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Introduction Introduction Introduction 
• Peer-to-peer networks are popular platforms for 

many Internet applications
━

 

Characterizing these systems is important for theoretic 
modeling of resilience, throughput, etc.

• However, many existing P2P systems are fully 
distributed, large-scale, and highly dynamic

• Therefore, measuring these systems is challenging
━

 

Limit of bandwidth and lack of infrastructural support

• The goal of this work is to address one of such 
challenging tasks - measuring the distribution of 
user lifetimes



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

4

Measuring Lifetime DistributionMeasuring Lifetime DistributionMeasuring Lifetime Distribution
• An instance of the lifetime is the duration of a user’s 

appearance in the system

• Let L
 

be the lifetime of a random user
━

 

Define FL
 

(x) =

 
P

 
(L

 
·

 
x)

 
to be the CDF of the lifetime

• One straightforward solution is to collect lifetime 
instances by periodically probing users 
━

 

And then compute empirical distribution E(x)

 
to estimate 

FL

 

(x)

• Due to hardware constraint and security concern, 
we cannot probe all users with infinitely small 
intervals

Our target metric
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Measuring Lifetime Distribution 2Measuring Lifetime Distribution 2Measuring Lifetime Distribution 2
• In large-scale distributed systems, it is non-trivial to 

measure the exact lengths of lifetime instances
━

 

We need a definition for accuracy 

• Let ∆
 

be the probing interval and define discrete 
point xi

 

= i∆

• Estimator E(x)

 
is unbiased if it can correctly 

reproduce the distribution of lifetime L
 

at all 
discrete points {xi

 

} for any ∆>0:
━

 

Our target for accuracy:E(xi

 

) = FL

 

(xi

 

)

• Probing traffic could be significant for large systems
━

 

Our target for overhead: small amount of probing traffic
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Previous Methods – CBM Previous Methods Previous Methods –– CBM CBM 

• Create-Based Method (CBM) uses an observation 
window of 2T
━

 

Within the window, it takes a snapshot of the system 
every ∆

 
time units

• To avoid sampling bias, CBM divides the window 
into two halves and only includes lifetime samples 
that satisfy the following conditions
━

 

Appear during the first half of the window
━

 

Disappear within the window
━

 

Have a lifetime no longer than T
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Example of CBM SamplingExample of CBM SamplingExample of CBM Sampling

Observation window 2T
start t0 t0

 

+2T

P1

P2

P3

P4

P5

valid samples 
{3∆, 4∆}

appears before t0

disappears 
after t0

 

+2T

longer than T

∆
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Previous Methods – RIDEPrevious Methods Previous Methods –– RIDERIDE
• Wang et. al. [INFOCOM’07] proved that CBM can 

be arbitrarily biased in estimating the lifetime 
distribution

• ResIDual-based Estimator (RIDE) was proposed to 
address the issue in CBM
━

 

Take one snapshot of the system at time t0
 

and record  
alive users in S0

━

 

Probe these alive users to obtain their residuals and 
compute distribution H(x)

• Wang et. al. also proved that under stationary 
systems, RIDE can produce an unbiased estimator
━

 

Moreover, RIDE can be configured to incur much less 
traffic overhead than CBM
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Example of RIDE SamplingExample of RIDE SamplingExample of RIDE Sampling

t0

R3

R4

R5

invalid samples

P3

P4

P5

P1

P2

S0 R(t0

 

)

P(j∆·R(t0

 

)<(j+1)∆)H(xj

 

)

interval ∆

P3

P4

P5

t0

 

+2∆ t0

 

+4∆

[4∆, 5∆)

[2∆, 3∆)

[5∆, 6∆)

exact
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Motivation Motivation Motivation 

• While RIDE can achieve both high accuracy and 
low overhead
━

 

RIDE relies on one critical assumption – stationarity of 
the user arrival process

• However, many systems exhibit diurnal 
arrival/departure patterns or any other non- 
stationary dynamics
━

 

Therefore, we need to investigate whether RIDE can 
achieve the same benefit mentioned earlier

• To do so, we first propose a model for non- 
stationary arrivals
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Non-Stationary User ChurnNonNon--Stationary User ChurnStationary User Churn

• Our proposed model models each user with an 
alternating process
━

 

ON (online) and OFF (offline) states

• Moreover, the time is partitioned into bins of size τ
━

 

For example, a day is a bin

• OFF states are split into two sub-states
━

 

REST: the delay between the user’s departure and 
midnight of the day when he/she joins the system again

━

 

WAIT: the delay from midnight until the user’s arrival into 
the system within a given day

• Non-Stationary-Periodic Churn Model (NS-PCM)



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

14

• For any time t, define                             to be the 
bin offset (remainder) of t

• For x
 

in [0, τ], define FA
 

(x) = P

 
(A

 
·

 
x)

 
to be the 

CDF of the arrival time A

WAIT ON REST WAIT

Example of User ProcessExample of User ProcessExample of User Process

A L

τ

midnight
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Gnutella and NS-PCMGnutella and NSGnutella and NS--PCMPCM

• NS-PCM mimics the arrival process of Gnutella 

Actual data measured 
from Gnutella

Simulations generated 
by NS-PCM
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Analysis of RIDE in NS-PCMAnalysis of RIDE in NSAnalysis of RIDE in NS--PCMPCM

• Theorem 1: Under NS-PCM, residual lifetime 
distribution H(x,t0

 

)

 
is a periodic function

━

 

where

• Recall in a stationary model, RIDE depends on

• Therefore, RIDE is biased in NS-PCM
━

 

Differentiating H(x,t0

 

)

 
gives no simple formula of FL

 

(x)
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RIDE under NS-PCMRIDE under NSRIDE under NS--PCMPCM

• Simulations indicate that RIDE deviates from FL
 

(x)

━

 

Its estimation does not even represent a valid CDF 
function

Power-law Periodic

non-monotonic!
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Proposed Sampling Algorithm - U-RIDEProposed Sampling Algorithm Proposed Sampling Algorithm -- UU--RIDERIDE

• Instead of just one snapshot at time t0
 

, we crawl the 
system at multiple time points tm

 

(m=1…M)

━

 

Sampling schedule
━

 

Offset schedule

• For the m-th snapshot, U-RIDE keeps track of 
captured alive users 
━

 

NR

 

(tm

 

): the number of alive users in this snapshot
━

 

NR

 

(x, tm

 

): the number of them with residual ·
 

x

• Then, compute the ratio for each xj
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Example of U-RIDE SamplingExample of UExample of U--RIDE SamplingRIDE Sampling

t1 t2 t3

interval ∆

valid 
samples

invalid 
samples
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Proposed Sampling Algorithm - U-RIDEProposed Sampling Algorithm Proposed Sampling Algorithm -- UU--RIDERIDE

• We call a schedule uniform if offset schedule OM
 forms a uniform distribution in [0, τ]

• Theorem 2: Under a uniform schedule, the ratio r

• An unbiased estimator is given by

━

 

where h*(x)

 
is the numerical derivative of ratio function 

EH
*(x)
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U-RIDE under NS-PCMUU--RIDE under NSRIDE under NS--PCMPCM

• Simulations show an exact match between U-RIDE 
estimation and FL

 

(x)

Power-law Periodic
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Overhead and SubsamplingOverhead and Overhead and SubsamplingSubsampling

• Residual sampling supports ²-subsampling – 
uniformly select ²

 
percent of valid samples

━

 

We also prove that CBM does not support subsampling

• Wang et. al. [INFOCOM’07] have proved that with 
²-subsampling, RIDE can reduce overhead by a 
factor of over 100 compared to CBM

• The question is whether U-RIDE can save the 
same amount of bandwidth
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Overhead and Subsampling 2Overhead and Overhead and SubsamplingSubsampling 22
• Theorem 3: Overhead ratio of U-RIDE and RIDE 
qUR

 

is

━

 

where and p
 

is a scheduling parameter

• This result shows that U-RIDE incurs more traffic 
overhead than RIDE in the original form
━

 

However, by using a smaller ², U-RIDE’s overhead can 
always be upper bounded within that of RIDE

• In fact, we can choose proper ²
 

based on the size 
of the initial set S0

 

so that ²|S0

 

|
 

is fixed at some pre- 
determined value
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Gnutella Measurement – RIDEGnutella Measurement Gnutella Measurement –– RIDERIDE

actual



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

26

Gnutella Measurement – U-RIDE Gnutella Measurement Gnutella Measurement –– UU--RIDE RIDE 

actual
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ConclusionConclusionConclusion

• We studied the tradeoff between accuracy and 
scalability in P2P systems with non-stationary 
arrivals
━

 

We proposed a novel non-stationary churn model NS- 
PCM

━

 

We introduced a simple algorithm U-RIDE that can 
achieve both accuracy and scalability

• Future work includes
━

 

Applying NS-PCM to understand how it affects existing 
results in P2P

━

 

Extending U-RIDE for measuring the arrival process of 
P2P systems
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The EndThe EndThe End

• Thank you!
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