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Abstract—Characterizing user churn has become an important
topic in studying P2P networks, both in theoretical analysis and
system design. Recent work [24] has shown that direct sampling
of user lifetimes may lead to certain bias (arising from missed
peers and round-off inconsistencies) and proposed a technique
that estimates lifetimes based on sampled residuals. In this paper,
however, we show that under non-stationary arrivals, which
are often present in real systems, residual-based sampling does
not correctly reconstruct user lifetimes and suffers a varying
degree of bias, which in some cases makes estimation completely
impossible. We overcome this problem using two contributions:
a novel non-stationary ON/OFF churn model and an unbiased
randomized residual sampling technique for measuring user
lifetimes. The former allows correlation between ON/OFF periods
of the same user and exhibits different join rates during the
day. The latter spreads sampling points uniformly during the
day and uses a novel estimator to reconstruct the underlying
lifetime distribution. We finish the paper with experimental
measurements of Gnutella and discussing reduction in overhead
compared to direct sampling methods.

I. INTRODUCTION

The problem of measuring temporal and topological charac-
teristics of large-scale peer-to-peer networks such as Gnutella
[6] and KaZaA [9] has recently received considerable attention
[1], [2], [3], [13], [18], [20], [24]. One of the central elements
in capturing the dynamics of P2P systems is the lifetime
distribution of participants, which can provide valuable input
to throughput models [5], [16], resilience analysis [11], [26],
[27], and system design [7], [12], [18].

Previous efforts in sampling lifetimes can be categorized
into two classes: direct sampling [2], [18], [20], which per-
forms periodic crawls of the system to detect new peer arrival
and measures their lifetimes, and indirect sampling [24], which
scans the entire system only once and monitors all discovered
peers until they depart to obtain their residual session lengths.
While the latter estimator is unbiased after proper conversion
of residuals to lifetimes and requires several orders of mag-
nitude less bandwidth than the former [24], it relies on one
crucial assumption – stationarity of the arrival process. It thus
remains to be seen whether the same benefits can be achieved
in systems that exhibit diurnal arrival/departure patterns or
any other non-stationary dynamics. However, in order to study
this question rigorously, one requires a non-stationary model
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of user behavior and the corresponding analysis of lifetime
sampling. We focus on these issues next.

A. Non-Stationary User Churn

Recall that traditional analytical P2P work either directly
assumes stationary Poisson arrivals [10], [14], [15], [21] or
models users with equilibrium ON/OFF renewal processes
[11], [24], [27], whose scaled superposition tends to a sta-
tionary Poisson process for sufficiently large system size [26].
In our comparison with related work, we only consider the
approach of [26], which we call Stationary Renewal Churn
Model (SR-CM), since it includes all other models as special
cases.

We start the paper by designing a novel generic arrival
model for Internet users that can replicate first-order dy-
namics (i.e., mean arrival rate) of almost any non-stationary
churn process. In the proposed approach, which we call Non-
Stationary Periodic Churn Model (NS-PCM), each user alter-
nates between ON (alive) and OFF (dead) states. As before,
the duration L of ON cycles is drawn from the distribution
of user lifetime FL(x), but OFF states are now split into
two sub-states: REST and WAIT. The former sub-state can
be visualized as the delay between the user’s departure and
midnight of the day when he/she joins the system again. The
latter sub-state is the delay from midnight until the user’s
arrival into the system within a given day, which follows its
own distribution FA(x). Unlike prior models, NS-PCM allows
OFF periods to be dependent on the time of day and the
duration of the previous ON cycle (i.e., user lifetime).

We derive that the average arrival rate λ(t) during the day
is given by nτfA(t)/δ, where n is the system size, τ is the
period of the arrival process, δ is the average inter-arrival delay
of a user, and fA(t) = F ′A(t) is the PDF of WAIT time. Thus,
NS-PCM can achieve any continuous non-stationary periodic
arrival rate by adjusting density fA(x) and includes SR-CM
as a special case with fA(x) = 1/τ . We show examples of
using NS-PCM to model Gnutella and then analyze its impact
on the existing sampling methods in distributed P2P systems.

B. Analysis of Existing Methods

Equipped with the new model, we examine two major
existing paradigms for measuring the lifetime distribution:
Create-Based Method (CBM) [17] and ResIDual-based Esti-
mator (RIDE) [24]. The former takes snapshots of the system
every ∆ time units within some window W and builds a
distribution of observed lifetimes as an estimate of FL(x).
The latter takes only one full snapshot of the system and
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probes discovered users every ∆ units until they die or the
observation window ends. The measured residuals are used to
infer the target distribution FL(x) using equilibrium renewal-
theory assumptions. While [24] analyzes both approaches for
accuracy, it does so assuming stationary arrivals into the
system under SR-CM. We perform the same task using the
new model NS-PCM and obtain several interesting results.

First, we show that the bias in CBM is now affected not
only by ∆ and the lifetime distribution FL(x), but also by
the arrival CDF FA(x). This makes removal of the bias
much harder as it requires knowing the arrival pattern of
users. Second, we derive the exact distribution produced by
CBM and establish that it is unbiased only when ∆ = 0 or
FL(x) is exponential. Third, we find that RIDE’s estimator
under non-stationary churn does not converge and sometimes
produces completely invalid results (including CDF functions
that are non-monotonic). To understand the cause of sampling
bias in RIDE, we investigate the distribution of residual
lifetimes in systems driven by NS-PCM. Define R(t) to be the
remaining session duration of a random online user at time
t and H(x, t) = P (R(t) ≤ x) to be the CDF of residuals
of currently alive users. Our analysis shows that unlike in
prior models where limt→∞H(x, t) = H(x) existed, NS-
PCM does not admit a limiting distribution of R(t), which
explains why RIDE’s manipulation of non-existing metrics
produces unpredictable results. Finally, we show that RIDE’s
bias under NS-PCM cannot be eliminated even with ∆ = 0
and that accurate estimation is possible only when λ(t) = λ
is a constant (i.e., stationary churn) or lifetimes FL(x) are
exponential, neither of which is a realistic assumption in
practice [8], [18], [19], [22].

It therefore remains an open problem to design a low-
overhead and robust lifetime estimator for distributed systems
commonly found in real life. We perform this task next.

C. U-RIDE

To preserve the advantage of residual sampling in terms
of overhead, we design a novel sampling algorithm called
Uniform ResIDual-based Estimator (U-RIDE), which mea-
sures the system in uniformly random points in the obser-
vation window. The naive approach would be to compute
the expected residual distribution E[H(x,U)], where U is a
uniformly random sampling time within the period τ of the
arrival process; however, we show that this expectation does
not allow reconstruction of user lifetimes and is generally
not related to FL(x) in closed-form. Instead, we derive a
different estimator using renewal-reward theory and show that
it allows unbiased estimation of FL(x) under the most general
conditions of NS-PCM.

The first component of U-RIDE is a sample-scheduling
algorithm, which decides random time instances for resid-
ual sampling. We study one such algorithm that we call
Bernoulli Scheduling (BS), which leverages the BASTA prin-
ciple (Bernoulli Arrival See Time Average) [25] and allows
accurate measurement even when the network is small or the
period τ of λ(t) is unknown. The second component of U-
RIDE is a residual processing algorithm, which aggregates

residual samples obtained by the first component and outputs
a statistical quantity that can be used to estimate FL(x).
We show that our aggregation algorithm can be efficiently
implemented in large systems and that it admits a subsam-
pling technique similar to the one in [24]. Simulation results
demonstrate that U-RIDE is able to accurately estimate the
actual lifetime distribution FL(x) in a variety of non-stationary
systems driven by NS-PCM.

D. Experiments

We finish the paper with deploying U-RIDE in the Gnutella
network [6], a large P2P file sharing system of roughly 6
million concurrent users. We evaluate U-RIDE using over
260M peer lifetime samples and show that RIDE [24] indeed
exhibits non-trivial error compared to CBM whose bias we
neglect given the small ∆ ≈ 0 used in the experiments. On
the other hand, the proposed algorithm U-RIDE produces very
accurate estimation and tracks CBM distributions precisely,
but at the same time reduces overhead by two orders of
magnitude. Since U-RIDE is a generic sampling method that
does not assume anything specific to Gnutella, it is suitable
for many large, non-stationary distributed systems found in
today’s Internet.

The remainder of the paper is organized as follows. We
introduce a new user churn model in Section II and examine
the existing sampling algorithms in Section III. We propose
our new method in Section IV and evaluate it in Gnutella
experiments in Section V. Section VI reviews prior work and
Section VII concludes the paper.

II. NON-STATIONARY USER CHURN

In this section, we cover basic definitions, briefly discuss
prior arrival models, present our simple approach for generat-
ing non-stationary churn, and examine its ability to replicate
arrival rates in Gnutella [6].

A. Basics

Two important metrics of interest in any churn model are
the arrival process and its rate. Let Mi(t) be the number of
arrivals from user i into the system in [0, t] and assume λi(t)
is the corresponding arrival rate (whose existence we prove
below under certain assumptions):

λi(t) = lim
h→0

E[Mi(t + h)−Mi(t)]
h

. (1)

The aggregate arrival process of the system is then M(t) =∑n
i=1 Mi(t) and its rate is λ(t) =

∑n
i=1 λi(t), where n is the

total number of participating users. Our interest in stationarity
of a process is solely related to its rate as defined next.

Definition 1: Arrival process M(t) is called rate-stationary
if λ(t) = λ is simply a constant and non-stationary otherwise.

To understand the properties of non-stationary processes,
define:

τ = inf{τ : λ(t + τ) = λ(t), ∀t ≥ 0}
to be the period of arrival rate λ(t). Note that τ = 0 implies
a stationary process and τ > 0 non-stationary. The latter type
can be further classified as follows.
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Fig. 1. User process Zi(t) under SR-CM.

Definition 2: Non-stationary process M(t) is called rate-
periodic if 0 < τ < ∞ and rate-aperiodic if τ = ∞.

Note that most real-life churn falls under the category of
rate-periodic. We are now ready to examine prior churn models
and overcome their limitations.

B. Stationary Renewal Churn Model (SR-CM)

Recall that [26] models each user in P2P systems using an
alternating ON/OFF renewal process:

Zi(t) =

{
1 user i is alive at t (ON)
0 otherwise (OFF)

, (2)

which is illustrated in Fig. 1, where {Li,k}∞k=1 are random
ON durations, {Di,k}∞k=1 are random OFF durations, and
{Ti,k}∞k=1 are arrival times of user i.

Note that the renewal nature of this process implies that all
ON/OFF durations are independent of each other, which makes
each Zi(t) stationary as t →∞. As a result, superposition of
n such arrival processes converges to a stationary point process
with constant rate λ(t) = λ. Since this stationarity does not
match churn characteristics observed in Gnutella and other
P2P systems [8], [18], [19], [22], one requires a much more
general approach, which we offer next.

C. Non-Stationary Periodic Churn Model (NS-PCM)

As before, assume that each user i is modeled by an
alternating ON/OFF point process Zi(t) in (2); however, it is
no longer renewal as we allow OFF cycles {Di,k} to depend
on both lifetimes {Li,k} and the time when the current OFF
cycle starts. Specifically, assume 0 ≤ τ < ∞ is the period
of the system that we aim to model (e.g., for common human
activity, τ = 24 hours) and partition time t into bins of τ units
each. For any point t ∈ [0,∞), define b(t) = τbt/τc to be the
start of the corresponding bin, e(t) = τdt/τe to be its end,
and t? = t− b(t) to be the offset of t within its bin. Further
denote by Si,k = b(Ti,k) the beginning of the bin where user
i arrives for the k-th time and assume each arrival occurs only
once per bin1.

As shown in Fig. 2, the OFF period in the current bin
[Si,k, Si,k+τ ] starts with a WAIT duration Ai,k, which models
the habits of users and their arrival preferences during the day.
After process Zi(t) transitions to the ON state, the user stays
logged in for a random lifetime Li,k and then departs from the
system. Afterwards, the user stays in the REST state until time
Si,k+1 (i.e., the beginning of the bin when i decides to return
into the system), from which point the process repeats. Note

1A user arriving m times in a given bin can be represented by m different
users with arrivals scattered throughout the day.

Li,k

Si,k Si,k+1

Ai,k Yi,k

WAIT

ON

REST

WAIT

Ai,k+1

Ti,k Ti,k+1

Fig. 2. User process Zi(t) under NS-PCM, where dashed vertical lines
represent bin boundaries.

that the combination of REST and WAIT sub-states comprises
the OFF state of (2) and that each REST duration may include
a random number of full bins Yi,k, which represent long-term
absence cycles of the user from the Internet. Furthermore,
observe in the figure that OFF durations are clearly dependent
not only on user lifetimes in the same cycle, but also on the
time of departure.

We next make two assumptions that allow this system to be
tractable in closed-form.

Assumption 1: Sequence {Li,k}∞k=1 consists of i.i.d. vari-
ables with CDF FL(x), {Ai,k}∞k=1 is i.i.d. with differentiable
CDF FA(x), and {Yi,k}∞k=1 is i.i.d. with CDF FY (x). Fur-
thermore, these sequences are pair-wise independent.

Given this assumption, we can replace each user i’s lifetimes
with a random variable L ∼ FL(x) such that 0 < E[L] < ∞,
its WAIT durations with A ∼ FA(x) where FA(τ) = 1, and
its absence times with Y ∼ FY (x). Pair-wise independence
means that the lattice process defined on points {Si,k}∞k=1

for each user i is renewal (formally established below), even
though Zi(t) is not. Additionally, notice that inter-arrival
delays {Ti,k+1 − Ti,k}∞k=1 are i.i.d. and do not depend on
user i.

Our second assumption prevents synchronization between
different users and ensures sufficient variety of samples col-
lected from crawling the system.

Assumption 2: Processes {Zi(t)}n
i=1 are mutually indepen-

dent.
We call the system defined by the above rules and assump-

tions Non-Stationary Periodic Churn Model (NS-PCM). The
following lemma reveals an important property of the point
process formed by {Si,k}, i.e., bin boundaries before each
arrival (see Fig. 2).

Lemma 1: Point process {Si,k}∞k=1 is lattice and renewal.
Proof: Notice that Si,k+1 − Si,k can be expressed as:

Si,k+1 − Si,k = e(Ai,k + Li,k) + Yi,k,

where e(t) = τdt/τe is the end of the bin that contains t. From
Assumption 1, it follows that interval {Si,k+1 − Si,k}∞k=1 is
i.i.d. and lattice, which establishes the desired result.

Next, we use Lemma 1 to show that arrival rate λ(t) under
NS-PCM is a simple periodic function determined by FA(x).

Lemma 2: Suppose that time t is sufficiently large. Then,
arrival rate λ(t) of an NS-PCM system with n users exists
and is a periodic function given by:

λ(t) =
nτfA(t?)

δ
, (3)

where t? ∈ [0, τ) is the offset of t within the bin, δ =
E[Ti,k+1 − Ti,k] is the average inter-arrival delay of a user,
and fA(x) = F ′A(x) is the PDF of arrival time A.
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Proof: First of all, denote by Ii(t, t+h) a random variable
indicating whether user i has an arrival within interval [t, t+h),
where h > 0 is small enough so that t and t + h are in the
same bin. Then, we rewrite arrival rate λ(t) defined in (1) as
follows:

λ(t) = lim
h→0

E[M(t + h)−M(t)]
h

= lim
h→0

E[
∑n

i=1 Ii(t, t + h)]
h

= lim
h→0

∑n
i=1 P (Ii(t, t + h) = 1)

h
. (4)

Next, we derive P (Ii(t, t+h) = 1), which is the probability
for a user i to have an arrival in interval [t, t+h). Notice that
Ii(t, t+h) is equivalent to the event that there exists an integer
k such that arrival time Ti,k ∈ [t, t + h):

P (Ii(t, t + h) = 1) = P (Ti,k ∈ [t, t + h)). (5)

Further notice that Ti,k = Si,k + Ai,k by definition, where
Si,k and Ai,k are the start and offset of the bin containing
Ti,k. Thus, Ti,k ∈ [t, t+h) is equivalent to the event that Ti,k

is contained by the same bin as t and the offset of Ti,k is
included by interval [t?, t? + h]:

Ti,k ∈ [t, t + h) ⇔ (Si,k = b(t)) ∩ (Ai,k ∈ [t?, t? + h]). (6)

Since Si,k and Ai,k are independent by Assumption 1, it
thus follows from (5)-(6) that:

P (Ii(t, t + h) = 1) = P (Si,k = b(t))
× P (Ai,k ∈ [t?, t? + h)). (7)

For P (Ai,k ∈ [t?, t? + h)), we simply have that:

P (Ai,k ∈ [t?, t? + h)) = FA(t? + h)− FA(t?). (8)

It remains to derive the probability P (Si,k = b(t)). Notice
that Si,k = b(t) for any k is equivalent to the event that t hits
the first bin of the k-th cycle. Note that point process {Si,k}
is proved in Lemma 1 to be a lattice renewal process. Using
renewal theory, we obtain that time t hits the first bin with
probability 1/η, where η is the expected number of bins in
cycle [Si,k, Si,k+1). Further note that η = δ/τ , where δ is the
expected length of cycle [Si,k, Si,k+1):

δ = E[Si,k+1 − Si,k] = E[Ti,k+1 − Ti,k], (9)

where the second equality comes from the fact that E[Ai,k] =
E[Ai,k+1] by Assumption 1. It thus follows that:

P (P (Si,k = b(t))) = 1/η = τ/δ. (10)

Substituting (8) and (10) into (7) establishes that:

P (Ii(t, t + h) = 1) =
τ(FA(t? + h)− FA(t?))

δ
. (11)

Further utilizing (11) and considering that n users are homo-
geneous, we reduce (4) into:

λ(t) = lim
h→0

nτ(FA(t? + h)− FA(t?))
δh

=
nτfA(t?)

δ
, (12)
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Fig. 3. User arrival rate: a) observed in Gnutella during June 14-20, 2007;
b) obtained from NS-PCM simulations.

where the second equality is guaranteed by the assumption
that FA(x) is differentiable every in [0, τ). The desired result
follows immediately.

Using (3), one can approximate first-order dynamics of a
wide class of systems with both stationary and non-stationary
arrivals. For example, setting fA(x) = 1/τ , we obtain λ(t) =
n/δ = λ, which is identical to SR-CM. To illustrate a more
interesting example, we first collect arrival rates from a 7-
day measurements of the Gnutella network (see Section V
for details) and plot them in Fig. 3(a), which indicates a clear
pattern of diurnal churn. Then, we average the empirical arrival
rate λ(t) over the observed 7 days to obtain the parameters of
NS-PCM. Specifically, integrating (3), we get for x ∈ [0, τ):

fA(x) =
λ(x)∫ τ

0
λ(t)dt

, δ =
nτ∫ τ

0
λ(t)dt

. (13)

Finally, we generate a system of n = 100, 000 users with A
drawn from fA(x) and plot the resulting instantaneous arrival
rates in Fig. 3(b), which shows a random arrival pattern very
similar to that of Gnutella.

III. ANALYSIS OF EXISTING METHODS

In this section, we characterize the accuracy of existing
measurement methods under NS-PCM. Discussion of the
associated overhead is presented in Section IV.

A. Basics

Suppose that the target P2P system is fully decentralized and
the sampling process has recurring access to the information
about which users are currently present in the system. This
process allows us to test whether a given user i is still alive
as well as discover the entire population of the network at any
time t (e.g., using crawls). The goal of the sampling process
is to estimate with as much accuracy as possible function
FL(x), which we assume is continuous everywhere in the
interval (0,∞). However, due to bandwidth and connection-
delay constraints on obtaining this information, the sampling
process cannot query the system for longer than W time units
or more frequently than once per ∆ interval, where ∆ usually
varies from several minutes to several hours depending on the
speed of the measurement facility and network size. These
constraints lead to the following two properties: 1) all lifetime
samples are discrete and rounded to a multiple of ∆; and 2)
all samples are no larger than W .
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Denote by A the sampling algorithm of interests and by VA
its sample set after an infinite measurement. Further define
EA(x) to be the estimator function computed from set VA
for approximating the value of FL(x) = P (L ≤ x). Note that
EA(x) is discrete and can be arbitrarily different from target
distribution FL(x).

Definition 3 ([24]): Estimator EA(x) of algorithm A is
unbiased with respect to a target continuous random variable
L if it matches the distribution of L at all discrete points
xj = j∆, j = 1, 2, . . . , W/∆ in the interval [∆,W ] for any
∆ > 0:

EA(xj) = P (L ≤ xj). (14)

Notice that empirical distributions based on a finite set VA
will not generally match the target distribution FL(x), which
is not a source of bias but rather a limitation of the finite
measurement process. Definition 3 instead refers to errors that
cannot be eliminated by sampling the system indefinitely.

B. Create-Based Method (CBM)

CBM was first introduced by [17] in the context of operating
systems and later applied to peer-to-peer networks by [2], [18],
[20]. Recall from [17] that CBM uses an observation window
of size 2W , which is split into small intervals of size ∆. Within
the observation window [0, 2W ], the algorithm takes snapshots
of the system at points xj = j∆, i.e., at the beginning of each
interval. To avoid sampling bias, [17] suggests dividing the
window into two halves and only including in sample set VC

lifetimes that appear during the first half of the window. Based
on VC , define EC(xj) to be the CBM estimator of the lifetime
distribution FL(x):

EC(xj) = lim
NC→∞

NC(xj)
NC

, (15)

where NC = |VC | is the size of the sample set and NC(x) is
the number of seen users with lifetimes no larger than x.

As formalized by [24], there are two possible causes of
bias in CBM sampling: 1) missed peers that join and depart
between consequent crawls; 2) random direction of round-offs
(i.e., some samples rounded up and others down). We say a
user’s lifetime L such that xj ≤ L < xj+1 is inconsistently
sampled if it is rounded down to xj and consistently sampled
otherwise (i.e., rounded up to xj+1). Define ρj to be the prob-
ability of inconsistent round-offs for lifetimes in the interval
[xj , xj+1), where ρ0 refers to the probability of missing a user.
The next theorem indicates that the bias in CBM under NS-
PCM is determined not only by ∆ and lifetime distribution
FL(x), but also by the arrival distribution FA(x).

Theorem 1: Under NS-PCM, CBM estimator (15) produces
the following distribution:

EC(xj) =
FL(xj)− ρ0 + ρj

1− ρ0
, (16)

where ρj is given by:

ρj =
W/∆−1∑

v=0

∫ xv+1

xv

(FL(xv+j+1 − y)− FL(xj))fA(y?)dy∫ W

0
fA(u?)du

,

(17)

LX

t0=0 xv xv+1 xv+j xv+j+1... ...

∆ d

Fig. 4. Illustration of inconsistent round-off in CBM, where arrival time
X ∈ [xv , xv+1] and lifetime L ∈ (xj , xj+1]. Vertical dotted lines stand
for CBM sampling points with interval ∆. Gray area represents the region
of inconsistent sampling, that is, if the user departs within the gray area, its
lifetime could be inconsistently rounded to xj . The gap between xv+j and
the beginning of the gray area is given by d.

FL(x) is the CDF of the lifetime distribution, and fA(x) is
the PDF of arrivals.

Proof: Note that (16) can be proved using exactly the
same reasoning as in [24, Theorem 3]. In what follows, we thus
focus on deriving the result of ρj in (17), the probability of
inconsistent round-offs for lifetimes in the interval [xj , xj+1).

Without loss of generality, we shift the time origin to the
start time t0, i.e., t0 = 0 so that the first half of the window
is given by [0,W ]. Suppose that a user arrives at time X ∈
[0,W ], where X is relative to t0, and its lifetime is xj <
L ≤ xj+1, where xj = j∆. Further assume that arrives time
X ∈ [xv, xv+1]. Denote by d = X−xv the gap between X and
xv . Then, we establish that the user lifetime is inconsistently
rounded off to xj if and only if departure time X+L is within
[xv+j +d, xv+j+1), which is illustrated in Fig. 4 as gray area.

Denote by gv(X) the probability of inconsistent sampling
given that X ∈ [xv, xv+1]. Then, we express gv(X) as:

gv(X) = P (xv+j + d < X + L ≤ xv+j+1|X ∈ [xv, xv+1])
= P (xj < L ≤ xv+j+1 −X|X ∈ [xv, xv+1])
= FL(xv+j+1 −X)− FL(xj). (18)

Next, we relax the condition on X to obtain roundoff-error
probability ρj . Denote by fX(x) the PDF of arrival time X .
Thus, we have:

ρj =
W/∆−1∑

v=0

∫ xv+1

xv

gv(y)fX(y)dy. (19)

It remains to derive the distribution fX(x) of arrival time
X . Notice that X could be anywhere within [0,W ]. We first
consider the probability of a user arriving before time x in
the first half of the window, i.e., FX(x) = P (X ≤ x). In
fact, P (X ≤ x) is given by the ratio of the number of users
arriving before x over the total number of users that appear
in the first half of the window. Utilizing the result of λ(t) in
(3), we obtain that:

FX(x) =

∫ x

0
λ(t)dt

∫ W

0
λ(u)du

=

∫ x

0
fA(t?)dt

∫ W

0
fA(u?)du

. (20)

The last step is to differentiate FX(x), which gives:

fX(x) =
fA(x?)∫ W

0
fA(u?)du

. (21)

The desired result immediately follows from substituting (18)
and (21) into (19).
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Note that Theorem 1 generalizes the result developed in
[24] to non-stationary systems. It is easy to verify that for
stationary arrivals, i.e., fA(x) = 1/τ for x ∈ [0, τ), the result
in (17) becomes:

ρj =
1
∆

∫ xj+1

xj

FL(x)dx− FL(xj), (22)

which together with (16) gives the same expression for the
CBM estimator as in [24]. We next investigate whether there
exist cases that make CBM unbiased under the new churn
model.

Corollary 1: Under NS-PCM, the only lifetime distribution
that allows CBM to be unbiased simultaneously for all ∆ > 0
is exponential. Furthermore, as ∆ → 0, probability ρj → 0
and EC(xj) → FL(xj), i.e., CBM becomes unbiased for any
FL(x) and FA(x).

Proof: We can prove the first statement by a) deriving
the necessary and sufficient condition for CBM to be unbiased
simultaneously for all ∆ > 0 and b) showing that the expo-
nential distribution is the only one that satisfies the condition.

For a), we substitute EC(xj) = FL(xj) into (16) to
establish that the necessary and sufficient condition is given
by:

ρj = F̄L(xj)ρ0, (23)

where F̄L(xj) = 1 − FL(xj) is the complementary CDF of
lifetimes.

For b), it is easy to verify that any exponential distribu-
tion satisfies (23). With FL(x) = 1 − e−x/µ, inconsistency
probability ρj becomes that:

ρj =
W/∆−1∑

v=0

∫ xv+1

xv

(
e−xj/µ − e−xv+j+1+y

)
fA(y?)dy

= e−xj/µ

W/∆−1∑
v=0

∫ xv+1

xv

(
1− e−xv+1+y

)
fA(y?)dy

= F̄L(xj)ρ0. (24)

Now, we prove that the only lifetime distribution satisfying
(23) is exponential. Substituting (17) into (23) establishes:

W/∆−1∑
v=0

∫ xv+1

xv

(FL(xj + xv+1 − y)− FL(xj)) fA(y?)dy

= F̄L(xj)
W/∆−1∑

v=0

∫ xv+1

xv

FL(xv+1 − y)fA(y?)dy

=
W/∆−1∑

v=0

∫ xv+1

xv

F̄L(xj)FL(xv+1 − y)fA(y?)dy. (25)

For (25) to hold for all ∆ > 0, we need to have:

FL(u + v)− FL(u) = F̄L(u)FL(v), (26)

for any u > 0 and v > 0. Note that (26) simplifies to
F̄L(u + v) = F̄L(u)F̄L(v), to which the only solution is
F̄L(x) = e−x/µ. The first statement of this corollary thus
follows immediately.

The second statement of this corollary can be easily proved
by showing that ρj tends to zero as ∆ → 0. From Taylor
expansion, we have that:

FL(xv+j+1 − y)− FL(xj) = fL(xj)(xv+1 − y) + Θ(∆2)

≤ fL(xj)∆ + Θ(∆2), (27)

and

FA(x?
v+1)− FA(x?

v) = fA(x?
j )∆ + Θ(∆2). (28)

Thus, ρj can be upper bounded as follows:

ρj ≤
W/∆−1∑

v=0

(fL(xj)∆ + Θ(∆2))(fA(x?
j )∆ + Θ(∆2))

∫ W

0
fA(u?)du

=
∆WfL(xj)fA(x?

j ) + Θ(∆2)
∫ W

0
fA(u?)du

, (29)

which indicates that ρj → 0 as ∆ → 0.
Interestingly, CBM’s conditions for removing bias did not

change from those under stationary churn (and are still im-
possible to satisfy in practice), despite the fact that its bias in
all other cases became a much more complex function of both
FL(x) and FA(x). We next examine how RIDE is impacted
by NS-PCM.

C. ResIDual-based Estimator (RIDE)

Wang et al. [24] proposed RIDE to address potential
problems of overhead and bias in CBM. At time t0, RIDE
takes a snapshot of the whole system and records in set VR

all users found to be alive. For all subsequent intervals j
(j = 1, 2, ..., W/∆) of ∆ time units, the algorithm keeps
probing peers in set VR either until they die or W expires.
After the observation window W is over, the algorithm collects
the residual lifetimes of users in VR. Define EH(xj) to be the
empirical residual distribution based on sample set VR:

EH(xj , t0) = lim
NR→∞

NR(xj)
NR

, (30)

where NR = |VR| is the number of acquired samples and
NR(x) is the number of them no larger than x. Denote by
ER(xj , t0) the RIDE estimator of FL(x) obtained using a
single crawl at time t0:

ER(xj , t0) = 1− h(xj , t0)
h(0, t0)

, (31)

where h(x, t0) is the numerical derivative of EH(xj , t0).
To quantify the accuracy of (31), we must first deter-

mine how its companion EH(xj , t0) relates to FL(x). Notice
that EH(xj , t0) measures the residual lifetime distribution
of users alive at t0. Specifically, denote by R(t) the actual
remaining lifetime of a random user alive at time t and by
H(x, t) = P (R(t) ≤ x) its CDF. Then, we immediately have
the following result.

Lemma 3: Under NS-PCM, EH(xj , t0) is an unbiased es-
timator of H(x, t0), i.e., EH(xj , t0) = H(xj , t0) for j =
1, . . . ,W/∆.

Proof: Notice that if a user is found to be alive at time t0,
its residual lifetime according to the definition is the time from
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t0 till it dies. This observation is consistent with the sampling
rule of RIDE as described above. Therefore, sample set VR

contains instances of residuals R(t0) and estimator EH(xj , t0)
computed from set VR gives the empirical distribution of
R(t0). It follows that when the sample size |VR| → ∞, empiri-
cal distribution EH(xj , t0) converges to the actual distribution
P (R(t0) ≤ xj).

Then, the problem of analyzing RIDE’s accuracy reduces
to deriving the residual distribution H(x, t0), which can be
obtained by applying the lattice version of the Renewal-
Reward Theorem [25, page 60] to point process {Si,k}.

Theorem 2: Under NS-PCM, residual lifetime distribution
H(x, t0) is a periodic function of time t0 for sufficiently large
t0:

H(x, t0) = 1−
∫∞

x
ω(z − x, t?0)dFL(z)∫∞

0
ω(z, t?0)dFL(z)

, (32)

where ω(x, u) for u ∈ [0, τ) is given by:

ω(x, u) = FA(u)− FA(max(u− x?, 0)) + 1
− FA(1 + min(u− x?, 0)) + b(x)/τ. (33)

Proof: See Appendix I.
Now, we are ready to derive what values RIDE’s estimator

ER(xj) produces. Differentiating (32) and substituting the
result into (31), we immediately establish the next corollary.

Corollary 2: Under NS-PCM, RIDE estimator ER(x, t0) is
a periodic function of time t0 for sufficiently large t0:

ER(xj , t0) = 1−
∫∞

xj
ω(z − xj , t

?
0)dfL(z)

∫∞
0

ω(z, t?0)dfL(z)
, (34)

where ω(.) is given in (33) and fL(x) = F ′L(x) is the PDF of
user lifetimes.

Proof: Differentiating both sides of (32), we obtain:

h(x, t0) = H ′(x, t0) =

∫∞
x

ω(z − x, t?0)dfL(z)∫∞
0

ω(z, t?0)dFL(z)
,

which combining with (31) establishes the desired result.
Note from (34) that the RIDE estimator ER(x, t0) is a

complex function of FL(x), arrival pattern FA(x), and initial
sample time t0. To make estimation possible out of this result,
one requires either exponential lifetimes or stationary arrivals
as shown next.

Corollary 3: Under NS-PCM, RIDE is unbiased for all
lifetime distributions iff the arrival pattern is uniform, i.e.,
fA(x) = 1/τ for x ∈ [0, τ). Similarly, RIDE is unbiased
for all arrival patterns iff FL(x) is exponential.

Interestingly, sampling interval ∆ has no impact on the bias
in (34), which means that no matter how fast RIDE samples
the system, the bias cannot be eliminated (unlike in CBM,
where it is actually possible).

D. Simulations

We now examine CBM and RIDE in simulations to show
examples of their bias. In all simulations, we use τ = 24
hours and the arrival pattern FA(x) observed in the Gnutella
network. We consider two lifetime distributions: 1) Pareto with
FL(x) = 1 − (1 + x/β)−α, where shape α = 2 and scale β
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Fig. 5. CBM estimator (15) under NS-PCM.
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Fig. 6. RIDE estimator (31) under NS-PCM.

such that E[L] = 3 hours; 2) periodic L = J1 + J2, where J1

is uniformly discrete among {0, τ, 2τ, 3τ} and J2 ∈ [0, τ) is a
truncated exponential random variable with mean 2 hours. The
former case models users with heavy-tailed lifetimes, which
is fairly standard in evaluating churn models [11], [26]. The
latter case covers peers that leave their computers logged in
for J1 full days and then spend a random amount of time J2

browsing the system on the last day before finally departing.
Using sampling interval ∆ = 3 hours and n = 106 users, we

apply CBM and RIDE to obtain the corresponding estimates
of target distribution FL(x). We observe from simulations that
both (16) and (34) are very accurate in predicting the errors of
these methods. Due to limited space, we omit this discussion
and instead focus on the actual bias. Fig. 5 shows that CBM’s
estimates clearly deviate from both target distributions. Even
though smaller intervals (i.e., ∆ ¿ E[L]) can oftentimes
reduce the bias in CBM to negligible levels, this improvement
comes at the expense of a sharp increase in overhead.

RIDE results for the Pareto case are shown in Fig. 6(a),
whose deviation distance from FL(x) resembles that of CBM
in Fig. 5(a). However, the periodic case in Fig. 6(b) produces
completely different results. Not only is the shape of the
estimated distribution completely different from that of FL(x),
but the estimated values do not even represent a valid CDF
function (i.e., ER(xj , t0) is non-monotonic in variable xj).
Increasing overhead (i.e., lowering ∆) in this case has no
impact and RIDE remains biased regardless of manipulations
to the sampling process.

E. Discussion

In summary, all existing methods suffer from bias under
NS-PCM and, to be complete accurate, require either high
overhead (i.e., ∆ ≈ 0) or unrealistic assumptions (i.e., expo-
nential lifetimes, stationary arrivals), which cannot be satisfied
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in practice. In what follows, we seek a better solution by
adapting residual sampling to remain robust under general
non-stationary arrivals while preserving its advantage over
CBM in terms of overhead.

IV. U-RIDE

This section generalizes RIDE by varying its sample point
t0 uniformly within the period of the arrival process λ(t). The
main issue is to decide the location of sampling points without
knowing period τ and build a provably unbiased estimator
from collected samples. In what follows, we first develop a
general framework that can produce an unbiased estimator for
FL(x) and then present an algorithm to implement it. Toward
the end of this section, we validate the proposed algorithm in
simulations and compare its traffic overhead to that of prior
methods.

A. General Framework

Instead of just one snapshot at time t0, assume that we can
crawl the entire system at multiple time points t1, t2, . . . , tM ,
where M is the number of snapshots permitted by the
overhead-accuracy tradeoff. For each snapshot m, we iden-
tify all live users and independently track their residuals
using recurring probing every ∆ time units. We call set
TM = {t1, t2, . . . , tM} a sampling schedule and set OM =
{t?1, t?2, . . . , t?M} an offset schedule. We further assume that
all tm are within some snapshot window WS ≤ W , i.e.,
tm ∈ [t1, t1 + WS ] for all m.

Definition 4: Schedule TM is called uniform if its offset
schedule OM forms a realization of a uniform random variable
in [0, τ) as M →∞.

Given a uniform schedule TM , we present a sampling
algorithm that can construct an unbiased estimator of target
distribution FL(x).

Algorithm 1: Assuming schedule TM is uniform, obtain a
snapshot of the entire system at each time tm ∈ TM . For
snapshot m, record the number of alive users NR(tm) and the
number of them NR(x, tm) with residual lifetimes no larger
than x. Then, output the following ratio for each xj :

r(M, xj) =
∑M

m=1 NR(xj , tm)∑M
m=1 NR(tm)

. (35)

We make two comments on Algorithm 1. First, notice that
at each time tm, the sampling process does not know the
exact number of discovered users that have residual lifetime
R(tm) no greater than x. Therefore, values NR(x, tm) remain
unknown until the end of the measurement, at which time
they are updated simultaneously for all m ∈ [1,M ]. Second,
it can be shown that if a user is alive during two snapshots
at times tm and tj , it must be sampled at both instances as
if these were two independent users. Doing otherwise leads
to incorrect estimation and bias in the result. For brevity, we
omit additional discussion of this issue and the corresponding
simulations.

The next theorem indicates that Algorithm 1 can be used to
infer target distribution FL(x).

Theorem 3: The output of Algorithm 1 under NS-PCM
converges as following:

E∗
H(xj) := lim

M→∞
r(M, xj) =

1
E[L]

∫ xj

0

(1−FL(t))dt. (36)

Proof: As before, we first reduce E∗
H(x) to reward func-

tions Wi,k(θ) and Ri,k(x, θ) and then derive their formulas.
Notice from Algorithm 1 that NR(tm) records the number

of alive users at time tm and can be expressed using Zi(tm):

NR(tm) =
n∑

i=1

Zi(tm), (37)

which leads to:
M∑

m=1

NR(tm) =
M∑

m=1

n∑

i=1

Zi(tm). (38)

Dividing both sides of (38) by product nM , it thus follows
that:

lim
M→∞

M∑
m=1

NR(tm)
nM

= lim
M→∞

n∑

i=1

M∑
m=1

Zi(tm)
nM

=
n∑

i=1

lim
M→∞

M∑
m=1

Zi(tm)
nM

=
n∑

i=1

E[Zi(t1 + Θ)]
n

. (39)

The third equality of (39) comes from the fact that the offset
schedule of {tm}M

m=1 forms a realization of a uniform random
variable in [0, τ). From Assumptions 1-2, n users in the system
are homogeneous, which leads to:

lim
M→∞

M∑
m=1

NR(tm)
nM

= E[Zi(t1 + Θ)]. (40)

Now, we let t1 → ∞ and rewrite E[Zi(t1 + Θ)] using
conditional expectation:

lim
M→∞

M∑
m=1

NR(tm)
nM

= lim
t1→∞

E[E[Zi(t1 + Θ)]|Θ]. (41)

Applying the Dominated Convergence Theorem to (41) estab-
lishes that:

lim
M→∞

M∑
m=1

NR(tm)
nM

= E[ lim
t1→∞

E[Zi(t1 + Θ)]|Θ]

= E[ lim
t1→∞

P (Zi(t1 + Θ) = 1)|Θ].

(42)

We apply (65) to P (Zi(t1 + Θ) = 1) and replace it with
E[Wi,k(Θ)]/E[ηi,k] in (42). Since E[ηi,k] does not depend
on Θ, it thus follows that (42) can be reduced to:

lim
M→∞

M∑
m=1

NR(tm)
nM

=
E[E[Wi,k(Θ)]|Θ]

E[ηi,k]
. (43)

Notice from conditional expectation that for given Θ:

E[Wi,k(Θ)] =
∫ ∞

0

ω(z, Θ)dFL(z), (44)
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where function ω(.) is given in (33). It follows that:

lim
M→∞

M∑
m=1

NR(tm)
nM

=
1

E[ηi,k]

∫ ∞

0

E[ω(z, Θ)]dFL(z).

(45)

Note that Θ is uniformly distributed in [0, τ), i.e., P (Θ ≤
θ) = x/τ for θ ∈ [0, τ). It thus follows from (33) that:

E[ω(z, Θ)] = z, (46)

which leads to:

lim
M→∞

M∑
m=1

NR(tm)
nM

=
E[L]

E[ηi,k]
. (47)

Similarly, we have:

lim
M→∞

M∑
m=1

NR(x, tm)
nM

=
1

E[ηi,k]

∫ ∞

0

E[ϕ(x, z, Θ)]dFL(z),

(48)

where function ϕ(.) is given in (75). It follows from (75) that
for uniform Θ:

E[ϕ(x, z, Θ)] = min(x, z), (49)

which establishes:

lim
M→∞

M∑
m=1

NR(x, tm)
nM

=
1

E[ηi,k]

∫ x

0

(1− FL(z))dz, (50)

Combining (47) and (50), we obtain:

lim
M→∞

r(M,x) =
1

E[L]

∫ x

0

(1− FL(z))dz, (51)

which is the desired result.
Taking the derivative of E∗

H(x) in (36), we immediately
obtain the desired result.

Corollary 4: For all ∆ ≥ 0, the following is an unbiased
estimator of FL(x):

E∗
R(xj) = 1− h∗(xj)

h∗(0)
, (52)

where h∗(x) is the numerical derivative of E∗
H(x).

We call Algorithm 1 in combination with (52) Uniform
ResIDual-based Estimator (U-RIDE) and examine how to
implement it below. In the meantime, it is worth mentioning
that performing RIDE sampling at uniformly randomized
time points U ∈ [0, τ) and then taking the expectation of
the resulting CDF, i.e., E[H(x,U)], does not produce the
same result as E∗

H(x) in (36). According to our analysis,
E[H(x,U)] is heavily dependent on the arrival pattern FA(x)
and thus cannot be used to reconstruct FL(x). This observation
distinguishes the new method from simply applying RIDE a
number of times and averaging the result.
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Fig. 7. U-RIDE estimator (52) with BS under NS-PCM.

B. Scheduling
The last piece of our algorithm is to find a uniform schedule

TM for Algorithm 1. We use a simple approach that we call
Bernoulli Scheduling (BS). Suppose that the algorithm starts
at time t1 and the smallest sampling interval is ∆ as before.
Then BS generates sequence TM using:

tm+1 = tm + vm∆ + um, m ≥ 1,

where vm is drawn from a geometric distribution with success
probability p and um is drawn from a uniform distribution
within [0, ∆). From the property of BASTA (Bernoulli Arrival
See Time Average) [25], it is straightforward to show that the
BS algorithm produces uniform schedules.

Corollary 5: Sampling schedule TM generated by BS is
uniform for any period τ .

Notice that the expected duration of a BS schedule is given
by M∆/p. Therefore, p can achieve both dense (i.e., large
p) and sparse (i.e., small p) sampling. The former allows the
sampling process to complete in a short time, while the latter
spreads traffic overhead over time and thus avoids overloading
network resources. In addition, while our analysis earlier in the
section implicitly assumed that period τ was known, BS does
not require this knowledge and thus can be used in a wide
variety of periodic systems without any additional input.

Next, we examine U-RIDE under NS-PCM using the same
parameters as in Fig. 6. We set p = 0.05 and M = 24 in BS
scheduling. Fig. 7 plots the lifetime distributions estimated
from the output of Algorithm 1 along with the actual FL(x),
indicating a very accurate match between the two. Other
simulations with Weibull, discrete, uniform, and exponential
lifetimes, as well as various arrival patterns FA(x), indicate
that U-RIDE is extremely accurate. We omit them for brevity.

C. Overhead
We next study the question of how U-RIDE in its current

shape compares to the other two methods in terms of overhead.
To address this issue, we first derive a formula to show how U-
RIDE compares to RIDE. We assume unit cost for contacting
a Gnutella peer, which makes traffic overhead directly equal
to the number of users contacted during the sampling process.
Denote by cj the number contacts made at the j-th step of the
sampling process for j = 1, 2, . . . , W/∆. Then, define BA to
be the sampling overhead of an algorithm A:

BA =
W/∆∑

j=1

cj . (53)
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We use BC to represent the overhead of CBM, BU that of
U-RIDE, and BR that of RIDE. Define qxy = Bx/By to be
one of the overhead ratios of interest, where x, y ∈ {C, U,R}.

Theorem 4: Assume BS scheduling with p and M and that
U-RIDE starts at midnight. Then, overhead ratio qUR is given
by:

qUR = 1+
τ

E[L]

M∑
m=2

∫ ym

ym−1

fA(t?)(1−FL(ym− t))dt, (54)

where ym = m∆(1 − p)/p, τ is the period of the arrival
process, E[L] is the expected user lifetime, fA(x) is the PDF
of arrivals, and FL(x) is the CDF of lifetimes.

Proof: Note that both RIDE and U-RIDE use residual
sampling, which keeps probing each discovered alive user
until it dies or window T expires. Denote by Vx the prob-
ing set obtained by residual sampling algorithm x, where
x ∈ {RIDE, U-RIDE}. Then, the overhead Bx of residual
sampling x is proportional to the product of the probing set
size and the expected residual lifetime, Bx = |Vx|E[R]. Since
expected residual lifetime E[R] is the same for RIDE and U-
RIDE, we only need to compare the probing set size |Vx| of
these two methods.

Notice that probing set size |VR| of RIDE equals to the size
of the first snapshot made by U-RIDE at time t1:

|VR| = nE[L]
δ

, (55)

where δ is the expected inter-arrival delay. Note that (55)
is simply the average number of alive users in steady-state.
Therefore, we only need to count the number of new residual
samples discovered by U-RIDE at time points t2, . . . , tM .

Denote by N∗
m the number of new residual samples found at

time tm for m = 2, . . . , M . Further note that we do not make
multiple probes of the same user when it has multiple residual
samples according to our algorithm. It thus follows that N∗

m

is the number of users that arrive during interval [tm−1, tm)
and live through time tm:

N∗
m =

∫ tm

tm−1

λ(t?)(1− FL(tm − t))dt

=
nτ

δ

∫ tm

tm−1

fA(t?)(1− FL(tm − t))dt. (56)

Then, we obtain the probing set size |VU | of U-RIDE:

|VU | = nE[L]
δ

+
M∑

m=2

N∗
m

=
nE[L]

δ
+

nτ

δ

M∑
m=2

∫ tm

tm−1

fA(t?)(1− FL(tm − t))dt.

(57)

Notice from the definition of BS that tm can be modeled
by Y ∆, where Y is a negative binomial random variable
NegBin(m, p). We thus approximate tm with its expectation
ym ≡ E[tm] = m∆(1 − p)/p in (57). It follows from (55)

α W qCU

εU = 0.1 εU = 0.01 εU = 0.001
1.1 48 hrs 5.7 50 213

72 hrs 6 54 274
96 hrs 6.2 57 322

2 48 hrs 19 92 151
72 hrs 25 130 222
96 hrs 31 166 292

TABLE I
OVERHEAD RATIO qCU USING UNIFORM ARRIVALS, PARETO LIFETIMES
WITH SHAPE α, E[L] = 1 HOUR, ∆ = 3 MINUTES, AND U-RIDE WITH

M = 8 AND p = 1/60.

and (57) that overhead ratio qUR is given by:

qUR =
BU

BR
=
|VU |
|VR|

= 1 +
τ

E[L]

M∑
m=2

∫ ym

ym−1

fA(t?)(1− FL(ym − t))dt,

(58)

which is exactly (54).
The result in (54) shows that qUR is a function of M , ∆,

and p. Under uniform arrivals, (54) becomes:

qUR = 1 + (M − 1)H(∆/p), (59)

where H(x) = 1
E[L]

∫ x

0
(1−FL(u))du is the CDF of residual

lifetimes in stationary systems. Notice that overhead ratio qUR

is an increasing function of M for constant ∆ > 0 and p and
tends to M as p → 0 or ∆ →∞. This observation motivates
us to seek a more efficient way to execute U-RIDE.

D. Subsampling

Next, we propose a subsampling technique aimed at re-
ducing the overhead of U-RIDE. In Algorithm 1, we apply
ε-subsampling as follows: for each discovered user, toss an
unfair coin with success probability ε to decide whether the
sample should be kept (i.e., added to both NR(tm) and
NR(x, tm)) or discarded. This approach reduces measurement
traffic by approximately a factor of 1/ε. Using simple renewal-
process arguments, it can be shown that subsampling does not
affect the properties of users collected by U-RIDE and has no
effect on its ability to avoid bias.

In order to select ε, notice that U-RIDE (as described above)
obtains many more residual samples than RIDE, most of which
are not necessary for accurate estimation. As long as the total
number of samples

∑M
i=1 NR(tm) is above some threshold, U-

RIDE will converge by the law of large numbers. Therefore,
keeping the same number of snapshots M , but reducing the
size of each snapshot, U-RIDE can match the overhead of
RIDE without sacrificing accuracy. Denote by VR and VU

the original sample sets of RIDE and U-RIDE, respectively.
Further, define εR and εU to be the corresponding subsampling
factors. The following theorem ensures that U-RIDE with can
be as efficient as RIDE.

Theorem 5: Assuming εR|VR| = εU |VU |, the overhead of
U-RIDE is upper bounded by that of RIDE for all ∆, i.e.,
qUR ≤ 1.
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Country Samples Percentage Unique IPs ISP Samples Percentage Unique IPs
United States 120.8M 48.3% 21M FDC Servers 21.5M 8.6% 3.6M

Brazil 35.7M 14.3% 6.4M Level 3 18.2M 7.3% 3M
Canada 16M 6.4% 2.6M Tele. Santa Catarina 11.3M 4.5% 2.1M

United Kindom 13.3M 5.3% 2M Tele. Bahia 8.7M 3.5% 1.5M
Germany 6M 2.4% 1M SBC 8.2M 3.3% 1.3M
Australia 5M 2% 0.93M Verizon 6.2M 2.5% 1M

Japan 4.6M 1.9% 0.91M Tele. Sao Paulo 5.5M 2.2% 0.96M
Netherlands 4.5M 1.8% 0.87M Shaw 4.8M 1.9% 9.3M

Poland 4.4M 1.7% 0.82M Cablevision 4.1M 1.6% 0.76M
Austria 4.3M 1.7% 0.7M Cox 4.0M 1.6% 0.72M

TABLE II
NUMBER OF LIFETIME SAMPLES IN THE TOP-10 SUBSETS OF COUNTRY AND ISP.

Proof: It is easy to prove the statement of this theorem by
the fact that both RIDE and U-RIDE use residual sampling.
Note that after discovering an alive user, residual sampling
keep probing the user until it dies or window T expires.
Therefore, the overhead of U-RIDE is the same as that of
RIDE as long as the number of residual samples discovered by
them are the same, which is guaranteed by εR|VR| = εU |VU |.
Note that U-RIDE might have several samples from the same
user. It thus follows that U-RIDE might have less overhead
than RIDE given the condition εR|VR| = εU |VU |.

As network size n → ∞, one can always choose εU (n) ∼
1/n such that εU (n)|VU | remains constant at some predeter-
mined threshold needed to invoke the law of large numbers.
With this modification, U-RIDE retains the overhead advan-
tages of RIDE compared to CBM and better scales to larger
systems as shown in Table I for small εU .

V. EXPERIMENTS

In this section, we compare U-RIDE with RIDE based on
Gnutella measurements. In what follows, we first introduce our
data collection process, then discuss comparison methodology,
and finally present our results.

A. Dataset

Gnutella [6] is a popular peer-to-peer file sharing network
that organizes users into a two-tier overlay structure. Each
peer is identified by its (IP address, port) pair and can serve
in one of two roles: ultrapeer or leaf. The former type of users
connect to other ultrapeers to form the Gnutella overlay and
route search messages between each other to find content. The
latter type of users attach to a handful of ultrapeers and do not
provide any routing services to other members of the system.
Note that Gnutella has no central administration and its global
structure at any given time is hidden from the user.

Leveraging the crawl option supported in Gnutella/0.6, our
crawler requests neighbors of each visited ultrapeer and runs
a BFS-like algorithm to capture snapshots of the entire system
at different times tm. In a continuous experiment that lasted
W = 7 days during June 14-20, 2007, we performed repeated
crawls of Gnutella every ∆ = 3 minutes, which approximated
the behavior of CBM and provided enough data to emulate
both U-RIDE and RIDE using offline processing. The dataset
recorded over 250M user instances (36.9M ultrapeers and
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Fig. 8. Estimated lifetime distribution of all observed peers using CBM and
RIDE.

219.1M leaves) from 50.5M unique IPs. Due to the dynamic
nature of ports and IPs, we were unable to determine the
total number of unique peers that participated in the system;
however, the average number of concurrent users during this
period has stayed close to 6.5M.

We also split the dataset based on two criteria: geographic
location and service provider. Table II lists the numbers of
samples and their percentages along with unique IPs of the
top-10 subsets in both categories. We observe from the table
that while the collected samples concentrate in a few countries
with almost 50% from US, the distribution of users among
service providers is much more even with all ISPs receiving
less than 10% of the samples.

B. Comparison Methodology

To compare U-RIDE with RIDE, we first need to obtain
FL(x) as ground-truth. While this task is impossible with
absolute accuracy, our earlier results (see Corollary 1) have
shown that CBM has a diminishing bias under NS-PCM as
∆ → 0. In particular, this condition can often be assumed to
hold when ∆ ¿ E[L] (simulations omitted for brevity), which
is satisfied in our crawls given E[L] ≈ 2 hours.

We processed the dataset with all observed peers using CBM
after discarding 30.4M invalid samples, but RIDE uses the
original dataset. Fig. 8(a) plots the resulting distribution on
a log-log scale along with a power-law fit, which indicates
that lifetimes of Gnutella users follow a power-law distribution
with shape α = 1.15 and β = 0.69, which is consistent with
the result in [2] and other prior papers. With the data collected
from CBM sampling, we are now ready to compare the other
two methods.
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C. U-RIDE vs. RIDE

We apply the two residual sampling algorithms to the
collected dataset. For RIDE, we use residual samples from
a single snapshot taken at time t0 (i.e., 5 AM on June 14th,
2007) and estimate the corresponding lifetime distributions.
Fig. 8(b) plots the 1-CDF of RIDE’s estimator along with that
of CBM. The figure shows that RIDE exhibits a non-trivial
deviation from CBM and again violates the monotonicity
requirement of a valid distribution function. While in general
the two curves have a similar trend, significant variance near
the tail compromises estimation accuracy. We also discover
in experiments that the gap between RIDE and CBM is
consistently non-trivial for different values of t0. It should
be noted that under different arrival conditions FA(x) and/or
distributions FL(x), the bias in RIDE can be much more
drastic as shown in Fig. 6(b).

For U-RIDE, we use p = 1/20 and collect 24 full snapshots
(approximately one for each hour) during the first sampling
day (i.e., WS = τ and W = 7 days). We then apply the
corresponding estimator to the original dataset of all peers
and plot in Fig. 9(a) the curve computed by U-RIDE along
with that of CBM. Observe in the figure that U-RIDE exhibits
an almost identical match to CBM. Fig. 9(b) shows a similar
match of U-RIDE in the datasets containing only ultrapeers
and leaves.

We also examine U-RIDE with four subsets of samples
selected from Table II. For the geographic location, we use
US and UK peers to show the difference in their FL(x); and
for the service provider, we select a US ISP SBC Internet
Services (SBC) and a Brazilian company Telecomunicacoes
de Santa Catarina SA (TELESC). Fig. 9(c)-(d) indicate that
U-RIDE is accurate in measuring the lifetime distribution for
all studied subsets. Our additional experiments (omitted) with
other subsets based on criteria such as time zone, protocol
version, and software vendor of Gnutella peers also confirm
the accuracy of U-RIDE.

D. Balancing Accuracy and Overhead

Note that Gnutella experiments above took M = 24 system
snapshots in one day and used U-RIDE without subsampling
(i.e., εU = 1). Fig. 10(a) shows that U-RIDE with other
choices of M and εU can also produce accurate estimation
of the lifetime distribution. In what follows, we explore the
parameter space of M and εU to strike a balance between
accuracy and overhead (WS is kept constant at one day). To
assess accuracy, we employ Weighted Mean Relative Differ-
ence (WMRD), which is often used for comparing distribution
functions [4]. Given estimator function E(x) and target func-
tion FL(x), the distance is defined as:

WMRD =

∑W/∆
j=1 |E(xj)− FL(xj)|∑W/∆

j=1 (E(xj) + FL(xj))/2
, (60)

where xj = j∆. Small WMRD imply that estimator E(x) is
close to the target distribution. For comparison, RIDE exhibits
WMRD = 0.2 and overhead ratio qCR = 9.8 in Fig. 8(b),
while U-RIDE achieves WMRD = 0.048 and qCU = 4.6
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Fig. 10. Comparison of U-RIDE with CBM.

in Fig. 10(a), where both methods use their most inefficient
versions with εU = εR = 1.

Next, we illustrate a more interesting example that solves
the tradeoff between accuracy and overhead. We run U-RIDE
with a set of 72 combinations of parameters M (from 1 to 288)
and εU (from 0.0001 to 1). To find the optimal choice for M
and εU , we admit only such pairs that keep WMRD < 0.1
and simultaneously qCU > 100. Among the 5 candidates that
pass this criteria, we select the pair with the smallest WMRD.
The resulting choice is M = 8 and εU = 0.005, which reduces
the overhead of U-RIDE by a factor of 126 compared to CBM,
while achieving a very decent WMRD = 0.055. Fig. 10(b)
plots the estimated results using the optimized parameters,
indicating a very good match despite the heavy subsampling.
Since CBM does not admit similar reduction in overhead
through subsampling (see [23, theorem 7]), U-RIDE emerges
as the most viable solution for estimating lifetime distributions
in large, non-stationary distributed systems.

VI. RELATED WORK

The Create-Based Method (CBM) for lifetime sampling was
first proposed by Roselli et al. [17] to characterize lifetime
distributions of data blocks in file systems and later introduced
by Saroiu et al. [18] to peer-to-peer networks in order to
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measure session length distributions. More studies following
[18] were presented by Bustamante et al. [2], Chu et al. [3],
and Stutzbach et al. [20]. Wang et al. [24] proposed residual
sampling as a way of overcoming potential inaccuracy and
high overhead of CBM.

VII. CONCLUSION

The paper studied the tradeoff between accuracy and
overhead in sampling user lifetimes in distributed systems
with non-stationary arrivals. We first proposed a novel non-
stationary churn model NS-PCM, which was then used to show
that existing methods could not simultaneously achieve high
accuracy and low overhead given non-stationary user arrivals.
To overcome this problem, we introduced a simple algorithm
U-RIDE that achieves unbiased estimation of the lifetime
distribution and significantly reduces bandwidth compared to
the traditional approaches. Future work includes applying NS-
PCM to understand how it affects existing results in P2P
performance analysis and utilizing U-RIDE for measuring
distributed systems other than Gnutella.
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APPENDIX I
PROOF OF THEOREM 2

To understand our next derivation for Theorem 2, sev-
eral definitions and lemmas are in order. For lattice process
{Si,k}∞k=1, define ηi,k to be the number bins in interval
[Si,k, Si,k+1):

ηi,k = (Si,k+1 − Si,k)/τ. (61)

We are interested of among these bins how many of them
have certain special properties, which are defined as follows.
For any θ ∈ [0, τ), we define reward Wi,k(θ) of the k-
th interval [Si,k, Si,k+1) to be the number of bins in which
process Zi(t) is ON at offset θ:

Wi,k(θ) =
ηi,k−1∑

j=0

Zi(Si,k + jτ + θ). (62)

Denote by Ii(x, t) a process associated with Zi(t):

Ii(x, t) =

{
1 R(t) ≤ x,Zi(t) = 1
0 otherwise

. (63)

Similarly, we define reward Ri,k(x, θ) of the k-th interval
[Si,k, Si,k+1) to be the number of bins in which process
Ii(x, t) equals 1 at offset θ:

Ri,k(x, θ) =
ηi,k−1∑

j=0

Ii(x, Si,k + jτ + θ). (64)

Fig. 11 illustrates an example of process Zi(t) in a cycle
of 4 bins and the corresponding process Ii(x, t) with a given
x. It is easy to verify that Wi,k(θ) = 3 and Ri,k(x, θ) = 2 in
the example of Fig. 11.

To prove Theorem 2, we first expand residual distribution
H(x, t) using rewards Wi,k(t?) and Ri,k(x, t?) and then
derive these rewards functions. We first need the next lemma.
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Li,kAi,k

θ

Si,k Si,k+1

(a) Zi(t)

x

Si,k Si,k+1

(b) Ii(x, t)

Fig. 11. An example of processes Zi(t) and Ii(x, t) in NS-PCM systems,
where Ai,k = 0.3, Li,k = 3.1, θ = 0.6 and x = 2.1. Triangles represent
points with offset θ and squares are renewal points {Sk}. Vertical dashed
lines stand for bin boundaries with bin size τ .

Lemma 4: For sufficiently large t0, probabilities P (Zi(t0))
and P (Ii(x, t0) = 1) are periodic functions of time t0:

P (Zi(t0)) =
E[Wi,k(t?0)]

E[ηi,k]
,

P (Ii(x, t0)) =
E[Ri,k(x, t?0)]

E[ηi,k]
, (65)

where ηi,k is the number bins in interval [Si,k, Si,k+1), Wi,k(.)
and Ri,k(.) are reward functions.

Proof: We first convert the continuous-time ON/OFF
process Zi(t0) into its discrete-time equivalent Zθ

i (j), where
Zθ

i (j) = Zi(jτ+θ). We make a similar conversion for process
Ii(x, t0) into Iθ

i (x, j), where Iθ
i (x, j) = Ii(x, jτ + θ). As

shown in Fig. 11, Zθ
i (j) samples marked with triangles are

(1, 1, 1, 0) and Iθ
i (x, j) switches through (0, 1, 1, 0).

We next examine reward functions Wi,k(θ) and Ri,k(x, θ),
which also have their corresponding discrete-time versions
W θ

i,k and Rθ
i,k(x), respectively:

W θ
i,k =

ηi,k−1∑
m=0

Zθ
i (Sτ

i,k + m),

Rθ
i,k(x) =

ηi,k−1∑
m=0

Iθ
i (x, Sτ

i,k + m). (66)

We further convert process {Si,k}∞k=1 into an equivalent
discrete point process {Sτ

i,k}∞k=1, where Sτ
i,k = Si,k/τ . Since

τ is a constant and the conversion from Si,kto Sτ
i,k is linear,

it follows from Lemma 1 that process {Sτ
i,k}∞k=1 is a renewal

process on discrete time. For any discrete time j ≥ 0, denote
by discrete processes A(j) and B(j) the age and residual of
the process {Sτ

i,k}∞k=1 when it is sampled at time j = 0, 1, . . .:

A(j) = j − Sτ
i,k + 1, B(j) = Sτ

i,k+1 − j, (67)

given that Sτ
i,k ≤ j < Sτ

i,k+1. It follows that (A(j), B(j)) is
asymptotically stationary as j →∞.

From stationarity of process (A(j), B(j)), we establish that
the probability for the k-th interval [Sτ

i,k, Sτ
i,k+1) to be hit by

time j is proportional to the corresponding interval length

Sτ
i,k+1 − Sτ

i,k = (Si,k+1 − Si,k)/τ = ηi,k.

Moreover, given that the k-th interval [Sτ
i,k, Sτ

i,k+1) is hit by
time j, i.e., Sτ

i,k ≤ j < Sτ
i,k+1, then j is uniformly distributed

within the interval, hitting each discrete point with probability
1/(Sτ

i,k+1 − Sτ
i,k).

Utilizing these results, we thus apply the Renewal-Reward
Theorem [25] to process {Sτ

i,k}∞k=1 and establish The next
limiting probabilities:

lim
j→∞

P (Zθ
i (j) = 1) = lim

j→∞

j∑
m=0

Zθ
i (m)
j

=
E[W θ

i,k]
E[ηi,k]

,

lim
j→∞

P (Iθ
i (x, j) = 1) = lim

j→∞

j∑
m=0

Iθ
i (x,m)

j
=

E[Rθ
i,k(x)]

E[ηi,k]
.

(68)

The desired result follows from combining Wi,k(θ) = W θ
i,k,

Ri,k(x, θ) = Rθ
i,k(x), along with θ = t?0 and j = bt0/τc.

Lemma 4 allows us to prove an important asymptotic result
on residual distribution H(x, t0) in the next lemma.

Lemma 5: For sufficiently large t0, residual distribution
H(x, t0) can be expressed using a periodic function of time
t0:

H(x, t0) =
E[Ri,k(x, t?0)]
E[Wi,k(t?0)]

. (69)

Proof: Notice from conditional probability that H(x, t0)
can be rewritten as:

H(x, t0) =
P (Ii(x, t0) = 1)
P (Zi(t0) = 1)

. (70)

The result in (69) immediately follows from substituting (65)
into (70).

Our analysis below indicates that reward functions Wi,k(θ)
and Ri,k(x, θ) are solely determined by the arrival time of user
i and its lifetime in the k-th interval [Si,k, Si,k+1). In the next
lemma, we derive Wi,k(θ) and Ri,k(x, θ) by conditioning on
arrival offset Ai,k = A and lifetime Li,k = L.

Lemma 6: Assume that in the k-th interval [Si,k, Si,k+1),
user i arrives at offset A and its lifetime is L. Then, rewards
Wi,k(θ) and Ri,k(x, θ) are given by:

Wi,k(θ) = κ(A,A + L, θ)
Ri,k(x, θ) = κ(A + max(L− x, 0), A + L, θ). (71)

where κ(u, v, θ) is defined for u < v:

κ(u, v, θ) =





1(u? ≤ θ, v? > θ) b(u) = b(v)
1(u? ≤ θ) + 1(v? > θ)

+ (b(v)− e(u))/τ b(u) < b(v)
, (72)

and 1(.) is an indicator function.
Proof: We first develop a general formula for counting

rewards and then apply it to reward functions Wi,k(θ) and
Ri,k(x, θ). For any given time interval I ≡ [Si,k + u, Si,k +
v) ⊆ [Si,k, Si,k+1), we denote by κ(u, v, θ) the number of
time points in interval I whose offsets are θ.

For b(u) = b(v), i.e., u and v are in the same bin, the
only possible point with offset θ is included in interval I if
u? ≤ θ ≤ v?, which gives the first line in (72). For b(u) <
b(v), i.e., u and v are in different bins and interval I covers



15

(b(v) − e(u))/τ + 2 bins. In the first bin, we need to have
u? ≤ θ for the point with offset θ to be included by I; in the
last bin, we need to have v? ≥ θ for the point with offset θ to
be in I; the rest of the bins yield (b(v)− e(u))/τ points with
offset θ in interval I. The second line in (72) follows from
summing up these three parts.

According to definition, Wi,k(θ) is given by counting the
points included by the ON period (Si,k + A, Si,k + A + L),
which gives the first line in (71). Similarly, Ri,k(x, θ) can
be computed by counting the ON points in interval (Si,k +
A,Si,k +A+L) for L ≤ x or (Si,k +A+L−x, Si,k +A+L)
for L > x, since only those sampling points make the residual
lifetime less than x. Then, the second line in (71) follows.

Next, we simplify (71) by deriving conditional expecta-
tions of E[Wi,k(θ)] and E[Ri,k(x, θ)]. Denote by ω(z, θ)
and ϕ(x, z, θ) the conditional expectation of Wi,k(θ) and
Ri,k(x, θ), respectively, given L = z:

ω(z, θ) ≡ E[Wi,k(θ)|L = z],
ϕ(x, z, θ) ≡ E[Ri,k(x, θ)|L = z]. (73)

The next lemma follows from taking the conditional ex-
pectation of both sides of (71) and expressing ω(z, θ) and
ϕ(x, z, θ) in terms of arrival time distribution FA.

Lemma 7: Assume that the k-th ON duration is L = z.
Then, the conditional expectations of rewards Wi,k(θ) and
Ri,k(x, θ) are given by:

ω(z, θ) = FA(θ)− FA(max(θ − z?, 0)) + 1
− FA(1 + min(θ − z?, 0)) + b(z)/τ, (74)

and

ϕ(x, z, θ) =

{
ω(z, θ) z ≤ x

ω(z, θ)− ω(z − x, θ) z > z
. (75)

Proof: Notice that conditioning on whether A ≤ 1 − z
or not, we can split E[Wi,k(θ)|L = z] into the following two
parts:

E[Wi,k(θ)|L = z] = wl + wg,

where

wl = E[Wi,k(θ)|L = z,A ≤ 1− z]P (A ≤ 1− z), (76)

and

wg = E[Wi,k(θ)|L = z, A > 1− z]P (A > 1− z). (77)

For A ≤ 1− z, it follows from (71) that:

wl = E[1(θ − z < A ≤ θ)|A ≤ 1− z]
× P (A ≤ 1− z)

= P (θ − z < A ≤ θ,A ≤ 1− z). (78)

Splitting (78) into two cases depending on whether z is larger
than 1 or not, we establish that:

wl =





FA(min(θ, 1− z))
− FA(max(θ − z, 0)) z ≤ 1

0 z > 1
. (79)

For A > 1 − z, we split wg into three parts, wg = wg1 +
wg2 + wg3, where:

wg1 = E[1(A ≤ θ)|A > 1− z]P (A > 1− z),
wg2 = E[1(r(z + A) > θ)|A > 1− z]P (A > 1− z),
wg3 = E[bz + Ac − 1|A > 1− z]P (A > 1− z).

It is easy to verify that:

wg1 =

{
FA(θ)− FA(max(1− z, θ)) z ≤ 1
FA(θ) z > 1

, (80)

wg2 =





1− FA(min(1 + θ − z, 1)) z ≤ 1
1− FA(min(1 + θ − r(z), 1))

+ FA(1− r(z)) z > 1
− FA(max(θ − r(z), 0))

, (81)

and

wg3 =

{
0 z ≤ 1
b(z)/τ − FA(1− r(z)) z > 1

. (82)

Combining (79)-(82), we establish the result in (74).
Next, we derive ϕ(x, z, θ). For L ≤ x, Ri,k(x, θ) = Wi,k(θ)

and thus ϕ(x, z, θ) = ω(z, θ), which is the first line in (75).
For L > x, we count the number of points with offset θ in the
interval [A,A + L − x] and then subtract it from Wi,k, from
which the second line in (75) follows.

Now, we are ready to prove Theorem 2 using the above
results.

Proof: Notice that from conditional expectation:

E[Wi,k(θ)] =
∫ ∞

0

E[Wi,k(θ)|L = z]dFL(z)

=
∫ ∞

0

ω(z, θ)dFL(z), (83)

and

E[Ri,k(x, θ)] =
∫ ∞

0

E[Ri,k(x, θ)|L = z]dFL(z)

=
∫ ∞

0

ϕ(x, z, θ)dFL(z). (84)

Substituting (83)-(84) into (69), it follows that for suffi-
ciently large t0, residual distribution H(x, t0) is given by:

H(x, t0) =

∫∞
0

ϕ(x, z, t?0)dFL(z)∫∞
0

ω(z, t?0)dFL(z)
. (85)

Further substituting (74)-(75) into (85) yields the desired
result.


