet size, andn
is the train length. The arrival time at the hop of the probing
packets are denoted byai = a1+(i−1)gI , i = 1, 2, . . . , n. The
departure time of probing packets from the hop are denoted
by di, i = 1, 2, . . . , n. We define theoutput gapof a packet
train as theaveragespacing between adjacent packets in the
train :

gO=
dn − d1
n− 1

. (8)

In terms of rate, the corresponding averageinput andoutput
rates are given by:

rI =
s

gI
, rO =

s

gO
=

(n− 1)s

dn − d1
. (9)

We start from the gap version of (2), namely, we first
investigate the validity of the following model:

E[gO] =











gI gI >
s

C − λ
s

C
+
gIλ

C
gI ≤ s

C − λ

(10)

in a single hop path and then come back to its rate version.
Since we are now dealing with bursty cross-traffic, neither
cross-traffic intensity nor probing output gap is a constant.
Meanwhile,λ andE[gO] can be viewed as the time averages of
traffic intensity and output gaps. Detailed connotations about
these two terms are clarified at later proper times.
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A. Problem Formulation

Throughout the paper, we assume infinite buffer capacity,
FIFO queuing, and a work-conserving discipline for the for-
warding hop. For the composition of cross-traffic and probing
traffic, we assume simple traffic arrival, i.e., at most one packet
arrives at any time instance.

Definition 1: Cross traffic is driven by the packet counting
processN(t) and the packet-size processSn. The cumulative
traffic arrival V (t) is a random process counting the total
volume of data received by the router up to time instance
t:

V (t) =

N(t)
∑

n=1

Sn. (11)

Note thatV (t) andN(t) are right continuous, meaning that
the packet arriving att is counted inV (t). Unlike conventional
traffic modeling, we make no assumption onN(t) or Sn.
Instead, our assumption is made forV (t).

Assumption 1:Cross traffic exhibits “intensity stability,”
which means thatlimt→∞ V (t)/t exists and is less than the
hop capacityC.

This higher level assumption can accommodate a broad
range of traffic types and, at the same time, detach the model
from the underlying details of traffic arrival. We define cross-
traffic intensityλ in (10) as the limit ofV (t)/t ast→ ∞. This
definition reveals a mathematical essence of one’s intuitive
notion of average traffic intensity. Further, as we next show,
the time average of cross-traffic intensity metrics inarbitrary
fixed observation interval is the same as this limit.

Definition 2: We defineYδ(t) as the average cross-traffic
arrival rate in the interval(t, t+ δ] and call it the “δ-interval
cross-traffic intensity” process:

Yδ(t) =
V (t+ δ)− V (t)

δ
. (12)

Given this definition, we have the following result.
Lemma 1:The limiting time averageE[Yδ(t)] of any δ-

interval cross-traffic intensity sample-path is equal toλ:

E[Yδ(t)] = lim
t→∞

1

t

∫ t

0

Yδ(u)du = λ, ∀δ > 0. (13)

Proof: First, notice that:

1

t

∫ t

0

Yδ(u)du =

∫ t+δ

t
V (u)du

δt
−
∫ δ

0
V (u)du

δt
. (14)

Computing the limits, we get:

lim
t→∞

1

t

∫ t

0

Yδ(u)du = lim
t→∞

∫ t+δ

t
V (u)du

δt
− 0. (15)

SinceV (t) is a non-decreasing function, we can write:

δV (t) ≤
∫ t+δ

t

V (u)du ≤ δV (t+ δ). (16)
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Fig. 2. (a) The first 50 ms of the workload sample-pathW (t) of exponential
on-off ns-2 traffic (C = 10 mb/s,s = 750 bytes); (b) Hop workloadW (t)
of CBR ns-2 traffic (C = 2.4 mb/s,s = 1500 bytes).

Finally, note that bothδV (t) andδV (t+ δ) have the same
limit when divided byδt:

lim
t→∞

V (t)

t
= lim

t→∞

δV (t)

δt
≤ lim

t→∞

∫ t+δ

t
V (u)du

δt

≤ lim
t→∞

δV (t+ δ)

δt
= lim

t→∞

V (t+ δ)

t+ δ

t+ δ

t

= lim
t→∞

V (t)

t
. (17)

Combining (15) and (17), we have for∀δ > 0:

lim
t→∞

1

t

∫ t

0

Yδ(u)du = lim
t→∞

V (t)

t
= λ, (18)

which leads to the statement of the lemma.
Throughout this paper, we use the notation of probability

expectation as a shorthand representation for sample-path
limiting time average1. Lemma 1 reveals that to measure
λ, instead of conducting one observation in a very large
time interval (which is often not practical), we can conduct
observations in arbitrarily small time intervals and use their
average to approach it. This has significant implication on
probing based measurement as we show later.

A look back at assumption 1 further confirms its mildness.
Since λ is one of our measurement targets, the intensity
stability assumption basically says that the measurement target
needs to exist.

Our next assumption is related to the forwarding hop.
Definition 3: Hop workload processW (t) is the sum at

time instancet of service times of all packets in the queue
and the remaining service time of the packet in service.

Note thatW (t) is also right continuous. Two examples of
hop workload sample-path are shown in Figure 2.

Assumption 2:The forwarding hop exhibits workload sta-
bility. That is, limt→∞W (t)/t = 0.

Workload stability means thatW (t) = o(t). Note that given
Assumption 1, workload stability is satisfied in most practical

1In fact, the limiting time average of a sample-path is the expectation of its
limiting frequency distribution [15, pages 45-50]. Hence,it is also called the
“sample-path mean.” This paper is purely sample-path based, and we avoid
addressing any probabilistic nature of the underlying random process. The
first equality in Lemma 1 has nothing to do with ergodicity. Itis an equality
by definition.
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situations and that Assumption 2 is formally stated only for
convenience of presentation.

We next define a process especially useful in characterizing
how cross-traffic changes the gaps of probing packet pairs.

Definition 4: A δ-interval workload-difference process
Dδ(t) is the difference between the hop workload at timet
and t+ δ:

Dδ(t) =W (t+ δ)−W (t). (19)

One important implication of workload stability relevant to
probing based measurements is the zero-mean nature ofDδ(t).
It is formally stated as follows.

Lemma 2:AssumingW (t) = o(t), the limiting time aver-
ageE[Dδ(t)] of any δ-interval workload-difference sample-
path is zero:

E[Dδ(t)] = lim
t→∞

1

t

∫ t

0

Dδ(u)du = 0, ∀δ > 0. (20)

Proof: By the definition ofDδ(t), we have

E[Dδ(t)] = E[W (t+ δ)−W (t)]

= E[W (t+ δ)]− E[W (t)]

= lim
t→∞

∫ t

0 W (u+ δ)du

t
− lim

t→∞

∫ t

0 W (u)du

t

= lim
t→∞

∫ t+δ

t
W (u)du

t
− lim

t→∞

∫ δ

0
W (u)du

t

= lim
t→∞

∫ t+δ

t
W (u)du

t
− 0 = 0. (21)

The last equality holds sinceW (t) = o(t).
With these two assumptions, we next present a formulation

of “available bandwidth” and show how it is related to cross
traffic and hop workload both in finite and asymptotically
infinite time intervals.

Definition 5: Hop utilization processU(t) is an on-off
process associated withW (t):

U(t) =

{

1 W (t) > 0

0 W (t) = 0
(22)

andδ-interval hop idle process

I(t, t+ δ) = Iδ(t) = δ −
∫ t+δ

t

U(x)dx (23)

is a process indicating the total amount of idle time of the
forwarding hop in[t, t+δ]. We further call time interval[t, t+
δ] a “hop busy period” ifIδ(t) = 0 and a “hop idle period”
if Iδ(t) = δ.

Under this picture, several properties of the workload
sample-pathW (t) for non-fluid traffic become clear. First,
W (t) consists of alternating idle and busy periods. Second, in
any busy period,W (t) is a series of piecewise linear segments
with slope −1 separated by type one discontinuity points.
Third, any discontinuous pointd in W (t) corresponds to the
arrival of a packet. Assuming the packet size iss, we have2

W (d)−W−(d) = s/C.

2f−(a) denotes the left-sided limitlimx→a− f(x).

Definition 6: A δ-interval available bandwidth process
Bδ(t) is a process indicating the residual bandwidth in the
time interval[t, t+ δ]:

Bδ(t) = C

(

1− 1

δ

∫ t+δ

t

U(x)dx

)

=
Iδ(t)C

δ
. (24)

In our next lemma, we present the relationship among cross-
traffic intensity, hop workload, and available bandwidth in
arbitrary finite time intervals.

Lemma 3:For all t ≥ 0 andδ > 0, the following holds:

δ =
Bδ(t)δ

C
−Dδ(t) +

Yδ(t)δ

C
. (25)

Proof: Note that the total hop idle time in[t, t+ δ] is

Iδ(t) =
Bδ(t)δ

C
. (26)

The amount of data transmitted by the hop in[t, t+δ] is given
by the workload change in the hop (taking into account the
new arrivals):

(W (t)−W (t+ δ))C + V (t+ δ)− V (t)

= −Dδ(t)C + Yδ(t)δ, (27)

which follows from the definitions ofDδ andYδ in (19) and
(12). Dividing (27) byC, the hop working time is

−Dδ(t) +
Yδ(t)δ

C
. (28)

Since the sum of hop working time in (28) and hop idle time
in (26) must be equal toδ, we immediately get the statement
of the lemma.

Note that the termDδ(t) escaped the formulation efforts of
prior work. Although it is a zero-mean term, it is not uncon-
ditionally insignificant. For example, when thedistribution of
available bandwidth is of interest, this term must be taken into
consideration.

The next two theorems present the asymptotic relationship
between cross-traffic intensity and available bandwidth. They
explain when and why available bandwidth can be estimated
by measuring cross-traffic intensityλ.

Theorem 1:Under the assumptions of this paper,δ-interval
available bandwidth converges toC − λ as the observation
interval becomes large:

lim
δ→∞

Bδ(t) = C − λ, ∀t > 0. (29)

Proof: Rearranging (25), we get:

Bδ(t) = C − Yδ(t) +
Dδ(t)C

δ
. (30)

Note that since we assumedW (t) = o(t), we have:

lim
δ→∞

Dδ(t)

δ
= lim

δ→∞

(

W (t+ δ)−W (t)

δ

)

= 0. (31)

Further, as an immediate consequence of Assumption 1, we
have:

lim
δ→∞

Yδ(t) = λ, ∀t. (32)

Taking the limit of (30) and combining with (31) and (32), we
get (29).
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Theorem 1 shows that given the two stability assumptions
we made, available bandwidth also exhibits stability and, in
large time intervals, can be approximated byC − λ.

Note, however, that in cases when we are interested in
the available bandwidth in asmall δ-interval3, Lemma 3
suggests thatBδ(t) cannotbe correctly estimated based on the
measurement ofYδ(t) alone. However, the following theorem
says that the limiting time average of available bandwidth
metrics in arbitraryδ-interval can be estimated by measuring
cross-traffic.

Theorem 2:The limiting time averageE[Bδ(t)] of any δ-
interval available bandwidth process isC − λ. That is,

E[Bδ(t)] = lim
t→∞

1

t

∫ t

0

Bδ(u)du = C − λ, ∀δ > 0. (33)

Proof: This is a direct consequence from (30), Lemma 1
and Lemma 2. We leave the verification to the reader.

To summarize, our results show thatavailable bandwidth
in a large timescale or the first-order statistics of available
bandwidth in arbitrary fixed time scale can be estimated based
on the measurement of cross traffic, while small timescale
metrics and their higher-order statistics cannot be correctly
estimated solely based cross-traffic measurements.

Note that measuring cross-traffic intensityλ is not the only
way to estimate available bandwidthA. Metric A = C − λ
can be directly estimated without knowing the values ofC or
λ, as is the case of SLoPS [7] and PTR [5]. Our discussion of
probing response curve in Section 4 will cover the theoretical
aspects of both approaches.

Despite the perplexing dynamics, we identified two mea-
surement targets,λ and A = C − λ, under mild traffic
assumptions. These two targets are fairly stable in the sense
that they are independent of any particular observation time
instancet and observation intervalδ. Although other metrics
such as the variance and distribution of available bandwidth
might also be interesting, they are less stable because of their
dependence onδ. Measurement of those targets is beyond the
scope of this paper.

We are now ready to derive the probing response curve
and show how these two targets,λ and A, are embedded
in the curve. Before that, however, we must understand the
interaction between the probing traffic and the cross-traffic.
Traffic interaction includes two parts: the way the probing
train changes the original hop workload and the way the cross-
traffic changes the inter-packet gaps in the probing train. The
latter is our interest, but its analysis relies on understanding
the former.

B. Probing Intrusion of Packet Trains

We useW̃ (t) and Ĩ(t) to respectively denote the workload
sample-path and the hop idle sample-path associated with the
superposition of cross-traffic and probing traffic. Note that
traffic composition only increases hop workload. That is, for
all t, W̃ (t) ≥ W (t). We next define useful notation that will
help us examine this intrusion behavior of packet train probing.

3“Small” is relative to the convergence delay ofV (t)/t.
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Fig. 3. Illustration of intrusion residual function.

Definition 7: The intrusive rangeof the probing traffic into
W (t), is the set{t : W̃ (t) > W (t)}. The intrusion residual
function is Wd(t) = W̃ (t)−W (t).

The functionWd(t) helps us understand the intrusion be-
havior of the probing traffic intoW (t). Before the arrival of
probing packets,Wd(t) = 0. It gets an immediate increment of
s/C upon every probing packet arrival, wheres is the packet
size. InW (t)’s busy periods without additional probing packet
arrival, Wd(t) remains unchanged. InW (t)’s idle periods
without additional probing packet arrival,Wd(t) deceases
linearly with slope−1. FunctionWd(t) is monotonically non-
increasing between every two adjacent probing packet arrivals.
Figure 3 illustrates this behavior, where(t1, t2) and(t3, t5) are
two busy periods inW (t), and(t2, t3) and(t5, t7) are two idle
periods inW (t). Timest1, t4 andt6 are the instants of probing
packet arrivals. Timet7 is the end point of the intrusive range.

Based on the above observations ofWd(t), we state the
following lemma without proof:

Lemma 4:WhenW (t) is probed by a single packetp of
sizes arriving into the hop at timet0,

Wd(t) =

{

0 t < t0

max
(

0,
s

C
− I(t0, t)

)

t ≥ t0
. (34)

WhenW (t) is probed by a packet train〈a1, gI , s, n〉, we
are often interested in computing

Ri(a1) =W−
d (ai) =W−

d (a1 + (i− 1)gI) (35)

for i = 1, 2, . . . , n. Metric Ri(a1)
4 is the intrusion resid-

ual causedby the first i − 1 packets in the probing train
〈a1, gI , s, n〉 and experiencedby packetpi. In other words,
the queuing delay ofpi in the hop is given by:

W̃−(ai) = W (ai) +W−
d (ai)

= W (ai) +Ri(a1). (36)

The total sojourn time ofpi at the hop is the sum of its
service time and its queuing delay:

di − ai =W (ai) +Ri(a1) +
s

C
(37)

4Whena1 is irrelevant, we often writeRi(a1) asRi.
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As a direct result of Lemma 4,Ri can be recursively
computed as follows:

Ri =

{

0 i = 1

max
(

0,
s

C
+Ri−1 − I(ai−1, ai)

)

i > 1
. (38)

Denoting s/C − I(ai−1, ai) by yi, the second part of
equation (38) can be expanded to the following non-recursive
form:

Ri = max

(

0, yi−1,

i−1
∑

k=i−2

yk, . . . ,

i−1
∑

k=1

yk

)

. (39)

We next discuss the second part of traffic interaction.

C. Output Gaps of Individual Probing Trains

We first present a corollary. It is due to the work-conserving
assumption. It says that the whole duration of any packet’s stay
at the hop is a hop busy period.

Corollary 1: For any packet arriving into the hop at timet
and departing from the hop at timet + δ, [t, t + δ] is a hop
busy period.

Our next lemma describes the relationship between probing
input and output for an individual packet train. It is the corner
stone of our probing analysis. Previous work only revealed
this result under certain conditions [5], [16]. The full picture,
although simple and important, has remained undocumented.

Lemma 5:Assumingδ = (n−1)gI andW (t) is probed by
a packet train〈a1, gI , s, n〉, the output gapgO can be expressed
as:

gO =
Yδ(a1)gI

C
+
s

C
+
Ĩ(a1, an)

n− 1

= gI +
Dδ(a1)

n− 1
+
Rn(a1)

n− 1
. (40)

Proof: Examine hop activity ofW̃ (t) within the time
interval [d1, dn]. Notice that(n− 1)s/C time units are spent
on serving all probing packets exceptp1 and that

V (an)− V (a1)

C
=
Yδ(a1)(n− 1)gI

C
=
Yδ(a1)δ

C
(41)

time units are spent on serving the cross traffic that has arrived
at the hop during the time interval[a1, an]. Thus the total hop
working time in [d1, dn] is given by

Yδ(a1)δ

C
+

(n− 1)s

C
. (42)

Also notice thatĨ(d1, dn) is the total idle time of the hop
during this time interval. Since the sum of the hop working
time in (42) and hop idle time must be equal todn − d1, we
immediately have the following:

dn − d1 =
(n− 1)gIYδ(a1)

C
+

(n− 1)s

C
+ Ĩ(d1, dn), (43)

which leads to:

gO =
dn − d1
n− 1

=
gIYδ(a1)

C
+
s

C
+
Ĩ(d1, dn)

n− 1
. (44)

Further, due to corollary 1, we get:

Ĩ(d1, dn) = Ĩ(a1, an). (45)

Substitute (45) back to (44), we proved the first equality in
(40). For the second equality in (40), first recall from (37)
that:

dk = ak +Rk(a1) +W (ak) +
s

C
, k = 1, 2, . . . , n. (46)

Thus,

dn − d1 = (an − a1) + Rn(a1) +Dδ(a1). (47)

Dividing both sides of (47) byn− 1, we get:

gO =
dn − d1
n− 1

= gI +
Dδ(a1)

n− 1
+
Rn(a1)

n− 1
. (48)

This proved the second equality in (40).
Lemma 5 shows that the output gap carries the information

aboutYδ(a1), which is potentially useful in cross-traffic mea-
surements. However, the output gap is also contaminated by
the noise information ofDδ(a1), Ĩ(a1, an), andRn(a1). In
Lemma 2, we established the zero-mean nature for the first
noise term. The other two terms can havepositivemeans in
bursty cross-traffic. That is exactly where the probing bias
comes from, as we show later. Meanwhile, we examine several
useful bounds for these two terms.

From (38), noticing thatI(ai−1, ai) is no less than zero
and applying mathematical induction toi, we get0 ≤ Rn ≤
(n− 1)s/C. Combining with Lemma 5, we have:

Corollary 2: Again assumingδ = gI(n− 1), the following
inequalities hold:

Dδ(a1)

n− 1
+ gI ≤ gO ≤ Dδ(a1)

n− 1
+ gI +

s

C
. (49)

The second inequality is tight iffI(a1, an) = 0.
Now we get into the second noise item̃I(a1, an). The next

lemma leads to a bound for̃I(a1, an).
Lemma 6:For k = 1, 2, . . . , n− 1, we have:







Ĩ(ak, ak+1) = 0 gI ≤ s

C

0 ≤ Ĩ(ak, ak+1) ≤ gI −
s

C
gI >

s

C

. (50)

Proof: First, due to the probing intrusion behavior illus-
trated in Figure 3, we have:

Ĩ(ak, ak+1) = max(0, I(ak, ak+1)−
s

C
−Rk), (51)

whereRk ≥ 0 and 0 ≤ I(ak, ak+1) ≤ (ak+1 − ak) = gI .
WhengI ≤ s/C, I(ak, ak+1) ≤ s/C. (51) becomes 0. Thus,
the first part of (50) is proved.

WhengI > s/C, note that

max(0, I(ak, ak+1)−
s

C
−Rk)

≤ max(0, I(ak, ak+1)−
s

C
)

≤ max(0, gI −
s

C
) = gI −

s

C
. (52)

This proves the second part of (50).
Since the term̃I(a1, an) can be expressed as a sum:

Ĩ(a1, an) =

n−1
∑

k=1

Ĩ(ak, ak + 1), (53)
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we get the following bounds on the noise term̃I(a1, an)/(n−
1) after combining (50) with (53):















Ĩ(a1, an)

n− 1
= 0 gI ≤ s

C

0 ≤ Ĩ(a1, an)

n− 1
≤ gI −

s

C
gI >

s

C

. (54)

Collecting Lemma 5 and (54), we get the following result.
Corollary 3: WhenW (t) is probed by〈a1, gI , s, n〉,










gO =
Yδ(a1)gI

C
+
s

C
gI ≤ s

C
Yδ(a1)gI

C
+
s

C
≤ gO ≤ Yδ(a1)gI

C
+ gI gI >

s

C

. (55)

We call (gOC − s)/gI the intensity sampling estimator
(ISE). Corollary 3 implies that when ISE is used to estimate
Yδ(a1), it is ensured to be correct only whengI ≤ s/C. When
gI > s/C, ISE’s correctness is not guaranteed and it tends to
overestimateYδ(a1). The amount of overestimation, however,
will not be more thanC−s/gI , as can be easily derived from
the inequality in Corollary 3.

Finally, we must also notice an important relationship
betweenRn(a1) and Ĩ(a1, an). By subtracting the two ex-
pressions ofgO in (40) and combining Lemma 3, we get:

Ĩ(a1, an) = Rn(a1) + I(a1, an)−
(n− 1)s

C
. (56)

With the understanding of individual packet train probing,
we are now in a position to derive the probing response curve.

IV. PROBING RESPONSECURVES

The probing response curve depends on a number of factors
such as probing construction, the inter-packet pattern, and
cross-traffic characteristics. We assume a Poisson inter-probing
pattern, because the asymptotic average of Poisson samples
converges to the limiting time average of the sample-path
being sampled. This property is known as PASTA (Poisson
Arrivals See Time Averages) [22]. The average rate of Poisson
sampling is assumed to be small enough so that the inter-
ference between adjacent trains can be neglected. We use
〈{Tm}, gI , s, n〉 to denote a probing train series driven by a
Poisson arrival processΛ(t) = max{m ≥ 0 : Tm ≤ t}. We
use g(k)O to denote the output gap of thekth probing train
〈Tk, gI , s, n〉 in the series, i.e.,g(k)O = (d

(k)
n − d

(k)
1 )/(n − 1).

The termE[gO] in (10) is defined as the limiting average of
the discrete-time sample-pathg(k)O :

E[gO] = lim
m→∞

1

m

m
∑

k=1

g
(k)
O . (57)

As mentioned, we use the notation of probability expecta-
tion to represent limiting time average, both for continuous-
time sample-paths and for discrete-time sample-paths.We now
introduce relevant concepts to characterize sample-path statis-
tics and formally state a simplified sample-path version of
PASTA that we use in subsequent derivations.

A. Frequency distribution and PASTA

Definition 8: For continuous-time sample-pathX(t), define
indicator functionΨ(x, t):

Ψ(x, t) =

{

1 X(t) ≤ x
0 X(t) > x

. (58)

The frequency distribution functionP (x) of X(t) is defined
as following (assuming the limit exists for∀x):

P (x) = lim
τ→∞

1

τ

∫ τ

0

Ψ(x, t)dt. (59)

For discrete-time sample-pathXn, define indicator function
as:

Ψ(x, n) =

{

1 Xn ≤ x
0 Xn > x

. (60)

The frequency distribution functionP (x) of Xn is defined as
following (assuming the limit exists for∀x):

P (x) = lim
k→∞

1

k

k
∑

n=1

Ψ(x, n). (61)

For a sample-path of stochastic vector process~X(t), we can
similarly define its frequency distribution functionP (~x). The
only trick is to interpret the≤ and> inequality symbols in
(58) and (60) as a relation for every corresponding component
in the vector.

Lemma 7:Assuming that ~X(t) is a continuous-time
sample-path with frequency distributionP (~x), Tk is a Poisson
arrival sample-path, then the discrete-time sample-path~X(Tk)
also has frequency distributionP (~x).

Lemma 7 basically says that Poisson sampling sees the
sample-path frequency distribution. Consequently, Poisson
sampling also sees the sample-path time average, which is
just the expectation of the sample-path frequency distribution.
PASTA is a classic queuing theory result obtained in early
1980’s. Rigorously speaking, PASTA requires an assumption
called LAA (Lack of Anticipation Assumption) on the Poisson
arrival process, and the result holds in ”almost surely” sense,
instead of pathwise sense. Practically, the Poisson process
governing packet train probing is mostly madeindependent
of the cross-traffic arrival process, which is a condition much
stronger than the LAA assumption. Hence, in Lemma 7, we
avoid the technical rigor that has little practical implication.

B. Bounds

We now obtain upper and lower bounds on the gap response
curve.

Theorem 3:WhenW (t) is probed by a Poisson packet-train
series〈{Tm}, gI ≤ s/C, s, n〉, the following equality holds:

E[gO] =
gIλ

C
+
s

C
. (62)

Proof: Let δ = (n − 1)gI . Using Corollary 3,gI ≤ s

C
implies:

E[gO] = E
[gIYδ(Tm) + s

C

]

=
gIE[Yδ(Tm)] + s

C
. (63)
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Since{Tm} is driven by Poisson arrivals, due to the PASTA
property, we have:

E[Yδ(Tm)] = E[Yδ(t)]. (64)

Combining (63), (64), and Lemma 1, we get (62).
Rearranging the result of Theorem 3, we get:

λ =
E[gO]C − s

gI
= E

[gOC − s

gI

]

, (65)

which explains when and why ISE can form an unbiased esti-
mator for traffic intensity and thus for the available bandwidth.

Theorem 4:WhenW (t) is probed by Poisson packet-train
series〈{Tm}, gI > s/C, s, n〉, the following holds:

max
(gIλ+ s

C
, gI

)

≤ E[gO] ≤ min
(

gI(1 +
λ

C
), gI +

s

C

)

.

Proof: Notice that whengI > s/C:

E[gO] ≥
gIE[Yδ(Tk)] + s

C
=
gIE[Yδ(t)] + s

C
=
gIλ+ s

C
.

(66)
Similarly, due to Corollary 2, PASTA, and Lemma 2, we have:

E[gO] ≥ gI +
E[Dδ(Tk)]

n− 1
= gI +

E[Dδ(t)]

n− 1
= gI . (67)

Collecting (66) and (67), we get:

max

(

gIλ+ s

C
, gI

)

≤ E[gO]. (68)

For the upper bound ofE[gO], first, from Corollary 3,
PASTA, and Lemma 1, we get:

E[gO] ≤ gI

(

1 +
E[Yδ(Tk)]

C

)

= gI

(

1 +
E[Yδ(t)]

C

)

= gI

(

1 +
λ

C

)

. (69)

Then from Corollary 2, PASTA, and Lemma 2, we get:

E[gO] ≤ E[Dδ(Tk)]

n− 1
+
s

C
+ gI

=
E[Dδ(t)]

n− 1
+
s

C
+ gI = gI +

s

C
. (70)

Combining (69) and (70), we get:

E[gO] ≤ min

(

gI(1 +
λ

C
), gI +

s

C

)

. (71)

This concludes the proof of this theorem.
Theorem 4 provides both a lower bound and an upper bound

for E[gO] when gI > s/C. Combining the case whengI ≤
s/C as is stated in Theorem 3, we get the lower bound on
E[gO] for the entire probing range0 < gI <∞ as follows5:

L(E[gO]) =











max
(gIλ+ s

C
, gI

)

gI >
s

C
s+ gIλ

C
gI ≤ s

C

=











gI gI >
s

C − λ
s+ gIλ

C
gI ≤ s

C − λ

. (72)

5L(.) and U(.) denote lower bound and upper bound of a function
respectively.

That is exactly model (10) we are trying to validate. However,
Theorem 4 shows that (10) is alower boundof E[gO], which
does not necessarily equal toE[gO]. Likewise, combining
Theorems 3 and 4, we have the entire upper bound summarized
as follows:

U(E[gO]) =











min
(

gI(1 +
λ

C
), gI +

s

C

)

gI >
s

C
s+ gIλ

C
gI ≤ s

C

=



























s

C
+
gIλ

C
gI ≤ s

C

gI +
gIλ

C

s

C
≤ gI ≤ s

λ

gI +
s

C
gI ≥ s

λ

. (73)

The real gap response curve is contained between these
two bounds. We define the probing biasβ(gI , s, n) as the
difference between the real gap response curve and the lower
bound given by (72). It can be expressed as following due to
Theorem 4, Lemma 5, and PASTA:

β(gI , s, n) =















E[Ĩ(t, t+ (n− 1)gI)]

n− 1
gI ≤ s

C − λ
1

n− 1
E[Rn(t)] gI ≥ s

C − λ

.

(74)
We next give a closed-form expression for the probing bias

and thus for the probing response curves.

C. Closed-from Expression

Assumingδ = gI , note that bothRn(t) andĨ(t, t+(n−1)δ)
can be expressed asdeterministicfunctions of an(n − 1)-
dimensional vector

~B
(n−1)
δ (t) =









Bδ(t)
Bδ(t+ δ)

...
Bδ(t+ (n− 2)δ)









. (75)

The exact functional expressions, on the other hand, are not
very important at this point. Therefore, we can introduce the
following notation:

Ĩ(t, t+ (n− 1)δ) = ϕ( ~B
(n−1)
δ (t)), (76)

Rn(t) = ψ( ~B
(n−1)
δ (t)), (77)

where ϕ(.) and ψ(.) are some vector functions. It then
becomes apparent that the probing bias depends on the sample-
path limiting frequency distribution of~B(n−1)

δ (t). Denoting by
P

(n−1)
δ (~x) this distribution function, the probing bias can be

expressed by the following vector integrals:

β(gI , s, n) =















1

n− 1

∫

Ω

ϕ(~x)dP
(n−1)
δ (~x) gI <

s

C − λ
1

n− 1

∫

Ω

ψ(~x)dP
(n−1)
δ (~x) gI ≥ s

C − λ

,

whereΩ is an (n− 1)-dimensional cube[0, C]n−1.
To better understand these results, we now consider a

degenerated case wheren = 2, i.e., the packet-pair probing
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Fig. 4. Illustrations of (a) the gap probing bias, (b) gap response curve, and (c) rate response curve in the entire input range.

case. Note that bothϕ(~x) andψ(~x) become scalar functions
and have simple expressions with respect toBδ(t):

Ĩδ(t) = ϕ(Bδ(t)) = max
(

0,
Bδ(t)δ − s

C

)

, (78)

R2(t) = ψ(Bδ(t)) = max
(

0,
s−Bδ(t)δ

C

)

. (79)

Therefore, we have the following results for the packet-pair
probing response curve.

Theorem 5:Assuming thatW (t) is probed by Poisson
packet-pair series〈{Tm}, gI , s, 2〉, observation intervalδ = gI ,
and theδ-interval available bandwidth sample-pathBδ(t) has
frequency distribution functionPδ(x), the following holds:

E[gO] =
gIλ+ s

C
+

∫ C

s/δ

xδ − s

C
dPδ(x)

= gI +

∫ s/δ

0

s− xδ

C
dPδ(x). (80)

Proof: We only need to show the following:

E[Ĩδ(t)] =

∫ C

s/δ

xδ − s

C
dPδ(x), (81)

E[R2(t)] =

∫ s/δ

0

s− xδ

C
dPδ(x). (82)

Then combining Lemma 5, Lemma 1, Lemma 2, Lemma 7,
and both equations above, we immediately get the theorem.

To prove (81), simply recall (78) and we have:

E[Ĩδ(t)] = E

[

max

(

0,
Bδ(t)δ − s

C

)]

=

∫ C

s/δ

xδ − s

C
dPδ(x).

For the second part, recall (79) and we have:

E[R2(t)] = E

[

max

(

0,
s− Bδ(t)δ

C

)]

=

∫ s/δ

0

s− xδ

C
dPδ(x).

This proved the theorem.

It immediately follows that the packet-pair probing bias is
as following (wheregI = δ):

β(gI , s, 2) =



















∫ C

s/δ

xδ − s

C
dPδ(x) gI <

s

C − λ
∫ s/δ

0

s− xδ

C
dPδ(x) gI ≥ s

C − λ

. (83)

The probing bias is one of the previously unknown factors
causing measurement errors in available bandwidth estimation
techniques based on (10). Our closed-from expressions show
that the probing bias is exclusively decided by the packet-
train parameters and the available bandwidth sample-path
distribution. Next, we show the full picture of the response
curves for both the gap version and the rate version.

D. Full Picture

We now investigate the relationship between the probing
bias given in (74) and the input gapgI while keeping all other
parameters fixed. We first present the results for the case of
packet-pair probing.

Theorem 6:WhenW (t) is probed by Poisson packet pair
series〈{Tm}, gI , s, 2〉, the probing biasβ(gI , s, 2) equals zero
when input gapgI ∈ (0, s/C]; it is a monotonically increasing
function of gI in the input gap range(s/C, s/(C − λ)]; and
it is a monotonically decreasing function ofgI in the input
gap range(s/(C − λ),∞). Furthermore, in the whole input
gap range(0,∞), the probing bias is a continuous function of
gI . Finally, biasβ(gI , s, 2) monotonically converges to 0 as
gI approaches infinity.

Proof: WhengI ∈ (0, s/C], β(gI , s, 2) equals to 0 due to
Theorem 3. Next, we prove the continuity and monotonicity
properties ofβ(gI , s, 2). Let δ = gI , we first show that
E[Ĩδ(t)] is a continuous and monotonically increasing function
of δ in the rangeδ ∈ (0,∞). First, note for any0 < ∆ andt,
we have:

0 ≤ Ĩδ+∆(t)− Ĩδ(t) ≤ ∆. (84)

This difference defines a new sample-path, and we can com-
pute its time average as follows:

0 ≤ E[Ĩδ+∆(t)− Ĩδ(t)] ≤ ∆, (85)

which can be rewritten as:

0 ≤ E[Ĩδ+∆(t)]− E[Ĩδ(t)] ≤ ∆. (86)
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This already proves the monotonicity ofE[Ĩδ(t)] with respect
to δ. Further, by taking the limit of (86) when∆ → 0, we
have:

lim
∆→0

(E[Ĩδ+∆(t)]− E[Ĩδ(t)]) = 0. (87)

This proves the continuity ofE[Ĩδ(t)] with respect toδ in
the range(0,∞). Similarly, we can prove the continuity and
monotonic decreasing property ofE[R2(t)] with respect toδ
in the range(0,∞). Combining the monotonicity properties
for bothE[R2(t)] andE[Ĩδ(t)], further recall (74), we proved
the monotonicity properties ofβ(gI , s, 2) described in this
theorem.

For continuity ofβ(gI , s, 2), note that whenδ = s/(C −
δ), the equalityE[R2(t)] = E[Ĩδ(t)] can be easily obtained
from Theorem 5. Combining this result with the continuity of
E[Ĩδ(t)] andE[R2(t)], we proved the continuity ofβ(gI , s, 2)
with respect togI in the entire probing range.

We next prove the asymptotic property ofβ(gI , s, 2) as
gI → ∞. First, note that due to (83), we have:

lim
gI→∞

β(gI , s, 2) = lim
δ→∞

∫ s/δ

0

s− xδ

C
dPδ(x)

= lim
δ→∞

(

∫ s/δ

0

s

C
dPδ(x) −

∫ s/δ

0

xδ

C
dPδ(x)

)

= lim
δ→∞

∫ s/δ

0

s

C
dPδ(x)− lim

δ→∞

∫ s/δ

0

xδ

C
dPδ(x).(88)

Note that the first item in (88) is zero:

lim
δ→∞

∫ s/δ

0

s

C
dPδ(x) = lim

δ→∞

s

C
Pδ(

s

δ
) = 0,

and the second item in (88) is also zero:

0 ≤ lim
δ→∞

∫ s/δ

0

xδ

C
dPδ(x) < lim

δ→∞

∫ s/δ

0

s
δ δ

C
dPδ(x)

= lim
δ→∞

s

C
Pδ(

s

δ
) = 0.

Hence, the limit ofβ(gI , s, 2) when gI → ∞ is zero. This
concludes the whole proof.

Packet-pair probing bias has very nice functional properties
in terms of continuity and monotonicity. The probing bias
β(gI , s, 2) is a hill-shaped function with respect togI as
shown in Figure 4(a), where it reaches its maximum when
gI = s/(C −λ). Our next theorem presents an inequality that
links the packet-train and packet-pair probing biases.

Theorem 7:For anyn ≥ 2, the following holds:

1

n− 1
β((n− 1)gI , (n− 1)s, 2) ≤ β(gI , s, n) ≤ β(gI , s, 2).

Proof: We prove the theorem whengI ≤ s/(C − λ).
The proof whengI ≥ s/(C − λ) is very similar and
we omit it. First, we slightly refine our notations. we use
Ĩ(t0, t1, t, gI , s, n) to denoteĨ(t0, t1) when the hop is probed
by a single packet train〈t, gI , s, n〉. When t = t0, we
omit the third parameter and only writẽI(t0, t1, gI , s, n). We

now prove the first part
1

n− 1
β((n − 1)gI , (n − 1)s, 2) ≤

β(gI , s, n). Note that:

β((n− 1)gI , (n− 1)s, 2)

= E[Ĩ(t, t+ (n− 1)gI , (n− 1)gI , (n− 1)s, 2)] (89)

β(gI , s, n)

=
1

n− 1
E[Ĩ(t, t+ (n− 1)gI , gI , s, n)]. (90)

The idle time in (89) can be expanded as:

Ĩ(t, t+ (n− 1)gI , (n− 1)gI , (n− 1)s, 2)

= max(0, I(t, t+ (n− 1)gI)−
(n− 1)s

C
). (91)

Due to (56), the idle time in (90) can be expanded as:

Ĩ(t, t+ (n− 1)gI , gI , s, n)

= I(t, t+ (n− 1)gI)−
(n− 1)s

C
+Rn(t). (92)

Combining (91) and (92), further noticing thatRn(t) ≥ 0, we
have for∀t,

Ĩ(t, t+ (n− 1)gI , (n− 1)gI , (n− 1)s, 2)

≤ Ĩ(t, t+ (n− 1)gI , gI , s, n). (93)

This leads to

E[Ĩ(t, t+ (n− 1)gI , (n− 1)gI , (n− 1)s, 2)]

≤ E[Ĩ(t, t+ (n− 1)gI , gI , s, n)]. (94)

Dividing both sides of (94) byn− 1, we get:
1

n− 1
β((n− 1)gI , (n− 1)s, 2) ≤ β(gI , s, n). (95)

Next we prove the second partβ(gI , s, n) ≤ β(gI , s, 2).
Notice that fork = 0, 1, . . . , n− 2,

Ĩ(t+ kgI , t+ (k + 1)gI , gI , s, 2)

= max
(

I(t+ kgI , t+ (k + 1)gI)−
s

C

)

, (96)

Ĩ(t+ kgI , t+ (k + 1)gI , t, gI , s, n)

= max
(

I(t+ kgI , t+ (k + 1)gI)−
s

C
−Rk(t)

)

.(97)

Combining (96) and(97), noticing thatRk(t) ≥ 0, we get:

Ĩ(t+ kgI , t+ (k + 1)gI , t, gI , s, n)

≤ Ĩ(t+ kgI , t+ (k + 1)gI , gI , s, 2). (98)

This inequality also holds when we sum up all idle time from
k = 0 to k = n− 2:

n−2
∑

k=0

Ĩ(t+ kgI , t+ (k + 1)gI , t, gI , s, n)

≤
n−2
∑

k=0

Ĩ(t+ kgI , t+ (k + 1)gI , gI , s, 2). (99)

Note that the left-side item in (99) is actuallỹI(t, t + (n −
1)gI , gI , s, n). Computing the limiting time averages of both
sides in (99), we get:

E[Ĩ(t, t+ (n− 1)gI , gI , s, n)

≤
n−2
∑

k=0

E[Ĩ(t+ kgI , t+ (k + 1)gI , gI , s, 2)]

= (n− 1)E[Ĩ(t, t+ gI , gI , s, 2)]. (100)
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Dividing (n− 1) at both sides of (100), we get:

β(gI , s, n) ≤ β(gI , s, 2). (101)

This proves the second inequality in this theorem.
This result tells us that the packet-train probing bias

β(gI , s, n) has similar hill-shaped evolving trend with respect
to gI since it is both lower-bounded and upper-bounded by
hill-shaped functions. We conjecture that it is also continuous
and has similar monotonicity properties described in Theorem
6.

In summary, the probing bias is significant only in the
middle part of the whole probing range. We call that range
thebiased probing range. The full picture of the gap response
curve is illustrated in Figure 4(b). The whole probing range
(0,∞) is divided into three segments. Interval(0, s/C] is an
unbiased region where the ISE formula(CgO − s)/gI forms
an unbiased intensity estimator forλ. Region (s/C, α) is a
biased region whereE[gO] is larger than what is given in
(10), but smaller than the upper bound in (73) and the ISE
formula overestimatesλ. Finally, interval(α,∞) is the second
unbiased probing range whereE[gO] = gI . Theoretically, this
range often does not exist due to infiniteα. Practically, a
sufficiently small bias is taken as none. The probing point
s/(C − λ), associated with available bandwidth, is the point
where the probing bias is maximized and is not the same as
the turning pointα. Further note that the upper bound of gap
response curve as given in (73) is actually not a tight bound.

It is often more informative to look at the rate version of
the response curve rather than the gap version, because it has
a direct association with our measurement interests: traffic
intensity and available bandwidth. Transforming (10) intothe
corresponding rate version, we get the rate upper bound:

U

(

s

E[gO]

)

=







rI 0 < rI ≤ C − λ

C
rI

rI + λ
rI > C − λ

. (102)

Although (102) looks similar to (2), they are in fact very
different sinceE[rO] = E[s/gO] 6= s/E[gO] andE[rO] has a
different behavior from that ofs/E[gO]. Our conclusions are
meant fors/E[gO], not forE[s/gO]. Although TOPP proposes
(2) as its rationale, its actual implementation is however based
on (102). It is important to clarify this confusion.

Transforming (73) gives us the rate lower bound as follows.

L

(

s

E[gO]

)

=































rIC

rI + C
0 < rI ≤ λ

rIC

λ+ C
λ < rI ≤ C

rIC

rI + λ
C < rI

. (103)

As illustrated in Figure 4(c), along the vertical direction, the
rate response curve appears between the two bounds given
above. Along the horizontal direction, the curve shows one
negatively biased probing region sandwiched by two unbiased
probing regions.

E. The Impact of Packet Train Parameters

We now examine the impact of probing packet size on
probing bias. First, we consider the rate response curve of
packet-pair probing. At any fixed input rate pointr < C−λ, let
s → ∞. This causes the sampling intervalδ = s/r approach
to infinity proportionally. Recall (83), we have:

β
(s

r
, s, 2

)

=

∫ r

0

s− xδ

C
dPδ(x)

=

∫ r

0

rδ − xδ

C
dPδ(x) =

δ

C

∫ r

0

(r − x)dPδ(x)

=
δ

C

(

r

∫ r

0

dPδ(x)−
∫ r

0

xdPδ(x)

)

(104)

Applying integration by parts, we get:
∫ r

0

xdPδ(x) = rPδ(r)−
∫ r

0

Pδ(x)dx. (105)

Substituting (105) back to (104), we get

β
(s

r
, s, 2

)

=
δ

C

∫ r

0

Pδ(x)dx. (106)

From (106), we get a sufficient and necessary condition for
packet-pair probing bias at input rater < A to vanish when
s→ ∞:

lim
δ→∞

δ

∫ r

0

Pδ(x)dx = 0. (107)

Similarly, for any input rater > A, a sufficient and necessary
condition for packet-pair probing bias to vanish is:

lim
δ→∞

δ(C − r −
∫ C

r

Pδ(x)dx) = 0. (108)

These conditions require the cross-traffic not only exhibit
decaying variance or gradually concentrating distribution when
the observation intervalδ becomes large, but also show suffi-
cient decaying speed. Our experiments show that cross-traffic
often satisfies these properties. Hence, larger probing packet
size usually implies less probing bias. The same conclusion
also holds For packet train probing due to the following
theorem.

Theorem 8:For any input probing rater, If

lim
s→∞

β
(s

r
, s, 2

)

= 0, (109)

then for packet train of any length, we have:

lim
s→∞

β
(s

r
, s, n

)

= 0, ∀n > 2. (110)

Proof: Recall Theorem 7, we have:

1

n− 1
β(

(n− 1)s

r
, (n− 1)s, 2) ≤ β(

s

r
, s, n) ≤ β(

s

r
, s, 2).

Taking the limits of all three terms in the above inequality and
noticing (109), we get:

0 ≤ lim
s→→∞

β(
s

r
, s, n) ≤ 0. (111)

Hence,lims→∞ β( sr , s, n) = 0. This proves the theorem.
As to the impact of packet train length, (39) shows that

Rn depends on a partial sum of series of random variables
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yi, i = 1, 2, . . . , n − 1 summed in the reverse order. This
is a classic form in random walk theory [23], which deals
with partial sums ofi.i.d random variables. Although it is
unlikely for yi = s/C − I(ai, ai+1) to be i.i.d, we make
this assumption to keep the derivations tractable and apply
random walk theory to conceptually understand the impact of
train length on probing bias. Using the probing bias expression
in (74), random walk theory says that ifE[yi] < 0, which is
the case whengI > s/(C − λ), Rn converges in distribution
to a finite-mean random variable asn→ ∞:

lim
n→∞

E[Rn] <∞. (112)

Consequently,

lim
n→∞

E[Rn]

n− 1
= 0. (113)

On the other hand, whenE[yi] ≥ 0, as is the case when
gI ≤ s/(C − λ), Rn goes unbounded with probability 1 as
n → ∞. Note the following relationship betweenRn and
Ĩ(a1, an):

Ĩ(an, an+1) = max
(

0, I(an, an+1)−
s

C
−Rn

)

. (114)

Thus, there is a random pointn0 such thatĨ(an, an+1)
becomes 0 ifn > n0. And this n0 converges in distribution
to a finite-mean random variable asn→ ∞, Thus we have

lim
n→∞

E[Ĩ(a1, an)] <∞, (115)

lim
n→∞

1

n− 1
E[Ĩ(a1, an)] = 0. (116)

This explains why the probing bias can be overcome by long
packet trains. Even whenyi are noti.i.d random variables and
the above argument does not fully apply, it at least tells us why
the probing bias can be mitigated, which is quite non-intuitive.

F. Discussion

We now briefly mention how sensitive our results are with
respect to the assumptions made in this paper. First, noticethat
the simple traffic-arrival assumption is made solely to avoid
getting into unnecessary technical details. Even when batch
arrivals are allowed, simple arrivals occur almost everywhere
along the time axis, and all the results in this paper remain
valid.

This paper also assumed infinite buffer space in the hop.
Hence, our results are valid when buffer space is sufficiently
large and packet loss can be neglected. In the case of other-
wise, the equalityA = C − λ becomes invalid. The analysis
of the impact of buffer size on bandwidth estimation requires
future work.

We further assumed a Poisson inter-probing pattern. This
can be relaxed to more general ASTA [11] sampling and as
long as the sampling pattern has decent ASTA properties, all
of our conclusions hold. In the case of non-negligible ASTA
bias, most measurement techniques would fail and nothing
interesting is left for discussion. ASTA bias is another source
of measurement error that has never been studied or evaluated
before. We consider it beyond the scope of this paper.

Finally, we made two sample-path assumptions on cross-
traffic and tried to avoid assuming cross-traffic stationarity,
which was an assumption commonly agreed upon in prior
work. Our results are applicable to but not limited to stationary
cross-traffic. More information regarding this issue is given in
the appendix.

Next, we present our experimental methodology to compute
the probing response curve and observe the probing bias
quantitatively.

V. EXPERIMENTAL RESULTS

To characterize the probing bias, we need to obtain the
limiting averages of the probing output. In this section, we
propose two experimental procedures to compute the probing
response curves with supervised precision. The first procedure
is period testing, applicable to periodic traffic such as CBR.
The second procedure istrace-driven testing, applicable to
aperiodic traffic. We first apply the former to CBR traffic to
verify our analytical results. We then apply the latter to several
additional traffic traces to examine the relationship between
probing bias and probing constructions.

A. Period Testing

The CBR (Constant Bit Rate) traffic we consider here is
the one with a fixed packet size, fixed inter-packet delay,
and periodical triangle-wave workload sample-path showedin
Figure 2(b). CBR cross-traffic is arguably the simplest type
of bursty6 traffic; however, it is also very important since we
believe that any available bandwidth estimation techniquemust
be shown accurate in CBR cross-traffic before being tested in
more complex environments.

It is clear that CBR traffic satisfies both stability assump-
tions we made. Period testing on CBR traffic operates as
follows. Assume a scenario with CBR cross-traffic packet size
sc, inter-packet delayT , hop capacityC, and sc/C < T .
Without loss of generality, we let the first packet arrive to the
router at time instance 0. We divide the time interval[0, T ]
into m equal-size sub-intervals. For allk = 0, 1, 2...m −
1, we compute the output gapg(k)O of the probing train
〈T (2k + 1)/2m, gI, s, n〉. The average metric

∑m−1
k=0 g

(k)
O /m

of the output gaps is used as an approximation ofE[gO].
The departure time of the last packet in the probing train is
calculated using (37), whereW (an) can be easily computed
due to the periodicity of the CBR workload sample-path. Also
note thatRn(a1) can be recursively computed using (38).
Thus, period testing can be conducted using deterministic
computation without the use ofns2.

The validity of period testing is due to the following
theorem:

Theorem 9:Let E[gO] be the asymptotic average of output
gaps when the hop is probed by Poisson packet train series
〈{Tm}, gI , s, n〉. Let gO(t) be the output gap when the hop
is probed by a single packet train〈t, gI , s, n〉. Assuming the
workload sample-pathW (t) associated with cross-traffic is a

6In this paper, a traffic is called bursty if its cumulative arrival sample-path
V (t) is not a linear function oft. Hence, all but constant-rate fluid traffic is
bursty.
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Fig. 5. Packet pair probing in CBR cross-traffic: (a) Rate response curves,
(b) relative rate probing biases. C=10mb/s,λ=2.5mb/s.

periodic function in the time interval(0,∞) andT is period
duration, the following holds:

E[gO] =
1

T

∫ T

0

gO(u)du. (117)

Proof: First notice that, due to the periodicity ofW (t),
the associated sample-paths such asDδ(t) andIδ(t) also have
the same periodicity for allδ > 0. Recall Lemma 5, which says
gO(t) is a deterministic function of those sample-paths. Thus,
gO(t) is also periodic with period durationT . It immediately
follows that:

1

T

∫ T

0

gO(u)du = lim
τ→∞

1

τ

∫ τ

0

gO(u)du. (118)

On the other hand, note that due to PASTA, we have:

E[gO] = lim
τ→∞

1

τ

∫ τ

0

gO(u)du. (119)

Combining (122) and (119), we proved the theorem.
Period testing essentially approximates the right-side item in

(117) using
∑m−1

k=0 gO(T (2k+1)/2m)/m. This approximation
can be made arbitrarily precise by choosing sufficiently large
m. Next, we introduce two supervision strategies to help
decide the number of samplesm. Both are also applicable
to trace-driven testing.

In the first method calledself supervision, we iteratively
double the number of samples and stop when there is little
or no difference between the results produced in consecutive
iterations. In the second method calledregion supervision, we
make sure thatm is large enough so that the results of period
testing are in agreement with those predicted by (10) or (102)
in the unbiased probing range.

In our experiment, we choosesc = 1, 500 bytes,C = 10
mb/s, andλ = 2.5 mb/s. Thus, the inter-packet spacing of
CBR cross-traffic is4.8 ms. Using our supervision strategies,
we find that 500 samples can provide very good precision and
the results do not significantly differ from those obtained using
1, 000 or more samples.

Figure 5(a) shows the rate response curves when the hop
is probed by packet pairs. The legends are sorted in the same
order as their corresponding curves appear vertically in the
figure, and we do this whenever possible for all figures to
make them easier to read.
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Figure 5(b) shows therelative rate probing bias, defined as:

min
(

rI ,
rIC

λ+ rI

)

− s

E[gO]

C − λ− (C − λ)C

λ+ C

, (120)

where the numerator is the absolute rate probing bias and the
denominator is the difference between the rate upper bound
and the rate lower bound when the input probing rate equals
to the available bandwidthC − λ. This difference is an upper
bound of absolute rate probing bias. Hence, the relative bias
metric takes values in[0, 1].

As shown in Figure 5, the probing bias is clearly noticeable
for all three cases. The biased regions are around (5 mb/s, 10
mb/s) for s = 1500 bytes, (3.5 mb/s, 10 mb/s) fors = 750
bytes, and (1.7 mb/s, 10 mb/s) fors = 250 bytes. The relative
bias (120) also exhibits high amplitude up to 0.5-0.8, meaning
that, at certain probing ranges, the rate response curves are
much closer to the lower bound than to the upper bound.
Also note that as probing packet sizes increases, both the
bias range and bias amplitude shrink. Further, the strongest
probing bias appears at the available bandwidth point for all
three cases, which is7.5 mb/s in our case. Finally, the biases
appear monotonic at both sides of the available bandwidth
probing point. These observations are in agreement with our
theoretical findings.

Figure 6 shows gap and rate response curves when the hop
is probed by packet trains. The probing packet size is50 bytes.
The reason why we use small probing packet size is to show
that long trains can compensate for the bias introduced by
the small probing packet size. The figure shows the response
curves for train lengths 16, 64, and 256 packets. From Figure
6, we see that the probing bias is clear, but diminishes as train
length increases.

B. Trace-Driven Testing

1) Traffic Traces: In this section, we compare probing
biases using four different cross-traffic types: CBR traffic,
Poisson traffic with constant packet size (PCS), Poisson traffic
with packet sizes (in bytes) uniformly distributed in[1, 1500]
(PUS), and Paretoon/off traffic (POF). Hop capacityC is fixed
at 10 mb/s. The cross-traffic packet size is750 bytes for CBR,
PCS, and theon period of POF. The average sending rate is
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Fig. 7. (a) FunctionI(t) shows the convergence delays, and (b) Function
R(t) shows convergence errors for the four traffic traces.

500 packets per second for CBR, PCS, and PUS. The mean
duration of POFon/off periods is 10 and 5 ms, respectively.
The Pareto shape parameterα for the duration of bothon/off
periods is set to1.9 so that their variance is infinite. In POF
on periods, the source sends CBR traffic at 750 packets per
second. Given these settings, all four cross-traffic types have
an average traffic intensity equal to3 mb/s.

Since all but CBR traffic have aperiodic hop workload
sample-path, we cannot apply period testing to obtain their
response curves. Instead, we employ trace-driven testing to
compute the response curves for the other three traffic types.
We use RNGs (random number generators) to produce four
packet-arrival traces, one for each traffic type. These traces
record the time instances of all packet arrivals and their sizes
within a period of 100 seconds. Before we explain how trace-
driven testing works, we first show that these traffic traces
satisfy the two cross-traffic stability assumptions we made.

In Figure 7(a), we plot functionI(t) = V (t)/t for the
four traffic traces. As shown in the figure, all traffic types
exhibit intensity stability despite the big differences in their
convergence delays. Figure 7(b) shows the intensity conver-
gence error defined as:

R(t) =
|I(t)− 3 mb/s|

3 mb/s
. (121)

As demonstrated in Figure 7, CBR shows the fastest con-
vergence speed. In about10 seconds, CBR converges to the
0.2%-neighborhood of the limiting value, i.e.,R(10) ≤ 0.002.
PCS and PUS also converge relatively fast, but much slower
than CBR. In10 seconds, both PCS and PUS converge to the
1%-neighborhood of the desired 3 mb/s. PCS converges a little
faster than PUS but the difference is small. POF shows the
slowest convergence speed. It reaches the1.5%-neighborhood
in about60 seconds.

The four traffic traces also exhibitworkload stability when
they are injected in a hop of capacityC = 10 mb/s. This is
theoretically provable. Using queueing theory, we can directly
compute the limiting time average of the workload process
for these four traffic types. The existence of workload limiting
time average implies workload stability. More details are given
in the appendix.

2) Testing Procedure:Trace-driven testing is grounded on
the following corollary:
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Fig. 8. Rate response curve for the four cross-traffic traces: (a) probing pairs,
(b) 16-packet trains (probing packet size 750 bytes).

Corollary 4: LetE[gO] be the asymptotic average of output
gaps when the hop is probed by Poisson packet train series
〈{Tm}, gI , s, n〉. Let gO(t) be the output gap when the hop is
probed by a single packet train〈t, gI , s, n〉. Then the following
holds due to PASTA:

E[gO] = lim
τ→∞

1

τ

∫ τ

0

gO(u)du. (122)

Trace-driven testing essentially approximates the right-side
item in (122) by computing the time average ofgO(t) in a
finite time interval [0, t0]. The approximation can be made
arbitrarily accurate when sufficiently larget0 is used. We
chooset0 based on the convergence error functionR(t) of the
traffic traces, since a small value ofR(t0) is a good indication
that the traffic statistics in[0, t0] has sufficiently converged to
its equilibrium statistics.

Oncet0 is chosen, trace-driven testing computes the sample
average

∑m−1
k=0 gO(t0(2k + 1)/2m)/m and uses it as an

approximation of
∫ t0
0
gO(u)du/t0, wherem is decided by

the two supervision strategies discussed before. The com-
putation of the output gapg(k)O of the probing packet train
〈t0(2k+1)/2m, gI, s, n〉 again relies on (37) and (38), where
the workloadW (t) at any time instance can be computed
based on cross-traffic trace and hop capacity.

In our experiment, we chooset0 = 20 seconds for PCS
and PUS, which leads toR(t) ≤ 0.01, and t0 = 60 seconds
for POF, which ensuresR(t) ≤ 0.015. For CBR, we still use
period testing. In what follows, we first compute the response
curves for several fixed probing constructions. We then study
the impact of probing constructions on probing bias.

3) Results for Fixed Probing Constructions:Figure 8(a)
shows the rate response curves for the four traces when the
hop is probed using packet pairs. We computed the output
rates/E[gO] at 140 input rate points, from 1.0 mb/s to 14.0
mb/s with a 0.1 mb/s increment. We applied region supervision
to decide the number of samples. That is, at each input rate
in [10.0 mb/s, 14.0 mb/s], the number of samples is made
large enough so that the output rates/E[gO] computed in
trace-driven testing is within the1%-neighborhood of the value
predicted by fluid model (102). This required 500 samples for
CBR, 1,000 samples for PCS and PUS, and 2,000 samples for
POF.

As showed in Figure 8(a), the rate response curve of POF
is virtually indistinguishable from that of CBR. The PCS and
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Fig. 9. NBR for the four cross-traffic traces: (a) probing train length from
2 to 512. (b) log scale plotting of (a). (c) probing packet size from 50 bytes
to 1500 bytes. (d) log scale plotting of (c).

PUS curves are also very close to each other. However, it is
interesting to note that the curve for POF is closer to rate
upper bound than the curves for PUS and PCS, meaning that
it sufferslessprobing bias. This indicates that, for fixed packet
train parameters, cross-traffic of more burstiness does not
necessarily imply larger probing bias. We explain the reasons
in a short while.

Figure 8(b) shows the rate response curves for the four
traces when the hop is probed using 16-packet trains. For the
CBR trace, the response curve is almost unbiased and hardly
distinguishable from the rate upper bound in the figure. The
probing biases are still clear for the other three traces; and
those three curves are very close to each other. This shows
that, as the probing train length increases, the probing bias
diminishes. For cross-traffic of different burstiness, thedimin-
ishing rate is different. The probing bias for POF vanishes at
a rate lower than those of the other three.

4) Impact of Probing Construction:Since we constantly
observe that the response curves suffer the largest probingbias
at the available bandwidth point, we define a metric called
NBR (Normalized Bias Ratio) to characterize the amount of
bias in a rate response curve. Assumingr is the output rate
s/E[gO] when the input rate isA = C − λ, we define:

NBR =
A− r

r− AC

C + λ

, (123)

which is the distance of the actual curve to its upper bound
divided by the distance to its lower bound, given that the
input probing rate is equal to the available bandwidthA.
The NBR metric takes values in[0,∞), where larger NBR
values indicate more probing bias in the response curve. We
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Fig. 10. NBR(s, l) for four types of cross-traffic on log-log scale.

next investigate the relationship between NBR and packet-train
parameters.

For all four traces, we computed NBR using probing packet
sizes between50 and1500 bytes with50-byte increasing step
and probing train lengths between 2 and 512 packets with 2-
packet increasing step. Thus, in total, we have256 × 30 =
7, 680 different probing constructions for each of the four
traces. For each probing construction, we calculate the output
rater in (123) using trace-driven testing with 2,000 samples.

Figure 9(a) shows NBR for the four traces usings = 750
bytes. In all four traces, NBR decreases as the probing train
length increases and this relationship appears to be a power-
law function as is confirmed by our log-log scale plotting in
Figure 9(b). Figure 9(c) shows NBR when train length is fixed
at 16 packets and the probing packet size varies from50 bytes
to 1500 bytes . We again observe a power-law decrease of
NBR with respect to the increase in the probing packet size as
showed in the log-scale plotting in Figure 9(d). Conjecturing
that the relationship between NBR, probing sizes, and train
length l can be modeled using functionNBR = k/(sα1 lα2),
we get:

log(NBR) = log(k)− α1 log(s)− α2 log(l), (124)

To obtain further insight into this formula, we plot 3D charts
of NBR(s, l) on a log-log scale for all four traces and indeed
observed four flat planes. Figure 10 shows the four NBR
planes.

We use 3D-fitting to find the parameters of the four planes.
All least-square fitting errors are less than2%, indicating that
the power-law function (124) is a reasonable model for NBR.
Curve-fitting results are given in Table I, which shows that
traffic with more burstiness has smaller values ofα1 and
α2. This explains why the probing bias in POF is harder to
overcome than those in the other three cross-traffic traces.

5) Discussion: The experimental results we obtained in
trace-driven testing agree with our analytical findings very
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TABLE I
3D-FITTING RESULTS FORNBR PLANES

α1 α2 log(k)
CBR 1.103 ± 0.017 0.993± 0.008 10.53 ± 0.175
PCS 0.562 ± 0.006 0.534± 0.003 6.300 ± 0.058
PUS 0.524 ± 0.008 0.539± 0.004 6.111 ± 0.077
POF 0.413 ± 0.007 0.338± 0.003 4.000 ± 0.074

well. Furthermore, our results show that with fixed probing
constructions, more cross-traffic burstiness does not necessar-
ily implies more probing bias. This probing bias, however, is
more difficult to overcome by increasing the probing packet
size or probing train length.

To understand this phenomenon, recall that traffic burstiness
relates to how fast the traffic becomes ”smooth” with respectto
the increase of observation intervals rather than how ”smooth”
the traffic appears given a fixed observation interval. Hence,
it is usual that for a given observation interval, POF has
smaller second order statistics than Poisson traffic and appears
”smoother”, leading to less probing bias when packet trains
are constructed to sample the traffic in such an observation
interval. As the train length or packet size increases, the
observation interval increases, Poisson traffic becomes smooth
quicker than POF. Therefore, the probing bias is also overcome
quicker.

Even though we do not offer a precise interpretation for
the power-law relation between NBR metric and probing
constructions, we believe that it is related to the evolvingtrend
of available bandwidth frequency distribution with respect to
the increase of observation interval. This view is supported by
the closed-form expression of probing bias, which shows that
there is no other factor that can decide the NBR metric.

VI. I MPLICATIONS

Among the five representative proposals TOPP, IGI/PTR,
Spruce,pahtload, andpathChirp, the first three directly
fall under the umbrella of our work. The last two techniques
have quite a few tunable parameters and their behavior is
complex. We will consider them in our future work.

A. TOPP

Figure 11 shows the rate response curves for the four traces
when the hop is probed using1, 500-byte packet pairs (as
suggested in [14]). The curves are transformed using formula
(4) so that TOPP can apply segmented linear regression to
obtain the hop capacity and available bandwidth information.
In the order of closeness to TOPP’s expected piece-wise linear
curve appear the response curves of CBR, POF, PCS and PUS.
TOPP uses the second segment, assuming that it is the one
with the hop information. However, the biased probing range
usually appears as the second segment unless it is very small
and undetectable. In Figure 11, all the biased ranges are very
clear and will be incorrectly acted upon by TOPP. Table II
shows the results of a linear regression applied to the biased
response curves according to the basic algorithm in TOPP.
As the table shows, the available bandwidth is significantly
underestimated, especially for PUS and PCS. Both the hop
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TABLE II
TOPP RESULTS(IN MB /S) USING THE BIASED SEGMENT

(CORRECTVALUES: C = 10 MB /S, A = 7 MB /S)

estimatedC estimatedλ estimatedA
CBR 11.11 4.44 6.67
PCS 35.81 32.38 3.43
PUS 32.51 29.24 3.28
POF 23.38 18.36 5.02

capacity and cross traffic intensity are significantlyoveres-
timated. To assure asymptotic accuracy, TOPP has to apply
additional techniques to bypass these segments in the biased
probing range.

B. IGI/PTR

PTR uses the probing output rate,s/E[gO], at the turning
point to estimate the available bandwidth. As we established,
the turning point usually is not the available bandwidth point.
It can be associated with a rate much smaller than available
bandwidth. Thus, theoretically-speaking, PTR is anegatively
biasedavailable bandwidth estimator in all single-hop paths.

As an estimator of cross-traffic intensity, the IGI formula

λ = E

[
∑

1≤i<n,di+1−di>gI
C(di+1 − di − s

C )

dn − d1

]

(125)

is negatively biased whengI ≤ s/C. This is clear when
comparing (125) with the ISE equation (65), which has the
same numerator but smaller denominator than those of IGI.
Recall that in [5], the IGI estimator is applied at the turning
point wherean − a1 = E[dn − d1]. In that case, IGI has the
same denominator, but a smaller numerator compared to ISE.
According to Theorem 4, ISE is a positively-biased intensity
estimator at the turning point, which suggests that IGI can be
viewed as an estimator with a heuristical compensator for this
bias. We use trace-driven testing to examine the performance
of IGI’s bias compensation. We use probing packet size 750
bytes and train length 64 packet as suggested in [5]. For
comparison purposes, we also examine the ISE estimator and
the PTR available bandwidth estimator.

Figure 12 shows these results for the four cross-traffic. The
figure clearly shows that IGI provides a good estimate of cross-
traffic intensityλ at the available bandwidth pointA = 7 mb/s,
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Fig. 12. Trace driven testing of three estimators: IGI, PTR,and ISE: (a) using CBR, (b) using PCS, (c) using PUS, (d) usingPOF.

while not at the turning pointT ≈ 6 mb/s for all but CBR.
When the input probing rate is small, IGI formula is not a
converging estimator and the results are unstable.

For highly bursty traffic such as POF, the turning point falls
into the unstable region and IGI does not ensure consistent
results.

C. Spruce

Spruce uses ISE with input probing rateC to estimate cross-
traffic intensity. Thus, it is unbiased according to Theorem
3. Although this approach is more susceptible to cross-traffic
interference from non-tight hops, our paper focus on single-
hop analysis and we skip this issue.

VII. C ONCLUDING REMARKS

This paper focused on developing a theoretical understand-
ing of single-hop bandwidth estimation in non-fluid cross-
traffic conditions. Our main contributions include a rigorous
formulation of all relevant factors in probing-based band-
width estimation, an analytical methodology featuring intru-
sion residual analysis, and a thorough discussion of single-hop
probing response curves.

While we identified theprobing bias as one potential
contributing source of measurement errors, there are certainly
other important issues related to the performance of measure-
ment techniques such as multi-hop effects, timing errors, and
layer-2 effects [17].

Our future work involves extending this analysis to multi-
hop paths and understanding the behavior of current measure-
ment techniques in arbitrary network paths.
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APPENDIX

A. Remarks on Cross-Traffic Stationarity

Cross-traffic is stationary if the cumulative traffic arrival
process{V (t)} has stationary increments, which also implies
that theδ-interval cross-traffic intensity process{Yδ(t)} is a
stationary process for allδ > 0. Assuming ergodicity, station-
ary traffic arrival leads to the intensity stability assumption
made this paper. It is also well established that stationarytraffic
arrival, when its long term rateλ is less than the hop capacity
C, leads to hop workload stability [15]. Hence, the results
in this paper are applicable to stationary cross-traffic. Inour
experiment, the two cross-traffic PCS and PUS are stationary
cross-traffic.

Note that, however, a lot of traffic types that are suited for
stochastic modeling are non-stationary.On/off traffic is one
such example, which belongs to regenerative traffic and often
is at most asymptotically stationary. More examples include
time dependent Poisson traffic, transition-modulated traffic,
and even most of the renewal traffic. By avoiding stationarity
assumption, our conclusions are applicable to virtually arbi-
trary cross-traffic that can be stochastically modeled. Thetwo
stability assumptions are also arguably the weakest conditions
of cross-traffic measurability.

B. Workload Stability of the Four Traces

We show that the four traffic traces used in the paper all lead
to hop workload stability. We omit CBR due to its triviality.
For PCS, PUS, and POF, we first apply queuing theory to
calculate their hop workload time averages. We then prove
that the existence of workload time average implies workload
stability.

We useγ to denote the average cross-traffic arrival rate
in packet per second,dn to denote the packet-delay sample-
path,Sn to denote the packet service time sample-path. The
following is a basic result in queueing theory [23, pages 279]:

E[W (t)] = γE[Sn]E[dn] + γE[S2
n]/2. (126)

We now apply (126) to calculate the workload sample-path
time-average for PCS, PUS, and POF. First note thatγ = 500
packets/sec for all three traffic traces.

In PCS, since packet size is constantly 750 bytes, the
sample-path mean of packet service time isE[Sn] = 6×10−4s
andE[S2

n] = 3.6× 10−7s2. Further note that due to PASTA,
E[W (t)] = E[dn]. Hence, we have:

E[W (t)] = 500× 6× 10−4×E[W (t)]+ 500× 3.6× 10−7/2.
(127)

ComputeE[W (t)] from (129), we getE[W (t)] = 128.57µ s.
In PUS, since packet size is uniformly distributed in

[1, 1500] bytes, the sample-path mean of packet service time
is E[Sn] = 6× 10−4s. The second moment of packet service
time isE[S2

n] = 4.8×10−7s2. Further note that due to PASTA,
E[W (t)] = E[dn]. Hence, we have:

E[W (t)] = 500× 0.0006× E[W (t)] + 500× 4.8× 10−7/2.
(128)

ComputeE[W (t)] from (129), we getE[W (t)] = 171.43µ s.
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In POF, since packet size is constantly750 bytes, the
sample-path mean of packet service time isE[Sn] = 6 ×
10−4s. The second moment of packet service time isE[S2

n] =
3.6× 10−7s2. Further note that in POF, all packets come see
empty queue. Thus,E[dn] = 0 and we have:

E[W (t)] = 500× 3.6× 10−7/2 = 90µs. (129)

We plot the average workload functionW(t) =
∫ t

0 W (u)du/t for the three cross-traffic traces in Figure 13.
It is clear that the plot agrees with queuing theoretic compu-
tation.

Theorem 10:If limt→∞ W(t) exists and is finite, then∃t0,
for ∀t > t0, W (t) <

√
t.

Proof: Let

lim
t→∞

W(t) = lim
t→∞

∫ t

0 W (u)du

t
= k. (130)

Suppose theorem 10 does not hold, then there exists an infinite
series{tn}, such thatlimn→∞ tn = ∞ andW (tn) ≥

√
tn for

∀n. Due to basic real analysis theorem,

lim
n→∞

∫ tn+
√
tn

0 W (u)du

tn +
√
tn

= k. (131)

However, due to the sample-path properties ofW (t),
∫ tn+

√
tn

0

W (u)du ≥
∫ tn

0

W (u)du+
tn
2
. (132)

Thus, we have

lim
n→∞

∫ tn+
√
tn

0
W (u)du

tn +
√
tn

≥ lim
n→∞

(

∫ tn
0 W (u)du

tn +
√
tn

+
tn

2(tn +
√
tn)

)

= k +
1

2
. (133)

The contradiction proves this theorem.
Theorem 10 shows that when workload sample-path has a

finite limiting time average, then it is asymptotically bounded
by

√
t. This immediately leads to the following:

lim
t→∞

W (t)

t
= 0. (134)


