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Load-Balancing Performance of Consistent Hashing:
Asymptotic Analysis of Random Node Join

Xiaoming Wang, Student Member, IEEE, and Dmitri Loguinov, Member, IEEE

Abstract—Balancing of structured peer-to-peer graphs, in-
cluding their zone sizes, has recently become an important topic
of distributed hash table (DHT) research. To bring analytical
understanding into the various peer-join mechanisms based on
consistent hashing, we study how zone-balancing decisions made
during the initial sampling of the peer space affect the resulting
zone sizes and derive several asymptotic bounds for the maximum
and minimum zone sizes that hold with high probability. Several
of our results contradict those of prior work and shed new light on
the theoretical performance limitations of consistent hashing. We
use simulations to verify our models and compare the performance
of the various methods using the example of recently proposed de
Bruijn DHTs.

Index Terms—Asymptotic bounds, balls-into-bins, consistent
hashing, load balancing, peer-to-peer (P2P).

I. INTRODUCTION

PEER-TO-PEER networks have become a powerful alter-
native to the client/server infrastructure in the Internet that

provides a distributed platform for such applications as web
caching, bulk data dissemination, and even media streaming.
The latest peer-to-peer networks organize users into massive
(millions of nodes) graphs called distributed hash tables
(DHTs), which provide a scalable, efficient, and fault-tolerant
environment for exchanging information between end-users.
Even though static DHTs received significant attention in tra-
ditional approaches [34], [36], [37], [41], [43] and more-recent
developments [7], [12], [16], [22], [24], [26], [32], [40], one of
the most important areas of peer-to-peer research remains the
study of evolving DHT graphs as users randomly join and leave
the system [2], [3], [5], [17], [18], [23], [30], [35].

In classic DHT systems such as Chord [37] or CAN [34],
objects are hashed into a virtual coordinate space , which is
dynamically partitioned between users in the system using
nonoverlapping subsets ( ). Each user
keeps track of the peers whose objects hash into its zone
and serves requests for these objects generated by the remaining
users. Many performance metrics in a dynamic graph are deter-
mined by the distribution of DHT zone sizes held by each peer.
Imbalance in zone sizes may lead to increased diameter, smaller
node degree, lower bisection width, and higher local congestion
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during routing through the graph. In addition, uneven zone dis-
tribution results in an unfair allocation of user objects to peers
and creates “hotspots” in certain parts of the graph. Even though
hotspots can be relieved with more sophisticated object-hashing
techniques [4]–[6], they have no effect on the weakened struc-
ture of the underlying graph.

User arrival in most DHTs can be modeled by a three-step
process: 1) generation of points in the DHT space
according to some algorithm; 2) sampling of the existing DHT
zones that contain these points; and 3) splitting of
the largest sampled zone. The join process is called random
sampling if are generated uniformly randomly
within the DHT space and deterministic sampling if sample
points are based on deterministic properties of the underlying
graph. Node-join is further classified as single-point if
and multipoint otherwise. Finally, the join process is called
random-split if the existing peer’s zone is partitioned at the
corresponding sample point and center-split if is always
divided in half.

Assuming a sequential join1 process of users into a peer-to-
peer network, this paper studies how the load-balancing deci-
sions made during node arrival affect the resulting zone distri-
bution and how these algorithms perform as the size of the graph

.

A. Main Results and Paper Structure

In a random graph of size , define to be the ratio of
the largest zone size to the average zone size and to be the
ratio of the average zone size to the smallest zone size. Among
methods that sample a single point in the DHT space [34], [36],
[37], it is well known that is with high proba-
bility [17], [32], [37]. We improve this result by establishing the
constants inside and deriving the exact upper, as well
as lower, bounds on that hold with probability ,
for arbitrary constants , under both random and center splits of
existing nodes.

Although the largest zone is usually studied for the purposes
of load-balancing user objects/keys and the bounds are
clear [17], [32], [37], the minimum zone has not received as
much attention. Naor and Wider [32] state without proof that
the minimum zone is smaller than average by the same factor

. Both Loguinov et al. [24] and Fraigniaud and Gauron
[12] implicitly assume in their derivations that is ,
while [12] additionally concludes that , which
essentially means that the upper bound is any power-function
of . To reconcile these partial results, we show that is
upper bounded by with probability under random

1Note that under certain assumptions, a mixture of joins and departures can
be reduced to the pure join model; however, analysis of such scenarios is beyond
the scope of this paper.
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splits and by with probability under center
splits, where represents the natural logarithm throughout
the paper. We further show that splitting existing neighbors in
the center is in fact optimal among all possible splitting methods
and the use of uniform (as opposed to nonuniform) hash indexes
provides the best possible performance in terms of both
and .

Among multipoint sampling methods, Naor and Wieder [32]
select random points in the DHT space and choose the largest
node to split (i.e., the approach used in the classical balls-into-
bins “power of two choices” [4], [19], [29], [38]). They show
using Chernoff-type bounds that for , is upper-
bounded by 2 with probability . We analyze the same
problem using an approach from “balls-into-bins” [28] and de-
rive asymptotic upper/lower bounds on for arbitrary . Our
results show that in large graphs

(1)

with probability at least . Furthermore, we show that
there exists an infinite number of graph sizes such that (1) is
tight (i.e., the bound is violated with probability at least ).
Specifically, for and all values of ,
with high probability; however, there exist such that

with probability . This result contradicts the one
shown in [32] and demonstrates that must tend to infinity for

to converge to 2. Also notice that multipoint sampling
does not lead to the classical bound on
as might have been expected from the analysis of various balls-
into-bins problems [4], [29].

Another zone-balancing approach is first suggested in CAN
[34] and later analyzed by Adler et al. [2]. In this method, each
new node samples a random peer in the graph and then queries

direct neighbors of (the graph is assumed to be -regular).
The paper [2] demonstrates that as long as the degree of each
node is , both and are some constants (the
exact value of the constants is not shown). We study a sim-
ilar problem, in which nodes are allowed to sample other parts
of the graph based on some deterministic function (which, for
example, may represent the graph’s linking rules), and derive
upper bounds on under this model. Our analysis shows
that when , the following bound holds with proba-
bility at least :

(2)

where is (the bound is tight for
infinitely many values of ). This is in contrast to the random
sampling model where the upper bound on converges to

for . Using this insight, we find that, for
example, for and , the deterministic model
requires 2.2 times more samples than the purely random model
to achieve the same bounds on .

Finally, Loguinov et al. [24] use a variation of Adler’s
approach [2], in which the joining peer walks along the edges
of the graph starting in a random location and splitting the
largest node found within a certain number of hops from the
initial node. At each step, the walk is biased toward the largest

neighbor; however, since the location of this neighbor varies
during the evolution of the graph, closed-form analysis of this
approach is rather complicated. We do not offer a model for
this method at this time, but compare its performance with that
of the remaining methods in simulations.

Other P2P balancing methods include the virtual-server ap-
proach originally used in Chord [13], [16], [37], the Messor
system [31], proximity-aware balancing [42], cluster-based bal-
ancing [30], and several other dynamic algorithms [1], [18],
[35], which provide alternative mechanisms for balancing P2P
graphs and are orthogonal to our analysis.

This paper is organized as follows. Section II provides the
background and motivation. Section III studies the random-split
model and derives bounds for both and . In
Section IV, we rederive the same bounds for the single-sample,
center-split model. Section V studies the maximum zone of
multipoint methods and Section VI shows P2P simulations of
de Bruijn DHTs. Section VII concludes the paper.

II. MOTIVATION AND PRELIMINARIES

Generic load balancing is a relatively old and very well-re-
searched area [19], [29]. This problem typically assumes the
existence of fixed bins and objects, which are placed
into the bins using uniform, or possibly nonuniform, random
selection. Assuming , the largest bin will contain

balls with high probability, which can be reduced to
by sampling random bins before placing

each object [4]. The main application of these results in P2P
systems has been balancing of object keys (which we simply
call “objects”) between the peers [5].

While balancing the number of keys per P2P node is an im-
portant objective, we are also concerned with the structure of the
graph since failure of high-degree nodes (i.e., peers with large
zones) compromises the strength of the underlying graph, con-
gestion in large zones leads to increased response delay, and the
presence of low-degree nodes (i.e., peers with small zones) in-
creases the diameter of the system. The first two problems are
common to all graphs, while the third one is most noticeable in
de Bruijn DHTs [12], [16], [24], [32].

For example, in a system with peers, the maximum
zone is between 12 and 28 times larger than average with prob-
ability (we show this result later in the paper). Given
a Chord-like system with the average node degree ,
the in-degree of the largest peer is between 240 and 560 with
high probability. Once this peer fails, over 200 links are broken
simultaneously, leading to rather adverse effects on the graph.
It is also true that the largest peer receives routing traffic in pro-
portion to its degree, which may increase the response delay of
all queries passing through this node. Finally, if the system uti-
lizes a variation of de Bruijn graphs [12], [32], peers with the
smallest zone will have their out-degree equal to 1, will be sus-
ceptible to disconnection from the graph, and will experience a
larger routing diameter.2 As we show later in the paper, almost
6% of all nodes in de Bruijn graphs end up with degree 1 under
random node join.

We next briefly describe the model of the DHT space uti-
lized in this paper and then proceed to zone-balancing analysis.

2This is a consequence of the routing rules in de Bruijn graphs. For more
information, see [24].
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(a) (b)

Fig. 1. Peer linkage in DHT graphs. The degree of the graph is 3. (a) Chord.
(b) de Bruijn.

(a) (b)

Fig. 2. Illustration of splitting mechanisms. (a) Random split. (b) Center split.

We use the unit-ring model3 shown in Fig. 1 as the DHT space
and dissect how “well” the various distributed join algorithms
partition its circumference between the nodes of a P2P system.
Fig. 1 shows four peers holding nonoverlapping parts of the
ring and three edges originating from peer . While the linking
rules vary between the different types of graphs, they all have
the same characteristic – the location of each neighbor is com-
puted based on the zone of peer and random splitting decisions
made during join. Assuming a generic -regular graph used in
most DHTs, Chord links to neighbors at exponen-
tially increasing distances Fig. 1(a), while de Bruijn graphs link
to sequential nodes at a certain offset from the original node
Fig. 1(b).

The construction of the ring is accomplished through a dis-
tributed join process. A new node selects a random location
in the DHT space based on some hashing function and then at-
tempts to join the peer-to-peer system in or around that random
location. In the first approach (e.g., Chord), node splits the
existing peer at exactly . This is illustrated in Fig. 2(a) where
node splits peer in the point of ’s random hash index .
Notice that this construction leads to the possibility of having
very small zones when lands near one of the boundaries of
an existing zone. In the second approach (e.g., CAN), splits
the peer in half as demonstrated in Fig. 2(b). To keep the nota-
tion consistent, we call the former method a “random split” and
the latter method a “center split.”

To further improve fairness in zone sizes, several recent DHTs
[12], [32] sample random locations in the graph and then use
a center split of the largest zone they find. Even though these
methods perform much better than any of the single-point ap-
proaches, sampling random points in the graph may become

3Note that our analysis is not limited to ring topologies and applies to other
virtual coordinate spaces.

costly, especially if is on the order of [32]. This gener-
ally leads to messages per join, where
the constants inside depend on the diameter of the graph.
In Chord with one million nodes (both the diameter and degree
are 20), sampling peers requires on average 1105 mes-
sages and appears excessive.

To decrease the message join overhead, an alternative ap-
proach [1], [24] is to deterministically sample the neighbors of
the first peer and subsequently walk along the edges of the graph
to discover more nodes. This reduces the join overhead by a
factor of

(3)

where is the degree of the graph and is the average
distance between nodes. For example, in Chord with one
million nodes, the deterministic method can sample the same

peers using 76 times fewer messages than the pre-
vious approach (i.e., using only 14.5 messages on average per
join). Note, however, that the deterministic method generally
must sample more than points in the graph to provide the
same bounds on as in the purely random approach.

In the rest of the paper, we address such issues as whether
is the “correct” value of for the graph to achieve a de-

sired level of balancing and how many samples in the determin-
istic method make it equivalent to the purely random approach.

III. SINGLE-POINT RANDOM SPLIT

Our treatment of the DHT space assumes a 1-D torus, a purely
random and perfectly uniform number generator, and infinite
precision of each random hash index (i.e., the probability of
collision is zero). We use to represent the number of peers
in the system and focus on deriving the bounds on max/min
zone sizes that hold with high probability. Due to limited space,
certain proofs have been omitted from this paper and can be
found in [39].

Definition 1: An event occurs with high probability
(w.h.p.) with respect to if there exists a fixed constant
such that

(4)

Typically, (4) ensures stronger bounds on the likelihood of
event compared to simply saying that happens “almost
surely,” or with probability . Although it is customary
[1], [17], [32] in this class of problems to derive bounds that hold
w.h.p. and study only the asymptotic behavior of the system
as , we pay special attention to terms whenever
possible and keep our results applicable even to graphs of small
size .

A. Maximum Zone

We next formally define the performance metrics mentioned
in the introduction.

Definition 2: Random variable is the ratio of the max-
imum zone size to the average zone size after points (peers)
have joined a random instance of the system.

Definition 3: Random variable is the ratio of the average
zone size to the minimum zone size after points have joined
the system.
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TABLE I
COMPLIANCE OF f WITH ITS BOUNDS IN RANDOM SPLITS

Both and are always no less than 1 and provide the
main performance metric used throughout the paper. Now sup-
pose that random points are independently
and uniformly chosen on the unit circle. Define to be the th
spacing between the points along the circle, to be the largest
spacing: , and to be the smallest
spacing: .

Theorem 1: Under random splits, each of the following in-
equalities holds with probability :

(5)

Proof: First, recall the following result due to Darling [9]:

(6)

Next, notice that there exists a critical point at which (6)
makes a sharp transition from “almost never” to “almost surely.”
This percolation effect is common to our problem regardless of
how the user joins the graph and is often found in other areas of
networking [14]. Recalling that for small is approximately

and substituting and into
(6), we get both bounds in (5).

Hence, one can conclude that there almost always exists a
zone larger than average by a factor of , but
almost never larger by a factor of . For example, in
a graph with peers, is between 12 and 28 with
probability . To understand how well these bounds hold
for small , we generated 1000 random graphs of three
different sizes – 3000, 30 000, and 300 000 nodes. Table I shows
in columns and the fraction of graphs in which the actual

complies with (respectively) the lower and upper bounds
of (5) for (ideally, both and should equal ).
As the table shows, found in these graphs violates the
bounds in (5) with probability very close to the predicted .

B. Minimum Zone

We next examine the behavior of in the following the-
orem and show that these bounds are exponentially worse than
those in (5).

Theorem 2: Under random splits, each of the following in-
equalities holds with probability :

(7)

Proof: Recall that all ’s are uniformly distributed on the
simplex and that [10], [11]

(8)

TABLE II
COMPLIANCE OF f WITH ITS BOUNDS IN RANDOM SPLITS

Note that the left side of (8) is the probability that the min-
imum zone size is at least . Rewrite (8) in terms of and
assume sufficiently large

(9)

Substituting into (9), we get the upper bound of (7).
Similarly, using , we get the lower
bound of (7).

To illustrate the extent of fluctuation in , we again gen-
erated 1000 random graphs and examined the number of graphs
violating (7) for . Table II shows that (7) holds with
high accuracy for a variety of graph sizes and that the range to
which can be confined w.h.p. is substantially larger than
traditionally expected [32]. Thus, a 10 000-node graph almost
always has a peer whose zone size is smaller than average by
a factor of 2700. Furthermore, unfairness by a factor of almost
400 000 occurs in of all random graphs.

We next show how these bounds can be improved simply
by using a different peer-splitting algorithm and derive more
pleasant results for .

IV. SINGLE-POINT CENTER SPLIT

A. Maximum Zone

Notice that when existing users are split in half by incoming
nodes, the DHT space is organized into a dynamic binary trie.
The join process of each peer can be modeled as a ball that
drops into the root of the virtual trie and then descends down
the tree randomly choosing whether it goes left or right. The
leaf at which the ball ends up is the node that will split. The
movement of the ball represents the digits in the binary expan-
sion of ’s hash index (recall that these digits are indepen-
dent and uniform across all peers according to our assumptions).
This model is shown in Fig. 3 where a new incoming node with

splits node , which is the leaf that shares the
longest common prefix with among the existing nodes. Note
that a similar tree-based model was independently proposed by
Adler et al. [2]; however, their analysis is completely different
from ours.

Further notice that the zone size of each peer is a simple ex-
ponential function of its depth in the binary trie, i.e., .
Thus, the problem of finding and in “center-split”
peer-to-peer DHTs boils down to estimating the probabilistic
bounds on the smallest and largest depth of any leaf in the trie.
Let be the depth of peer in a particular (random) instance
of the graph, be the smallest depth, and

be the largest depth of any leaf. Assuming
that we can bound both random variables and with high
probability, what can be said about the resulting bounds on
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(a) (b)

Fig. 3. (a) Construction of split-trees using random balls. (b) Representation
of the same tree on the circle.

and ? We state the obvious answer to this question in the
following lemma without proof.

Lemma 1: Assume a center-split DHT in which
and hold with high probability. Then,

and are bounded by the following inequalities also with
high probability:

(10)

(11)

In what follows, we examine the distribution of and derive
its probabilistic bounds and . The discussion of is given
in the next section.

To begin, we define a sequence of indicator random variables
, , where if level of the split-trie is full after

users joined the system and otherwise. We say that
a level is full if all nodes of that level are present and nonleaf.
Notice that level can be full only if and that
implies that , . It immediately follows that the
smallest leaf depth is at least if and only if all levels
from 0 to are full

(12)

Using this insight, our next result formulates the distribution
of as a simple recurrence equation.

Lemma 2: In a center-split trie with leaves, the tail distri-
bution of for and is given by

(13)

where and is the conditional
probability of level being full given that all previous levels

are full

(14)

Notice that recurrence (13) does not limit the number of sam-
ples used in the join process and applies to both single-point
and multipoint methods. The only difference between these two
approaches is the shape of . We show the analysis
of single-point split in this section and leave the discussion of
multipoint methods for Section V.

Lemma 3: For single-point center-split of the unit-ring, the
probability that level is full given that all previous levels are
full is

(15)

Proof: First notice that any split-trie built using peers
contains leaves and nonleaf nodes. Next, examine level

of the trie and observe that all possible nodes at this level
must be nonleaf for level to be fully split. Assuming that all
previous levels are full (i.e., ), exactly nonleaf
nodes contributed to filling up levels and the re-
maining nonleaf nodes had a chance
to split level . After the first levels have been filled up,
each node at level is “hit” by an incoming ball (which splits the
node in half) with an equal probability . Thus, our problem
reduces to finding the probability that uniformly
and randomly placed balls into manage to occupy
each and every bin with at least one ball. There are many ways
to solve this problem, one of which involves the application of
well-known results from the coupon collector’s problem [33].
We use this approach below.

Define to be the random number of nonempty bins
after balls are thrown into bins. Thus, we can write

. Recall that in the coupon
collector’s problem, coupons are drawn uniformly randomly
(i.e., each with an equal probability ) from a total of
different coupons. Then, the probability to obtain
distinct coupons at the end of the experiment is given by [33]

(16)

For large , the term can be approximated by
, yielding

(17)

Since we are only interested in asymptotically large
, (17) allows a further approximation

(18)

which immediately leads to the result in (15).
The accuracy of (15) is demonstrated in Table III, which

shows the distribution of in simulations for different . As
the table shows, the combined result of (13)–(15) matches
simulations very well, especially as increases.

With the result in Lemma 3, we are now in the place to derive
the probabilistic bounds on .

Theorem 3: Assuming , the mass of concentrates
on two values and with probability at least

, where

(19)

and is .
To verify the correctness of the random-tree model, we gen-

erated 1000 random graphs using center splits of the unit circle
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TABLE III
SMALLEST DEPTH D OF SPLIT-TREES IN SIMULATION

(a) (b)

Fig. 4. Unit-ring simulations. Both use center splits and 1000 graphs per value
of n. (a) Smallest depth D. (b) Largest depth H .

and examined the smallest depth in each execution. We used
in (19) to guarantee 99.9% confidence in

the bounds. Fig. 4(a) shows that the actual results (whose spread
is shown with vertical bars) follow the model very well. Notice
that as , the mass of indeed concentrates on two values

and .
It is also easy to notice that depending on the value of , the

upper bound on fluctuates anywhere between
and [the result depends

on the floor function in (19)].

B. Minimum Zone

Next, we focus on estimating the largest depth (i.e., the
height) of the tree in Fig. 3(a). Even though this problem ap-
pears similar to the one just studied, the results are substantially
different as can be seen in the next theorem.

Theorem 4: With probability , the mass of in
center-split DHTs concentrates on three values , , and

, where

(20)

Note that the “ ” term in the statement of Theorem 4
depends on the decimal expansion of and simply equals
zero in many practical graphs of nontrivial size [20]. Fig. 4(b)
shows simulation results (99.9% confidence) from the unit-ring
topology for the largest leaf depth and the corresponding
bounds from (20). Together with Table IV, these simulations
demonstrate that the mass of in fact centers on three values
as .

The result of Theorem 4 is quite interesting since it shows
that by constructing a simple split-tree, the bound on can
be significantly improved from shown in the previous

section to . Nevertheless,
this bound is still noticeably worse than ’s .

TABLE IV
HEIGHT H OF SPLIT-TREES IN SIMULATION

Neglecting the ceiling and floor functions in (19) and (20), con-
sider and . In this case, is upper limited by
67, while is just below 28. For , is limited
by 274 and by 41. Another example of this difference
can be observed from the simulations in Tables III and IV.
Using the last row in both tables ( ), notice that

, while with probability .

C. Optimality

We conclude this section by observing that splitting an ex-
isting neighbor in half is in fact optimal among all methods that
sample a single peer in the circle.

Theorem 5: For single-point sampling, and are
minimized in expectation by using a uniform hashing function
and splitting existing neighbors in the center.

Proof: First notice that any off-center splitting of existing
nodes produces nonuniform random trees where the probability
for the ball to drop toward each child is proportional to the size
of the child (this is easy to explain since the probability that hash
index of a new node belongs to a certain zone is simply pro-
portional to that zone’s size). This can be modeled as a random

-tree, where is the probability for the ball to drop left and
to drop right from any given node. Recall that the ex-

pected depth of a node in a random -tree is given by [33]

(21)

where entropy . It is easy to
verify that (21) has a unique global minimum at . Using
similar reasoning, nonuniform hashing functions (in which, for
example, zeros appear with probability and ones with proba-
bility ) also produce unbalanced -trees and are therefore
suboptimal.

The result of this theorem is illustrated in Fig. 5, which shows
the average values of and in 1000 random graphs for

and off-center splitting of existing peers ( and
are the two fractions into which each peer is split). The same
splitting method can be interpreted as peers applying a nonuni-
form hashing function in which zeros appear with probability
and ones with probability . The figure clearly shows that

is optimal in both cases and confirms our prior obser-
vation that is substantially harder to bound than .

V. MAXIMUM ZONE OF MULTIPOINT SAMPLING

A. Ideal Case

The simplest method of balancing the graph with multipoint
sampling is to allow the joining user to examine all existing
peers in the system and then split the largest found zone. In
this setting, the distribution of zone sizes is optimal and
fluctuates between 1 and 2 as formally stated below.
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(a) (b)

Fig. 5. Average f and f in off-center split schemes with probability p.
Both simulations use 30 000 nodes and 1000 iterations. (a) f . (b) f .

(a) (b)

Fig. 6. (a) Instance of the split-tree under the ideal model with n = 14.
(b) Ideal f for n between 1024 and 65536.

Lemma 4: If all existing users are sampled during join,
is given by

(22)

Fig. 6(a) shows an instance of the split-tree generated in the
ideal case and Fig. 6(b) plots the ideal as a function of .
Notice that the peaks of this curve reach 2 in points where is
one less than an integer power of 2 and the split-tree forms an
almost complete binary tree with height .

It is clear that ideal load-balancing achieves the best possible
result in terms of ; however, this approach suffers from
high traffic overhead for each joining node, especially when
is large. Thus, a question arises of whether there exist solutions
that produce small and simultaneously incur low join over-
head. To explore this problem, we next study two multipoint
sampling methods and derive the smallest number of samples
needed to upper-bound by 2 with high probability.

B. Random Model

In this section, we examine the behavior of the maximum
zone when each incoming peer is allowed to sample random
locations in the ring (as before, the implicit assumption here is
that the peer will split the largest discovered node). We again
model this problem with split-trees, examine the evolution of
the system as we add a new peer into the network during each
time step, and derive the conditional probability
that level is fully split given that all previous levels are.

We only model the center-split approach since all proposed
multipoint methods split the sampled nodes in the middle. Fur-
ther note that in multipoint sampling, is equal to either
(large ) or (small ). Therefore, in the rest of the paper,
we limit our analysis to since its value can be trivially used

to obtain and also deduce upper (rather than lower, which
are arguably less useful) bounds on .

In what follows below, we show how to reduce the deriva-
tion of to the classical “power of two choices”
problem, which has been studied by Mitzenmacher [27], [28]
based on Kurtz’s theorem and general theory of density-depen-
dent Markov processes [21].

Lemma 5: For -point sampling and center-splits of the unit-
ring, is given by

(23)

where is the solution to the following differential equation
at time :

(24)

with initial condition for .
Proof: Again, skipping the first join events that

split levels above , we model the process of the remaining join
events with balls dropping into
and examine the evolution of the number of nonempty bins as
a function of time . Before each ball is placed into a bin, we
sample random bins and place the ball into the least-occupied
bin. The goal of our analysis is to determine the probability that
all bins are occupied at the end of this process.

We assume that the system starts at time , stops at
time , and adds one new node to the DHT at each integer time
unit . Let be the number of nonempty bins at time

in a given (random) instance of the graph process. Under this
notation, and ,

. Further, let be the expectation of over
all random graphs. Given with options,
can be written as the solution to the differential (24) [27], [28].

Now assuming that is known, we need to determine
the probability that all bins are full at the end of the exper-
iment. To resolve this issue, define to be the number of
balls in bin and if and otherwise.
Next, since are only constrained by their summation (i.e.,

), it follows that for large and ,
asymptotically behave as if they were completely independent
[10]. A similar observation applies to , which leads to the
fact that can be approximated by a binomial
random variable , where is the number of bins
and is the probability that any given bin is
nonempty at time .

To compute , we first determine the value of
. Since the expectation of is , is readily

available as . Then, the probability that a binomial vari-
able equals its maximum value is given by

(25)

which immediately leads to the result in (23).
We conducted numerous balls-into-bins simulations to verify

the accuracy of (24). For all values of and even values of as
small as 500, matched remarkably well. Fig. 7(a)
shows the quality of the fit between and for
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(a) (b)

Fig. 7. (a) Comparison of the expected number of nonempty bins to the solution
of (24) in 1000 iterations. (b) Comparison of the actual probability P (Z(n) =
m) to the solution of (23).

and two cases of : 10 000 and 20 000 balls (simulation
results are plotted as isolated points and the models are drawn
as continuous lines). Fig. 7(b) shows probability
in another simulation for and balls. As
seen in both figures, both models (23) and (24) follow the actual
result seamlessly.

Our next simulation compares the bounds on the smallest
depth obtained from (23) to those observed in simulations
of the unit-ring for . We use a binary search to
find two values of in (23) that guarantee

(lower bound on ) and
(upper bound on ). Note that we call these

bounds “continuous” since they generally produce noninteger
. Fig. 8(a) shows the spread of observed in 1000 simu-

lations (99.9% confidence) and the corresponding continuous
upper and lower bounds. After converting noninteger of the
previous example to “discrete” lower bound , we
plot in Fig. 8(b) the upper bound on in comparison to that
in simulations. As seen in both figures, the result of Lemma 5
provides a very accurate estimate of both and .

Since (23) does not generally allow a closed-form solution
for large , one must resort to binary search or similar methods
to obtain the probability that exceeds a certain threshold.
This approach is time consuming and says nothing about how

behaves as a function of . Thus, to overcome these lim-
itations, we next derive an asymptotic expansion of (23) for ar-
bitrary and demonstrate its accuracy in simulations.

C. Asymptotic Expansion of (23)

In this section, we study the behavior of the solution to (24)
and obtain a closed-form expression for the bounds on that
are satisfied with high probability.

Theorem 6: Under -point sampling and center-splits, the
minimum tree depth is bounded from below by with prob-
ability at least , where

(26)

(27)

for some small constant .
Proof: Set and rewrite (24)

(28)

(a) (b)

Fig. 8. (a) Continuous upper/lower bounds on D from (23) and the actual
smallest depth in simulations. (b) The discrete upper bound on f and that
in simulations.

(a) (b)

Fig. 9. Numerical solution to (28) for d = 1 and d = 10 with 1000 bins and
3000 balls. (a) d = 1. (b) d = 10.

with the initial condition , , where .
The value of determines the expected fraction of full bins
at time and is always between 0 and 1. Notice that when
is small, the system starts at and linearly increases
until becomes nonnegligible compared to the constant 1 in
(28). Thus, the solution to this equation consists of two “funda-
mental” curves, one of which is almost linear and the other one
is strictly nonlinear. This is shown in Fig. 9 for and

. Notice the substantially longer linear component for
on the right side of the figure.

We say that the system “switches” from linear to nonlinear
slope when exceeds a certain threshold . The exact value
of is not essential and all values in the range [0.1, 0.3] lead to
similar results according to our analysis. Under these assump-
tions, the breaking point between linear and nonlinear slopes
can be computed from , which leads to

(in this expansion, we use the fact that
is a linear function of before time ). The remaining nonlinear
curve can be easily estimated from (28) assuming nonnegligible
values of

(29)

where tends to zero for large and is taken to
be small enough to apply Taylor expansion in (29). The solution
to (29) is

(30)
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where constant is selected from the initial condition
. Expanding , we have

(31)

Next, substituting into (31), we get

(32)

since always belongs in the nonlinear part of the curve.
Substituting (32) and into (23), we have

(33)
To understand (33), set level to the following expression:

(34)

where is the term we determine below. Expanding
and for small and large , we get

(35)
Noticing that for large is a constant equal to

, we extract from (35)

(36)

Since is no smaller than ,
we can approximate with to get

(37)

With the help of Lambert’s function (i.e., a multivalued
solution to ) [8], we can ensure that the term
next to is exactly 1 using the following :

(38)

where the last approximation holds since is negligible
compared to the other terms. Recalling that and
combining (38) with (34), we have (26).

We verify the result of this theorem by again solving (23)
for using a binary search to achieve 99.9% confidence. We
test these numerical bounds against the model (26) using two
examples with 3000 and one million nodes . In the former case,

and in the latter case, . We use these values of
in (26) and directly obtain , which leads to the corresponding
upper bound on . Fig. 10 shows the result of this process
and confirms that (26) is very accurate. As both parts of the
figure show, the value of first drops almost linearly, but
then the slope flattens out and converges to 2.1 and 2.2,
respectively, at . We also examined the effect of varying

between 0.1 and 0.5 and observed no significant impact on the

(a) (b)

Fig. 10. Comparison of the continuous bounds on f from a numerical so-
lution to (23) (99.9% confidence) to those from the closed-form model (26) for
3000 nodes and one million nodes. (a) n = 3000. (b) n = 10 .

outcome. We use throughout the paper for convenience
since it results in being close to regardless of .

We can now rewrite the main result (26) in terms of .
Corollary 1: For all sufficiently large , is bounded by

the following with probability at least :

(39)

Furthermore, for each there exists such that
the bound in (39) is tight (i.e., violated with probability at least

).
Note that (39) is an upper bound that holds for all large .

It is possible to carefully select such that the term inside the
floor function in (26) is an integer, in which case can be
bounded by half of what is shown in (39). For other choices of

, will fluctuate between and
.

Further analysis of (39) for yields

(40)

Assuming sufficiently large graphs and neglecting the
term, samples can bound by and

samples by with high probability.

D. Deterministic Model

In this section, we use a different model of sampling points
along the circle, which relies on one random and determin-
istic choices. This method arises when the new node samples
direct neighbors of a randomly chosen peer, where the neigh-
bors are predetermined by some fixed rules (a similar model is
studied in [2] as discussed in the introduction). To model this
situation, we organize the nodes at level of the split-trie into
nonoverlapping groups of size . If the first random point (ball)
lands into group , the peer is allowed to sample the remaining

points of the group. Hence, grouping is symmetric and
deterministically leads to the same result regardless of where
within the group any given point (ball) lands.

One example of this framework is shown in Fig. 11 for .
In the figure, zone always samples three other (known) lo-
cations of the circle. This can be implemented by adding 1/4,
1/2, and 3/4 of the circle’s circumference to the location of the
first point and then sampling the peers holding these additional
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(a) (b)

Fig. 11. (a) Model of deterministic peer sampling. (b) Its representation in
terms of groups.

points. If these locations happen to be ’s neighbors, then sam-
pling comes with no additional message overhead. This model
is simple to generalize to any value of as long as the individual
zones do not overlap.

Finally, note that this deterministic model does not directly
correspond to the linking rules of any particular P2P network
since it isolates the nodes in each group from the rest of the
graph. Nevertheless, the above model leads to very interesting
results and provides a baseline comparison with the purely
random approach.

Lemma 6: Assuming deterministic sampling of bins in each
group and nonoverlapping groups, is given by

(41)

where is the beta function and is the incom-
plete beta function [25]

(42)

Proof: We apply the same approach as in previous sections
and study the probability that balls placed into

are able to “split” each of the bins. First no-
tice that every bin within a given group is split as long as at
least balls land into group . Therefore, we need to compute
the probability that each group receives at least random balls
out of . The number of balls that are thrown into group
is given by a binomial distribution , where is the
number of balls and is the probability that a new ball is
randomly placed into group . Ignoring the mild dependency
between (which asymptotically makes no difference), the
probability that all groups receive at least points is

(43)

Next, recall that the upper tails of a binomial random variable
can be expressed using the regularized beta function [25]

(44)

(a) (b)

Fig. 12. (a) Continuous upper/lower bounds from model (41) and the actualD
(99.9% confidence) in simulations of the unit circle for 30 000 nodes. (b) The
discrete upper bound on f computed from (41) and that in simulations.

where is the beta function and is the incom-
plete beta function in (42). From (43) and (44), the result (41)
follows immediately.

As expected, for , (41) simplifies to become (15); how-
ever, for larger values of , we need to use numerical methods to
compute (41). An alternative method is to derive an estimate for
the upper tails of the binomial distribution and simplify (41) to
a more workable form. We carry out this task in the next section
and in the meantime, check the accuracy of the beta-function
model in simulations.

In all balls-into-bins experiments, (41) was perfectly accu-
rate. We skip these results for brevity and instead focus on the
accuracy of the model in bounding the value of the smallest
depth . Using binary-search and , we solved (41) to
obtain continuous upper/lower bounds and . In Fig. 12(a),
we compare these bounds to the actual value of (99.9% con-
fidence) observed in simulations of the unit circle. During simu-
lations, each joining peer deterministically sampled addi-
tional locations in the ring by adding , , to its
original hash index . As seen in the figure, the beta-function
model accurately tracks the evolution of .

In Fig. 12(b), we show the discrete version of (i.e., after
applying the corresponding floor function) from model (41) and
compare it to that obtained in simulations. As the figure shows,
the fixed-bin structure of the model is too “conservative” for
the unit-ring in cases when the number of groups is not
an integer and overestimates the real in points when
makes a jump. This issue notwithstanding, we find that (41) pro-
vides a good approximation to our class of deterministic sam-
pling methods.

E. Asymptotic Expansion of (41)

We next study how (41) behaves for different values of .
Lemma 7: The result in (41) can be converted to a more

“digestible” form as follows:

(45)

where

(46)
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Proof: We first use the well-known Poisson approximation
to the binomial distribution in (44) and then apply tail expansion
to the resulting Poisson distribution [15]

(47)

where is the mean of both
distributions. Substituting the complement of the probability in
(47) into (41), we have

(48)

After basic arithmetic manipulations, (48) becomes (45).
The approximation in (45) was almost identical to the original

beta function in (41) in all comparisons that we performed. A
typical fit between the two models for one case of
is shown in Fig. 13(a). However, since (45) by itself is not very
useful and requires a binary search just like (41), our next step
is to derive the exact bound on the smallest depth that holds
with probability .

Theorem 7: In deterministic sampling, the minimum split-
tree depth is bounded from below by
with probability at least , where is the largest zone
size

(49)

where is Lambert’s function as before, is given
by

(50)

and , for negative , is the secondary branch of multi-
valued Lambert’s function [8].

Proof: Simplifying (45) and omitting insignificant
constants

(51)
To obtain the desired result, we must solve

(52)

for . For trivial values of equal to 1 and 2, the solution to (52)
is elementary and is shown in (49) (we omit the derivations). For

, a sequence of straightforward, but rather technical ma-
nipulations brings (52) into the canonical form , which
allows the application of Lambert’s function . Unfolding the
value of in a separate set of steps, we arrive at the result in
(49). We omit these details for brevity.

The result in (49) is a major improvement over (41) since
it requires no binary search to compute the upper bounds on

. For any given , , and , (49) directly produces the result,

(a) (b)

Fig. 13. (a) Beta-function solution (41) and asymptotic model (45) for 30 000
nodes. (b) Verification of the closed-form model (49) against the beta-function
(41) for one million nodes.

where can be easily computed in many software pack-
ages (such as Matlab or Mathematica). We verified the bounds
on derived from (49) in numerous tests. One example for

and one million nodes is shown in Fig. 13(b).
While the result of the last theorem allows an easy computa-

tion of the bounds on , it is still not clear how this metric
in the deterministic method compares to that in the random ap-
proach. To address this question, we present a much simpler
shape of (50) assuming .

Theorem 8: For , (49)–(50) simplify to the
following:

(53)

where is

(54)

Proof: The derivations are again straightforward and we
omit certain trivial steps. Substituting and

into (45), after some manipulations and application
of Stirling’s formula to , we have

(55)
As before, we need to solve the following recurrence:

(56)

Expanding and taking the logarithm of both sides we have

(57)
from which

(58)

For the solution to exist, both sides of (58) must have the same
asymptotics, or in other words, must satisfy

, which leads to the result in (54). Substituting
into (46), we have the bound in (53).

The result in (53) is very interesting as it shows that for ex-
ample, for and , is approximately 1.1913
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TABLE V
f COMPUTED BY MODELS (41) AND (49) FOR VERY LARGE n

(a) (b)

Fig. 14. Comparison of f in random and deterministic sampling. (a) n =

10 . (b) n = 10 .

and converges to for sufficiently
large . This is in contrast to random sampling, where con-
verges to 3.1. We next verify the asymptotics of (53) for growing

and . For this , the value of is 1.2418 and the
asymptotic bound in (53) is 4.4618. Table V shows the conver-
gence process for computed using both the beta function
in (41) and Lambert’s function in (49). Matlab’s ability to com-
pute the incomplete beta function (41) stops at approximately

, while (49) provides results up to . The
table shows that the term in (53) slowly decays to zero and
that converges to a value very close to the one predicted
by the model.

F. Discussion

The deterministic model clearly provides worse performance
than the random model studied earlier; however, the difference
in terms of between the models is not as significant as one
might have expected. This is shown in Fig. 14 for two values of

, where the deterministic model obtains larger than that
in the random model by a small additive constant.

Several remaining issues are whether random or deterministic
sampling can achieve optimal (i.e., best possible) load balancing
of P2P zones using logarithmic and how many samples make
the deterministic model equal to the random one. We first de-
fine “optimality” and then discuss which models can actually
achieve it.

Theorem 9: For any , there always exists such
that under arbitrary splitting mechanisms and for any number of
samples , the actual in every random graph of size is
at least 2.

With the aid of this theorem, it becomes apparent that the
random sampling mechanism in (40) achieves optimal load bal-
ancing with only when . All such func-
tions (e.g., and ) are super-logarithmic
and thus provide a negative answer to our question above. This
result is illustrated in Fig. 15, which plots the upper bound on

obtained from model (26) and (27) and actual simulations4

for and . As expected, the former
case does not achieve optimal zone-balancing ( converges
to 2.125), while the latter case does. In deterministic sampling,
it can be noticed in (53) that also converges to 2 (i.e.,

) if and only if (simulations not
shown for brevity).

We next study the issue of making the random and determin-
istic models exhibit similar performance.

Corollary 2: Assuming that the random method samples
nodes and the deterministic method samples

nodes, the corresponding upper bounds on are equal if

(59)

Assuming that and , the two methods are
equivalent in terms of if the deterministic model uses
approximately 2.2 times more samples than the random model.
Notice, however, that as , the deterministic factor
in (59) asymptotically grows as , which increases
quite aggressively and quickly voids any benefits (such as
the reduced message overhead) obtained by the deterministic
method. Therefore, one must conclude that if an application
desires bounds on very close to 2 (i.e., large ), it will
typically find the random model more appealing. In other
cases when the application needs a “quick and dirty” bound
(i.e., small ), the deterministic method provides a viable
alternative. For example, to achieve with probability

(i.e., ), the deterministic model requires only
3.3 times more samples than the random model.

We apply this analysis in the next section to study the perfor-
mance of multipoint methods in actual peer-to-peer systems.

VI. P2P SIMULATIONS

In this section, we briefly analyze the performance of multi-
point sampling methods in actual DHTs. We selected de Bruijn
graphs for the underlying model since multipoint methods have
been proposed mostly in this context and also because the
linking rules of this graph provide an interesting platform for
observing the effect of large/small zone sizes on node degree.

We implemented a variation of -regular de Bruijn DHTs bor-
rowing design ideas from [12], [16], [24], and [32]. In all sim-
ulations, we use , (diameter of the graph
is 5), and examine the following sampling methods: 1) random
sampling of points in the DHT [12], [32]; 2) deter-
ministic sampling of approximately points using a random
walk along the out-going edges of the graph [1]; and 3) deter-
ministic sampling of the same points using a biased walk
[24].

Our main performance metric is the degree distribution of the
nodes in the graph after all peers have joined the system. We
average our results over 100 simulations and show the resulting
distribution of degree below. A baseline example is shown in
Fig. 16(a) for the single-point, center-split method. Although
the maximum degree 81 is quite rare, there are 5.7% of nodes

4Due to the enormous processing capacity required to simulate f for large
n, the simulations in the figure stop at n = 10 .
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(a) (b)

Fig. 15. Upper bound on f with 99.9% confidence in random sampling. The “model” curve refers to the upper bound on f obtained from (26)and (27)
and the “limit” line is the limit of (39) as n ! 1. (a) d = 8 logn. (b) d = log n=10.

(a) (b)
Fig. 16. (a) CDF of degree in de Bruijn DHTs under single-point sampling and
center-splits. (b) The same degree distribution in the various multipoint sam-
pling methods.

TABLE VI
FRACTION OF NODES IN THE FINAL GRAPH WITH A CERTAIN DEGREE k

with degree 1, 13% with degree 2 or less, and 22% with degree
3 or less.

In Fig. 16(b), we show the CDF of the degree distribution
for the three multipoint methods. We sample random
points in the first method and 24 points in the two determin-
istic methods. The random walk method examines eight neigh-
bors of the original peer and then randomly walks for two hops
recording zone sizes of the neighbors of each visited node (i.e.,
an extension of [2]). The biased method does the same, except
it always chooses the largest neighbor to walk toward to [24].
After the walk is finished, the largest discovered node is split by
the joining peer. As shown in Fig. 16(b), sampling nodes
in the deterministic method approximates the purely random
model rather well. Additional results in Table VI confirm this
observation and also show that the biased walk performs better
than the other two methods at removing the extreme values (i.e.,
below 4 and above 16) of degree from the graph.

We finally analyze the message overhead involved in the three
methods. The join overhead of the purely random method is
approximately 55 messages, while the same metric in the other
two approaches is only 7 as long as each peer maintains a list of
zone sizes held by its current neighbors.

VII. CONCLUSION

We examined the distribution of the maximum and minimum
zone sizes in peer-to-peer networks and derived tight bounds for
these metrics. We found that deterministic sampling performed
worse than purely random sampling and that both methods
could reach using a super-logarithmic sampling size.
Future work involves analysis of the height of split-trees under
multipoint sampling and design of greedy algorithms for the
random walk that can improve the balancing performance of
existing deterministic methods.
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