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Modeling Residual-Geometric Flow Sampling
Xiaoming Wang, Xiaoyong Li, and Dmitri Loguinov

Abstract—Traffic monitoring and estimation of flow parame-
ters in high speed routers have recently become challenging as the
Internet grew in both scale and complexity. In this paper, we focus
on a family of flow-size estimation algorithms we call Residual-
Geometric Sampling (RGS), which generates a random point
within each flow according to a geometric random variable and
records all remaining packets in a flow counter. Our analytical
investigation shows that previous estimation algorithms based on
this method exhibit certain bias in recovering flow statistics from
the sampled measurements. To address this problem, we derive
a novel set of unbiased estimators for RGS, validate them using
real Internet traces, and show that they provide an accurate and
scalable solution to Internet traffic monitoring.

I. INTRODUCTION

Recent growth of the Internet in both scale and complexity
has imposed a number of challenges on network management,
operation, and traffic monitoring. The main problem in this
line of work is to scale measurement algorithms to achieve
certain objectives (e.g., accuracy) while satisfying real-time
resource constraints (e.g., fixed memory consumption and
per-packet processing delay) of high-speed Internet routers.
This is commonly accomplished (e.g., [5], [6], [7], [8], [9],
[10], [11], [14], [15], [17], [21], [18], [19], [20], [22], [26],
[32]) by reducing the amount of information a router has
to store in its internal tables, which comes at the expense
of deploying special estimation techniques that can recover
metrics of interest from the collected samples.

In this paper, we study two problems in the general area of
measuring flow sizes – 1) determining the number of packets
transmitted by “elephant” flows [11], [15], [17], [21], [20],
[22] and 2) building the distribution of flow sizes seen by the
router in some time window [7], [18], [32] – coupled in a
single measurement technique. The former problem arises in
usage-based accounting and traffic engineering [6], [11], [12],
[13], [27], while the latter has many security applications such
as anomaly and intrusion detection [1], [23], [16].

Our interest falls within the family of residual sampling,
which selects a random point A within each flow and then
samples the remainder R of that flow until it ends. Denoting
by L the size (in packets) of a random flow, sampled residuals
R are simply L− A. Stochastically larger A results in fewer
flows being sampled and leads to lower overhead in terms of
both CPU and RAM consumption. Besides reduced overhead
arising from omission of many small-size flows from counter
tables, residual sampling guarantees to capture large flows with
probability 1 − o(1) as their size L → ∞. This allows ISPs
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to determine “heavy-hitters” and charge the corresponding
customers for generated traffic.

While in P2P networks residual sampling distributes the
initial point A uniformly within user lifetimes [31], flow-based
estimation [11], [17] usually employs geometric A since it
can be easily implemented with a sequence of independent
Bernoulli variables. We call the resulting approach Residual-
Geometric Sampling (RGS) and note that it has received some
limited analytical attention in [11], [17]; however, unbiased
estimation of individual flow sizes, analysis of the resulting er-
ror, asymptotically accurate recovery of flow-size distribution
P (L = i) from sampled residuals R, and analysis of space-
CPU requirements in steady state have not been explored. We
overcome these issues below.

A. Single-Flow Usage
We start with the problem of obtaining sizes of individ-

ual flows for accounting purposes. Since residual sampling
requires an estimator to convert residuals into the metrics of
interest, our first task is to define proper notation and desired
properties for the estimation algorithm. Assume that for a flow
of size L the sampling algorithm produces residual RL, where
both L and RL are random variables. We call an estimator
e(RL) unbiased if its expectation produces the correct flow
size, i.e., E[e(RL)|L = l] = E[e(Rl)] = l. Unbiased
estimation allows one to average the estimated size of several
flows of a given size l and accurately estimate their total
contribution. We further call an estimator elephant-accurate
if ratio e(Rl)/l converges to 1 in mean-square as l → ∞.
Elephant-accuracy ensures that the variance of e(Rl)/l tends
to zero as l → ∞, which means that the amount of relative
error between e(Rl) and l becomes negligible for large flows.

Prior work on RGS [11], [17] has suggested the following
estimator:

e(RL) = RL − 1 + 1/p, (1)

where 0 < p ≤ 1 is the parameter of geometric variable A.
To understand the performance of (1), we first build a general
probabilistic model for residual-geometric sampling and derive
the relationship between flow size L and its residual RL. Using
this result, we prove that:

E[e(Rl)] =
l

1− (1− p)l
, (2)

which indicates that (2) is generally biased and on average
tends to overestimate the original flow size by a factor of up to
1/p. To address this problem, we derive a different estimator:

ê(RL) = RL − 1 + 1/p− (1− p)RL

p
(3)

and prove that it is both unbiased and elephant-accurate.
We also derive in closed-form the mean-square error δl =
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E[(ê(Rl)/l−1)2] for finite l, which can be used to determine
when (3) approximates the true flow size with accuracy
sufficient for billing purposes.

B. Flow-Size Distribution

Our second problem is estimation of the original flow-size
probability mass function (PMF), which we assume is given
by fi = P (L = i), i = 1, 2, . . . We call PMF estimator qi
asymptotically unbiased if it converges in probability to fi for
all i as the number of sampled flows M → ∞. One may
be at first tempted to compute this distribution based on the
values produced by either (1) or (3) for each observed flow;
however, we show that such qi almost always differ from the
original distribution fi and the bias persists as sample size
M → ∞. The reason for this discrepancy is that e(.) and
ê(.) both estimate the sizes of flows that have been sampled
by the algorithm, which are not representative of the entire
population passing through the router. Since longer flows are
more likely to be selected by residual sampling, this approach
severely overestimates their fraction and thus skews the PMF
towards the tail.

Denote by Mi the number of sampled flows with RL = i
and define a new estimator:

q̃i =
Mi − (1− p)Mi+1

Mp+ (1− p)M1
. (4)

Using the general model of RGS derived later in the paper,
we prove that q̃i tends to fi in probability as M =

∑
iMi →

∞ and obtain the amount of error |q̃i − fi| for finite M . We
also provide asymptotically unbiased estimators for the total
number of flows n:

ñ =M +
1− p

p
M1 (5)

and the number of flows ni with exactly i packets:

ñi =
Mi − (1− p)Mi+1

p
, (6)

where ñ/n → 1 and ñi/ni → 1, both in probability,
as M → ∞. We call the resulting combination (3),(4)-(6)
Unbiased Residual-Geometric Estimators (URGE).

C. Implementation and Evaluation

We finish the paper by discussing an efficient implemen-
tation of the above algorithms and evaluating their accu-
racy/performance using several Internet traces. Prior work has
not discussed how residual sampling should be implemented
or its overhead in steady-state, which prompts a fairly detailed
exposition below.

We assume URGE uses a chain-linked hash table of size
K, which keeps individual flow counters. Each linked list is
sorted according to the flow ID and is traversed linearly until
a match is found or an ID larger than the one being sought
is encountered. Keeping the list sorted (as opposed to FIFO)
reduces the lookup delay by half for flows not already in the
table. To reduce RAM overhead, we remove flows from the
table if they have completed (i.e., FIN, RST packets detected)
or if no packets from these flows arrive within some timeout

τ . To keep the overhead manageable, the removal process is
run over the entire table on the timescale of seconds or even
minutes.

As before, assume that the router sees a total of n flows
in window [0, T ]. Then, denote by N(t) the number of active
flows at time t and by M(t) the number of them sampled
by the router. It then follows that memory consumption
WR(t) and lookup delay is TR(t) are both functions of M(t).
Under certain mild assumptions, we obtain a simple result on
E[M(t)] and show that even as the total number of flows
n→ ∞, both RAM usage and CPU overhead of RGS remain
constant.

We then explore how to satisfy the tradeoff between three
design objectives – memory consumption, processing speed,
and accuracy – using parameters K and p. Given upper bounds
on memory usage W0 and per-packet processing delay T0,
we propose a technique for deciding K based on the above
analysis such that WR(t) ≤W0 and TR(t) ≤ T0 are satisfied,
while maximizing p at the same time (i.e., achieving the best
accuracy within the constraints).

We finish the paper by evaluating URGE with real Internet
traces obtained from NLANR [24] and CAIDA [3]. Our
experiments reveal that the proposed algorithm produces very
accurate estimation of flow metrics and thus allows one to
perform more aggressive sampling (i.e., smaller probability
p) of the monitored traffic. With p = 0.01, we find that
E[M(t)] is 40 − 4000 times smaller than n and 3 − 100
times smaller than E[M ], with most lookups requiring just
1-2 RAM hits. We also discover in the experiments with
small traces that URGE does not degrade significantly in
terms of accuracy even for small sample sizes, which makes
it suitable for monitoring individual customer networks and
certain protocols.

The remainder of the paper is organized as follows. We
review prior work on traffic monitoring in Section II. We then
develop a probabilistic model for residual-geometric sampling
in Section III, analyze previous methods in Section IV, and
propose the new estimators in Section V. We explore the
implementation of the suggested framework in Section VI,
evaluate its performance in Section VII, and conclude the
paper in Section VIII.

II. RELATED WORK

In this section, we review several sampling algorithms in the
area of traffic monitoring. In particular, we classify existing
work into two categories: packet sampling and flow sampling,
where the former makes per-packet and the latter per-flow
decisions to sample incoming traffic.

A. Packet Sampling

Sampled NetFlow (SNF) [26] is a widely used technique in
which incoming packets are sampled with a fixed probability
p. The general goal of SNF is to obtain the PMF of flow
sizes; however, [14] shows that it is impossible to accurately
recover the original flow-size distribution from sampled SNF
data. Estan et al. [10] propose Adaptive NetFlow (ANF), which
adjusts the sampling probability p according to the size of
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the flow table; however, ANF’s bias in the sampled data is
equivalent to that in SNF and is similarly difficult to overcome
in practice.

Instead of using one uniform probability for all flows as in
[10], [26], another direction in packet sampling is to compute
pi(c) for each flow i based on its currently observed size c.
This approach has been studied by two independent papers,
Sketch-Guided Sampling (SGS) [20] and Adaptive Non-Linear
Sampling (ANLS) [15]. A common feature of these two
methods is to sample a new flow with probability 1 and then
monotonically decrease pi(c) as c grows. Both methods must
maintain a counter for each flow present in the network and
are difficult to scale due to the high RAM/CPU usage.

B. Flow Sampling

In flow thinning [14], each flow is sampled independently
with probability p and then all packets in sampled flows are
counted. Hohn et al. [14] show that flow thinning is able
to accurately estimate the flow size distribution; however,
this method typically misses 1 − p percent of elephant flows
and thus does not support applications such as usage-based
accounting and traffic engineering [6], [11], [12], [13], [27].
For highly skewed distributions with a few extremely large
flows and many short ones (which is typical for Internet links),
this method may also take a long time to converge.

To address these problems of flow thinning, Estan et.
al. [11] introduce a size-dependent flow sampling algorithm
called Sample-and-Hold (S&H), which is proposed to identify
elephant flows. For each packet from a new flow, the algorithm
creates a flow counter with probability p; once a flow is
sampled, all of its subsequent packets are then counted. It
is easy to verify that S&H samples a flow with size l with
probability 1 − (1 − p)l, which quickly approaches 1 as l
grows. Creating a unifying analytical model for this approach
and understanding the properties of samples it collects is the
main topic of this paper.

Another direction of size-dependent flow sampling has been
explored by Duffield et al. in [5], [6], [8], which present an-
other size-dependent flow measurement method called Smart
Sampling. Their approach selects each flow of size L with
probability p(L) = min(1, L/z), where z is some constant.
Since this method requires flow size L before deciding whether
to sample it or not, it can only be applied off-line.

Kompella et. al. [17] examine a method called Flow Slicing
(FS), which combines SNF and S&H with a variant of smart
sampling. Other non-sampling methods include exact counting
[25], [28], [30], [33] and lossy counting [18], [22], which are
orthogonal to our work.

III. UNDERLYING MODEL

In this section, we build a general probabilistic model of
Sample-and-Hold [11] and establish the necessary analytical
foundation for the results that follow.

A. Sample-and-Hold

Consider a sequence of packets traversing a router and
assume that its flow-measurement algorithm checks each
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 Fig. 1. Residual-geometric sampling of a flow with size L.

packet’s flow identifier x in some RAM table. If x is found
in the table, the corresponding counter is incremented by 1;
otherwise, with probability p a new entry for x is created in
the table (with counter value 1) and with probability 1−p the
packet is ignored.

To model this process, we first need several definitions.
Assume that flow sizes are i.i.d. random variables and define
geometric age AL to be the number of packets discarded from
the front of a flow with size L before it is sampled (see Fig.
1). Let G be a shifted geometric random variable with success
probability p, i.e., P (G = j) = (1− p)jp. It thus follows that
AL is simply:

AL = min(G,L). (7)

Now define geometric residual RL to be the final counter
value of a flow of size L conditioned on the fact that it has
been sampled (i.e., AL < L):

RL = L−AL, (8)

which is also illustrated in Fig. 1. From the perspective of
traffic monitoring in this paper, geometric residual RL is the
only quantity collected during measurement and available to an
estimation algorithm. Since this approach belongs to the class
of residual-sampling techniques [31] and specifically uses ge-
ometric age, this paper calls S&H by a more mathematically-
specific name Residual-Geometric Sampling (RGS).

Assume that L has a PMF fi = P (L = i), where i =
1, 2, . . ., and denote by ps = P (AL < L) the probability that
a random flow is sampled. Then, we have the following result.

Lemma 1: Probability ps that a flow is selected by RGS is:

ps = E[1− (1− p)L] = 1−
∞∑
i=1

fi(1− p)i. (9)

Proof: Observe that for a fixed flow size L = l, we have
P (Al < l) = 1− (1−p)l. Unconditioning L, we immediately
get (9).

Next, let hi = P (RL = i) be the PMF of geometric residual
RL. The following lemma expresses hi in terms of fi.

Lemma 2: The PMF of geometric residual RL is:

hi =
p
∑∞

j=i fj(1− p)j−i

ps
. (10)

Proof: Using (8), we have:

hi = P (RL = i) = P (L−AL = i|AL < L)

=
P (L−AL = i ∩AL < L)

ps
, (11)

where ps = P (AL < L). Substituting (7) into (11) and
combining the fact that L−G = i ≥ 1, we establish:

hi =
P (L−G = i)

ps
=

∑∞
j=0 P (G = j − i)fj

ps
, (12)
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which gives the desired result in (10) by substituting the PMF
of G into (12).

The result of Lemma 2 is fundamental as most of the results
in this paper are conveniently derived from (10).

B. Fixed Flow Size

We next analyze a special case of residual sampling where
the original flow size is fixed at L = l. Note that residuals
are now Rl instead of RL since the original flow size is no
longer a random variable. Recall that the goal of single-flow
size estimation is to obtain l from Rl for each sampled flow.
The next corollary follows from (10) and gives the distribution
and expectation of geometric residual Rl.

Corollary 1: Given flow size L = l, the PMF of Rl is:

P (Rl = i) =
(1− p)l−ip

1− (1− p)l
(13)

and its expectation is:

E[Rl] =
l

1− (1− p)l
+ 1− 1/p. (14)

Proof: For L = l, we have fl = 1 and fi = 0 for all
i ̸= l. Writing ps = 1− (1− p)l, we get from (10):

P (Rl = i) =

∑∞
j=i fj(1− p)j−ip

1− (1− p)l
=

(1− p)l−ip

1− (1− p)l
, (15)

which is exactly (13).
We next derive expectation E[Rl], which can be expanded

into:

E[Rl] = E[l −Al|Al < l] = l − E[G|G < l]. (16)

Recall that for any non-negative discrete random variable Y
taking values over the integer set {0, 1, . . .}, its expectation is
given by E[Y ] =

∑∞
y=0 P (Y > y). It thus follows that (16)

reduces to:

E[Rl] = l −
l−1∑
j=0

P (G > j|G < l)

=
l−1∑
j=0

P (G ≤ j|G < l) =

∑l−1
j=0 P (G ≤ j)

P (G < l)
. (17)

Substituting P (G ≤ j) = 1−(1−p)j+1 into (17), we have:

E[Rl] =

∑l−1
j=0[1− (1− p)j+1]

1− (1− p)l

=
l − (1− p)(1− (1− p)l)/p

1− (1− p)l
, (18)

which can be simplified to (14).
Next, we apply the results obtained in this section to analyze

existing estimation methods that have been proposed for RGS.

IV. ANALYSIS OF EXISTING METHODS

In this section, we examine prior approaches [11], [17] to
estimating single-flow usage and whether their results can be
generalized to recover the PMF of L.
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Fig. 2. Expectation of estimator (19) in simulations and its model (20).

A. Single-Flow Usage

To evaluate single-flow estimators, we use the following
definition that is commonly used in statistics [2].

Definition 1: Estimator e(Rl) is called unbiased if
E[e(Rl)] = l for all l ≥ 1.

Unbiased estimation is a key property of an estimator as
it allows accurate estimation of the total contribution from a
sufficiently large pool of flows (e.g., one customer network).
However, since large flows are typically rare, one commonly
faces an additional requirement to estimate their size with
just a single sample e(Rl), which is formalized in the next
definition.

Definition 2: Estimator e(Rl) is called elephant-accurate if
e(Rl)/l → 1 in mean-square as l → ∞.

Elephant-accuracy guarantees that the amount of relative
error between e(Rl) and l decays to zero as l → ∞. As before,
suppose that a flow of size l produces a counter with value
Rl. Recall that [11], [17] suggest the following estimator:

e(Rl) = Rl − 1 + 1/p, (19)

where p is the probability of residual-geometric sampling. The
next result directly follows from (14).

Theorem 1: Expectation E[e(Rl)] is given by:

E[e(Rl)] =
l

1− (1− p)l
. (20)

Proof: Taking the expectation of (19), we have:

E[e(Rl)] = E[Rl]− 1 + 1/p, (21)

which immediately leads to (20) using (14).
Note that (20) indicates that (19) is generally biased,

especially when lp is small. Indeed, for lp ≈ 0, we have
1 − (1 − p)l ≈ lp and E[e(Rl)] ≈ 1/p regardless of l,
which shows that in such cases E[e(Rl)] carries no infor-
mation about the original flow size. However, as l → ∞, it
is straightforward to verify that the bias in e(Rl) vanishes
exponentially, which is consistent with the analysis in [17],
which has only considered the case of l → ∞.

To see the extent of bias in (19) and verify (20), we apply
residual-geometric sampling to flows of size l ranging from 1
to 106 packets, feed the measured sizes to (19), and average
the result after 1000 iterations for each l. Fig. 2 plots the
obtained E[e(Rl)] along with model (20). The figure indicates
that (20) indeed captures the bias and that (19) tends to over-
estimate the size of short flows even in expectation, where
smaller sampling probability p leads to more error.
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(b) p = 0.001

Fig. 3. RRMSE of (19) in simulations and its model (23).

To quantify the error of individual values e(Rl) in estimat-
ing flow size l and to understand elephant-accuracy, denote by
Yl = e(Rl)/l and define the Relative Root Mean Square Error
(RRMSE) to be:

δl =
√
E[(Yl − 1)2]. (22)

Note that δl → 0 indicates that Yl → 1 in mean-square and
thus implies elephant-accurate estimation. The next result de-
rives δl in closed form. We omit the rather tedious derivations
for brevity.

Theorem 2: The RRMSE of (19) is given by:

δl =

√
1− p− l(l − 1)p2(1− p)l − (1− p)l+1

l2p2(1− (1− p)l)
. (23)

Observe from (23) that for flows with size l = 1, the
relative error is

√
1− p/p, but as l → ∞, δl → 0 and

the estimator is elephant-accurate. Fig. 3 plots (23) against
simulations, indicating a close match. The figure also shows
that the RRMSE starts from 1/p and decreases towards zero
as Θ(1/l) as l → ∞.

B. Flow-Size Distribution

We now investigate whether e(RL) defined in (19) can
be used to estimate the actual flow-size distribution {fi}∞i=1.
Denote by qi = P (e(RL) = i) the PMF of estimated sizes
among the sampled flows. To understand our objectives with
approximating the PMF of L, a definition is in order.

Definition 3: An estimator {qi}∞i=1 of PMF {fi}∞i=1 is
called asymptotically unbiased if qi converges in probability
to fi for all i as the number of sampled flows M → ∞.

The next theorem follows directly from (10).
Theorem 3: The PMF of flow sizes estimated from (19) is

given by:

qi =

∑∞
j=y(i) fj(1− p)j−y(i)p

ps
, (24)

where y(i) = ⌈i+ 1− 1/p⌉ and ps is in (9).
The result in (24) indicates that each qi is different from

fi regardless of the sampling duration and thus cannot be
used to approximate the flow-size distribution. We verify (24)
with a simulated packet stream with 5M flows, where flow
sizes follow a power-law distribution P (L ≤ i) = 1 − i−α

for i = 1, 2, . . . and α = 1.1. Fig. 4 plots the CCDF of
random variable e(RL) obtained from simulations as well
as model (24), both in comparison to the tail of the actual
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Fig. 4. Distribution {qi} in simulations and its model (24).

distribution. The figure shows that (24) accurately predicts the
values obtained from simulations and that PMF {qi} is indeed
quite different from {fi}.

So far, our study of existing methods in residual-geometric
sampling has shown that they are not only generally biased, but
also unable to recover the flow-size distribution from residuals
RL. This motivates us to seek better estimation approaches,
which we perform next.

V. URGE
This section proposes a family of algorithms called Un-

biased Residual-Geometric Estimators (URGE), proves their
accuracy, and verifies them in simulations.

A. Single-Flow Usage
For estimating individual flow sizes, we first consider an

estimator directly implied by the result in (14). Notice that
solving (14) for l and expressing flow size l in terms of E[Rl],
we get:

l = u− 1

log(1− p)
W

(
u(1− p)u log(1− p)

)
, (25)

where u = E[Rl] + 1/p− 1 and W (z) is Lambert’s function
(i.e., a multi-valued solution to WeW = z) [4]. Thus, a
possible estimator can be computed from (25) with E[Rl]
replaced by the measured value of geometric residual Rl.

However, there are two reasons that (25) is a bad estimator
of flow sizes. First, Lambert’s function W (z) has no closed
form solution and has to be numerically solved using tools
such as Matlab. Second, it can be verified (not shown here
for brevity) that (25) is not an unbiased estimator. Instead, we
define a new estimator:

ê(Rl) = Rl − 1 + 1/p− (1− p)Rl

p
. (26)

and next show that it is unbiased.
Lemma 3: Estimator ê(Rl) in (26) is unbiased, i.e.,

E[ê(Rl)] = l. (27)

Proof: We prove (27) by deriving such function ψ(Rl)
that satisfies E[ψ(Rl)] = l. First, it follows from (13) that:

E[ψ(Rl)] =

l∑
j=1

ψ(j)P (Rl = j)

=

∑l
j=1 ψ(j)(1− p)l−jp

1− (1− p)l
. (28)
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(b) p = 0.001

Fig. 5. Expectation of estimator (26) in simulations.

10
0

10
2

10
4

10
6

10
−4

10
−2

10
0

10
2

actual size

re
la

tiv
e 

R
M

S
E

 

 

model
simulation

(a) p = 0.01

10
0

10
2

10
4

10
6

10
−4

10
−2

10
0

10
2

actual size

re
la

tiv
e 

R
M

S
E

 

 

model
simulation

(b) p = 0.001

Fig. 6. RRMSE of (26) in simulations and model (31).

For E[ψ(Rl)] = l to hold, we must have:

l∑
j=1

ψ(j)(1− p)−j =
l
(
1− (1− p)l

)
p(1− p)l

. (29)

Writing (29) twice for l and l − 1 and subtracting the two
equations from each other, we get:

ψ(l)(1− p)−l =
1 + p(l − 1)− (1− p)l

p(1− p)l
. (30)

Simplifying (30), we obtain (26).
We plot in Fig. 5 simulation results obtained from (26). The

figure indicates that ê(Rl) accurately estimates actual sizes for
all flows in both cases of p. Next, we derive the RRMSE of
URGE.

Theorem 4: The RRMSE of (26) is given by:

δ̂l =

√
1− p+ lp(p− 2)(1− p)l − (1− p)2l+1

l2p2(1− (1− p)l)
. (31)

It is easy to verify from (31) that URGE has zero RRMSE
for l = 1 or l → ∞, confirming its elephant-accuracy. We
plot δ̂l obtained from simulations along with the model in Fig.
6, which shows that (31) accurately tracks the actual relative
error. From Figures 5-6, it is clear that ê(Rl) significantly
improves the accuracy of estimating small flow sizes compared
to e(Rl). In practice, (31) can be used to determine threshold
l0, which leads to desired bounds on error for all l ≥ l0 and
allows ISPs to use e(Rl) instead of l.

B. Flow-Size Distribution

It is worth mentioning that while (26) produces unbiased
estimation of flow sizes, ê(RL) is not suitable for computing
the flow-size distribution, as we show below. Denote by

q̂i = P (ê(RL) = i) the PMF of ê(RL). Then, we have the
following result.

Lemma 4: PMF of ê(RL) is given by:

q̂i =
1

ps

∞∑
j=y(i)

(1− p)j−y(i)fjp, (32)

where ps is in (9), function y(i) is:

y(i) = ⌈i+ 1− 1/p− ω⌉, (33)

and ω =W
(
−(1− p)i+1−1/p log(1− p)

)
.

Proof: We first solve

RL + 1/p− 1− (1− p)RL/p = i, (34)

for RL and express it in terms of i, i.e., RL = y(i), where
y(i) is given by (33), ignoring approximate round-offs to the
nearest integer. Combining with (10), we have:

q̂i = P (RL = y(i)) = hy(i), (35)

where hi is in (10). This directly leads to (32).
Notice from (32)-(33) that distribution q̂i does not even

remotely approximate the original PMF fi. This problem is
fundamental since residual sampling exhibits bias towards
larger flows and even if we could recover L from RL exactly,
the distribution of sampled flow sizes would not accurately
approximate that of all flows passing through the router.

We thus explore another technique for estimating the flow-
size distribution. Before doing that, we need the next lemma.

Lemma 5: The flow size distribution fi can be expressed
using the PMF of geometric residuals {hi} in (10) as:

fi =
hi − (1− p)hi+1

p+ (1− p)h1
. (36)

Proof: From (10), we obtain that:

hi − (1− p)hi+1 =
p

ps
fi. (37)

It then immediately follows that fi is given by:

fi =
ps(hi − (1− p)hi+1)

p
. (38)

Notice that ps in (9) is a function of {fi}, which are
unknown from the measurement perspective. The last step of
the proof is to express ps in terms of known quantities {hi},
which can be accomplished by applying the normalization
condition

∑∞
i=1 fi = 1. It is easy to verify that:
∞∑
i=1

hi = 1 and
∞∑
i=1

hi+1 = 1− h1. (39)

Then, summing up both sides of (38) for i from 1 to infinity
gives us:

ps =
p∑∞

i=1 (hi − (1− p)hi+1)
=

p

p+ (1− p)h1
, (40)

which together with (38) establishes (36).
This result leads to a new estimator for the flow-size

distribution:
q̃i =

Mi − (1− p)Mi+1

Mp+ (1− p)M1
, (41)
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Fig. 7. Estimator (41) in simulations.

where M is the total number of sampled flows and Mi is the
number of them with the geometric residual equal to i. Since
Mi/M → hi in probability as M → ∞ (from the weak law
of large numbers), we immediately get the following result.

Corollary 2: The estimator in (41) is asymptotically unbi-
ased.

We next verify the accuracy of q̃i in simulations with 5M
flows in the same setting as in the previous section. We plot
in Fig. 7 the CCDF estimated from (41) along with the actual
distribution. The figure shows that q̃i accurately follows the
actual distribution for both cases of p.

C. Convergence Speed

We next examine the effect of sample size M on the
convergence of estimator q̃i. To illustrate the problems arising
from small M , we study (41) with p = 10−4 and 10−5 in
simulations with the same 5M flows. The estimator obtained
M = 3, 090 flows for p = 10−4 and just M = 337 for
p = 10−5. Fig. 8 indicates that while the estimated curves
under both choices of p still approximate the trend of the
original distribution, they exhibit different levels of noise. As
the next result indicates, small p leads to a small sample size
M and thus more noise in the estimated values.

Corollary 3: Suppose that M flows are selected by
residual-geometric sampling from a total of n flows. Then,
the expected value of M is given by:

E[M ] = nps = nE[1− (1− p)L]. (42)

Proof: This result follows from the fact that E[M ] =
nP (AL < L) = nps, where ps is given by (9).

To shed light on the choice of proper p for RGS, we show
how to determine the minimum M that would guarantee a
certain level of accuracy in q̃i. Define h̃i = Mi/M to be an
estimate of hi = P (RL = i). The next lemma follows from
Lemma 5 and Corollary 2 and indicates that the accuracy of
q̃i directly depends on whether h̃i approximates hi accurately.

Lemma 6: Suppose that |h̃j −hj | ≤ ηhj holds with proba-
bility 1−ξ for j ∈ [1, i+1], where η and ξ are small constants.
Then, there exists a constant ζ:

ζ =
η(p+ 2η(1− p)h1)

p+ (1− p)(1− η)h1
(43)

such that ζ → 0 as η → 0 and P (|q̃i − fi| ≤ ζfi) = 1− ξ.
Proof: We prove the result by deriving ζ that satisfies

|q̃i − fi| ≤ ζfi given that |h̃j − hj | ≤ ηhj . From (36) and
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Fig. 8. Estimator (41) in simulations with very small p.

(41), we have:

|q̃i − fi| =
|a1|
a2

, (44)

where

a1 = p(h̃i − hi) + p(1− p)(h̃i+1 − hi+1) + (1− p)×
(h1h̃i − h̃1hi) + (1− p)2(h1h̃i+1 − h̃1hi+1) (45)

and

a2 = (p+ (1− p)h1)(p+ (1− p)h̃1). (46)

From the condition |h̃j − hj | ≤ ηhj , we bound |a1| and a2
as follows:

|a1| ≤ ηphi + 2η(1− p)h1hi + ηp(1− p)hi+1

+ 2η(1− p)2h1hi+1

= η(hi + (1− p)hi+1)(p+ 2η(1− p)h1), (47)

and

a2 ≥ (p+ (1− p)h1)(p+ (1− p)(1− η)h1). (48)

It thus follows from (36) and (47)-(48) that |q̃i − fi| ≤ ζfi,
where constant ζ is given by:

ζ =
η(p+ 2η(1− p)h1)

p+ (1− p)(1− η)h1
, (49)

and that ζ → 0 as η → 0.
Next, we obtain a bound on M from the requirement that

h̃i be bounded in probability within a given range [hi(1 −
η), hi(1 + η)].

Theorem 5: For small constants η and ξ, |h̃i − hi| ≤ ηhi
holds with probability 1− ξ if sample size M is no less than:

M ≥ (1− hi)

hiη2
(
Φ−1 (1− ξ/2)

)2
, (50)

where Φ(x) is the CDF of the standard Gaussian distribution
N (0, 1).

Proof: Notice that Mi is a random variable whose
distribution is given by Binomial(M,hi) and that h̃i can
be approximated by a Gaussian random variable with mean
µi = hi and variance σ2

i = hi(1− hi)/M . Define

Z =
h̃i − µi

σi
, (51)

which is a standard Gaussian random variable with mean 0
and variance 1. It follows that:

P (|Z| ≤ z) = 2Φ(z)− 1, (52)
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where Φ(.) is the CDF function of the standard Gaussian
distribution N (0, 1). Therefore, we establish that:

P (|h̃i − hi| ≤ zσi) = 2Φ(z)− 1. (53)

We can guarantee target accuracy by setting zσi = ηϕi and
2Φ(z)− 1 = 1− ξ, which gives the following equality:

ηhi
σi

= Φ−1 (1− ξ/2) . (54)

Substituting σi =
√
hi(1− hi)/M into the above equation

and solving for M , we obtain (50).
For example, to bound h̃i within 10% percent of hi (i.e.,

η = 0.1) with probability 1− ξ = 95% for all hi ≥ 10−2, the
following must hold:

M ≥ (1− 10−2)× 1.962

10−2 × 0.12
≈ 3.8× 104, (55)

which indicates that M = 38K flows must be sampled to
achieve target accuracy. If we reduce η to 1%, increase 1−ξ to
99%, and require the approximation to hold for all hi ≥ 10−3,
then M must be at least 66M flows. Converting η into ζ using
(43), one can establish similar bounds on the deviation of q̃i
from fi.

D. Estimation of Other Flow Metrics

Besides flow sizes and the flow-size distribution, URGE
also provides estimators for the total number of flows and
the number of them with size i. Before introducing these
estimators, we need the next lemma.

Lemma 7: The expected number of flows with sampled
residuals RL = i is:

E[Mi] = E[M ]hi = nhips, (56)

where hi is the PMF of geometric residuals and ps is given
by (9).

Proof: Writing:

E[Mi] = nP (AL < L ∩RL = i)

= nP (RL = i|AL < L)P (AL < L), (57)

notice that (56) follows from the fact that P (RL = i|AL <
L) = hi and P (AL < L) = ps.

Based on this, we next develop two estimators and prove
their accuracy. Let ñ be an estimator of the total number of
flows n observed in the measurement window [0, T ]:

ñ =M +
1− p

p
M1 (58)

and ñi be an estimator of the number of flows ni with size i:

ñi =
Mi − (1− p)Mi+1

p
. (59)

Then, the next result shows that both of these estimators are
asymptotically unbiased.

Lemma 8: Ratios ñ/n and ñi/ni, for all i such that fi > 0,
converge to 1 in probability as M → ∞.

Proof: To prove convergence in probability, it suffices to
show that E[ñ/n] = 1 and V ar[ñ/n] → 0 as n → ∞. From
(58), we have:

E[ñ] = E[M ] +
1− p

p
E[M1]. (60)

Applying (42) and (56), we get:

E[ñ] = nps

(
1 +

(1− p)h1
p

)
, (61)

which simplifies to E[ñ] = n using (40).
To tackle the variance of ñ/n, first notice that M can be

represented as a sum of n i.i.d. Bernoulli variables (i.e., M =∑n
j=1Aj), each with fixed probability ps. Therefore:

V ar
[M
n

]
=

1

n2

n∑
j=1

V ar[Aj ] =
ps(1− ps)

n
, (62)

where the last term is bounded by 1/n. Applying similar
reasoning to M1, we obtain that V ar[ñ/n] ≤ 1/np. Since
we assumed that the number of sampled flows M → ∞, this
implies that nps → ∞ and thus from (40) that np→ ∞, which
establishes that V ar[ñ/n] → 0. Convergence in probability
immediately follows (in fact, an even stronger convergence in
mean-square holds, but this distinction is not essential in our
context).

For the second part of the theorem, define Xn = ñi/n and
Yn = ni/n. We first prove that both Xn and Yn converge
in probability to fi. We then argue that their ratio Xn/Yn
converges to 1, also in probability.

Using (56), (40), and finally (36), we have:

E[Xn] =
E[Mi]− (1− p)E[Mi+1]

np

=
ps(hi − (1− p)hi+1)

p

=
hi − (1− p)hi+1

p+ (1− p)h1
= fi. (63)

Since ni is the number of flows with size i, its expectation
is E[ni] = nP (L = i) = nfi and thus E[Yn] = fi. Using
reasoning similar to that in the first half of this proof, we
obtain that V ar[Xn] → 0 and V ar[Yn] → 0, which shows
convergence of these variables to fi in probability.

For the final step, consider two sequences {Xn} and {Yn}
that converge to the same positive constant fi > 0. Then,
simple manipulation shows that their ratio converges to 1 in
probability. We leave details to the reader.

Note that [17] provided a similar estimator as (58) and
proved E[ñ] = n using a different approach from ours;
however, our results are stronger as they show convergence
in probability and additionally address estimation of ni. Sim-
ulations verifying (58)-(59) are omitted for brevity.

VI. IMPLEMENTATION

In this section, we implement URGE and examine its
memory consumption and processing speed.
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Fig. 9. The URGE framework.

A. General Structure

Fig. 9 illustrates a framework that implements the various
URGE algorithms. This framework contains three processes
– flow classification, residual-geometric sampling, and esti-
mation – as well as one data structure containing the flow
counter table.

Flow classification processes each incoming packet for flow
ID and then forwards it to residual-geometric sampling. For
each flow ID x arriving from flow classification, residual-
geometric sampling first checks if the flow table has an
existing entry for x and increment the counter by 1; if an entry
does not exist, it is created with probability p and its counter
is initialized to 1. The geometric estimation process collects
counter values from the flow table and then uses URGE to
estimate flow statistics.

The flow table keeps a mapping between flow IDs and
associated counters. The table supports three operations: 1)
lookup(x) to retrieve the record of flow x; 2) add(x) to
insert a new entry for flow x in the table with the initial
counter value 1; and 3) increment(x) to add 1 to the counter
of flow x. We display in Fig. 10 an implementation of the
counter table, which is based on a chained hash table. Assume
a hash function hash(x) that produces an integer value in
[0, 1, . . . ,K − 1]. We assume that the generated hash values
are uniformly distributed within interval [0,K − 1] and the
implementation of function hash(.) is fast enough. Efficient
hardware hash functions can be found in [29].

We maintain an array A of size K and each entry A[k]
points to a liked list that keeps the set of flows whose IDs
have the same hash value k. Each node in the list contains
two fields: 1) flow data that keep the flow ID, the packet
counter, and the timestamp of the last packet; and 2) a pointer
to the next node. An important element of our algorithm
is to ensure that the table keeps only active flows, which
is accomplished by periodic sweeps through the table and
removal of all flows that have completed using FIN/RST
packets or have been idle for longer than τ time units. Upon
removal, flow information is saved to disk (single-flow usage)
or aggregated into a RAM-based PMF table (flow-distribution
usage). Operations add(x) and increment(x) automatically
modify the timestamps associated with each flow and allow
timeout-based expulsion of dead flows.

Notice that the flow table is accessed by residual-geometric
sampling upon each packet arrival. Therefore, the scalability of
the measurement algorithm essentially depends on the access
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 Fig. 10. Illustration of a chained hash table for maintaining flow counters.

speed to the table. In what follows, we analyze the design
of the flow table and quantify its two important properties:
memory consumption and processing speed.

B. Active Flows

To understand how much benefit removal of dead flows
provides to memory consumption, we next derive the expected
number of active flows at any time t and their fraction sampled
by the algorithm. Assume a measurement window [0, T ],
where T is given in packets seen by the router. For each flow
j, let inter-packet delays within the flow be given by a random
variable ∆j , which counts the number of packet arrivals
from other flows between adjacent packets of j. Denoting by
∆ = E[∆j ], we have the following result.

Lemma 9: Assuming stationary flow arrivals in [0, T ] and
T → ∞, the expected number of active flows N(t) at time t
is given by:

E[N(t)] = ∆ + 1. (64)

Proof: Represent N(t) =
∑n

j=1Aj(t) as the sum of n
indicator variables, where Aj(t) is 1 if flow j is alive at t and
0 otherwise. Observe that:

E[N(t)] = nE[Aj(t)] = nP (Aj(t) = 1) (65)

and notice that each flow “exists” at the router for
∑L

k=1(∆
k
j+

1) packet units, where ∆1
j ,∆

2
j , . . . are i.i.d. instances of

variable ∆j . Then, the probability that t ∈ [0, T ] lands within
a given flow is simply the flow’s expected footprint (in packets
seen by the router) normalized by the window size:

E[Aj(t)] =
1

T
E
[ L∑
k=1

(∆k
j + 1)

]
. (66)

Using Wald’s equation, this simplifies to E[Aj(t)] =
∆E[L]/T . Finally, since nE[L]/T = 1, we immediately
obtain (64) using (65).

Our baseline reduction in flow volume comes from geo-
metric sampling in previous sections and reduces the number
of flows by a factor of r1 = n/E[M ]. Now additionally
define ratio r2 = n/E[N(t)] = T/(∆ + 1)E[L] and observe
that longer observation windows (i.e., larger T ), smaller flow
sizes (i.e., smaller E[L]), and denser arrivals (i.e., smaller ∆)
imply more savings of memory. In fact, T → ∞ results in
r2 → ∞ if the other parameters are fixed. However, even
more reduction is possible by discarding dead flows in RGS.
Denote by M(t) the number of sampled flows that are still
alive at t and consider the next result.
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Fig. 11. Verifying models (64) and (67).

Lemma 10: Assuming the flow arrival process is stationary
in [0, T ] and T → ∞, the expected number of active sampled
flows at time t is given by:

E[M(t)] = (∆ + 1)
(
1− 1− p

pE[L]
ps

)
, (67)

where ps in (9) is the fraction of all flows sampled by RGS.
Proof: Following Lemma 9, it suffices to derive the aver-

age packet footprint of flow j within window [0, T ]. Dividing
this footprint by T gives us the probability that current time t
falls within the residual of the flow and multiplying the result
by n produces the expected number of flows stored in RAM.

Condition on L = l and define Pl as the number of packets
counted by RGS from flow i:

Pl =

{
Rl flow sampled
0 otherwise

. (68)

Then, the flow’s footprint Fl is:

Fl =

Pl∑
k=1

(∆k
j + 1), (69)

where as before ∆k
j are i.i.d. inter-packet delays induced by

cross-traffic that do not depend on the size of flow j. Next,
taking the expectation of Fl, we have:

E[Fl] = E[Pl](∆ + 1)

= E[Rl|sampled]P (sampled)(∆ + 1). (70)

Using (14) and recalling that P (sampled) = 1 − (1 − p)l,
we have:

E[Fl] = (∆ + 1)
[
l − 1− p

p
(1− (1− p)l)

]
. (71)

Unconditioning L = l, we have the expected footprint as:

E[F ] = (∆ + 1)
[
E[L]− 1− p

p
ps

]
, (72)

where ps = E[1 − (1 − p)L] is the probability that a flow is
sampled by RGS. Multiplying E[F ] by n, dividing by T , and
taking E[L] outside, we get (67).

Define r3 = n/E[M(t)] as the expected reduction of space
when tracking only active RGS flows compared to all seen
flows at the router and notice that this ratio increases not only
as T grows, but also when p decreases. Performing a self-
check using Jensen’s inequality, observe that 0 ≤ ps/pE[L] ≤
1 and therefore E[M(t)] ≤ E[N(t)], which means that the
former indeed always results in more reduction in table size.

TABLE I
COMPARISON OF (64) AND (67) TO SIMULATION RESULTS

time t E[N(t)] E[M(t)]
simulation model (64) simulation model (67)

100 867.1 866.6 487.0 486.8
200 866.4 866.6 487.0 486.8
300 866.7 866.6 486.5 486.8
400 866.3 866.6 486.4 486.8
500 866.9 866.6 486.8 486.8

We discuss numerical values of r1−r3 in the next section and
now focus on the accuracy of the obtained results.

We evaluate models (64) and (67) in simulations with 1, 000
iterations through window [0, T ] with randomly generated
flows from the a distribution with flow-size CDF Fi = 1−i−α,
where α = 1.1 and p = 0.01. Fig. 11 plots the evolution
of N(t) and M(t) along with the expected values computed
from the models. Table I compares the models with E[N(t)]
and E[M(t)] computed in simulations, where each value is
averaged using the same 1, 000 iterations of the traffic stream.
Both indicate a very close match.

C. Memory Consumption

The memory used by the flow table can be divided into
two parts: one for the hash table, which contains an array of
pointers, and the other for flow records, which are organized in
a set of linked lists. Define wp to be the number of bytes used
by each memory pointer and wf to be that needed for flow
counter, timestamp, and flow ID. Then, the following theorem
gives the memory required for the measurement algorithm.

Theorem 6: The average number of bytes required by
URGE in steady-state is:

E[WR(t)] = Kwp + E[M(t)](wc + wf ), (73)

where E[M(t)] is the average number of sampled active flows
at time t given by (67).

From (73), observe that for n original flows with a given
distribution of L, memory consumption E[WR(t)] can be
reduced by lowering either M(t) or K. As discussed in the
previous section, M(t) cannot be arbitrarily small as it would
lead to lower accuracy. At the same time, small K leads to
more conflicts in the hash table, longer linked lists, and thus
may slow down the sampling process, which are the issues we
study next.

D. Processing Time

The time spent in processing each packet depends on how
linked lists are built. We examine an approach that sorts flow
entries of each linked list based on flow IDs. In this approach,
function lookup(x) returns a pointer to the entry of flow x if
it exists in the table; otherwise, the function returns a pointer
to where the new entry should be inserted.

For each packet with flow ID x, we perform the following
steps in sequential order: 1) compute the k = hash(x); 2)
retrieve the linked-list head pointer A[k] from the hash table;
3) iterate through the linked list until a flow record is matched
or a flow with ID larger than x is reached; 4) if x is not found, a
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TABLE II
CONSTANTS USED IN (73) AND (74)

RAM constant value CPU constant value
wp 4B th 12ns
wf 17B tp 9ns
W0 1.65MB tc 3ns

T0 24ns
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Fig. 12. Tradeoff: (a) memory consumption and (b) processing time with
E[M(t)] = 3.9× 104. Gray areas display the acceptable ranges of K.

new entry for x is created with probability p and inserted to the
location returned by lookup(x). Notice that the fourth step is
executed only when a new flow arrives and is sampled, which
is much less frequent compared to the case of an existing
flow. Thus, consider its contribution to the overall overhead
negligible and omit it from analysis.

Denote by th the time spent in computing a hash, by tp that
of memory access, and by tc that of each comparison of flow
IDs. Define TR(t) to be the processing delay/latency of each
incoming packet at time t. Then, noticing that the expected list
length is E[M(t)]/K entries and on average traversal stops in
the middle of a list, we have the next result.

Theorem 7: The expected per-packet processing time is:

E[TR(t)] = th + tp + (tc + tp)
E[M(t)]

2K
. (74)

The result in (74) indicates that both large hash table size
K and small sample size M(t) can contribute to a faster
sampling process. Since larger K reduces (74), but increases
(73), we next examine how to properly select K and p to
simultaneously satisfy certain target constraints on E[WR(t)]
and E[TR(t)] given their conflicting dependency on K.

E. Tradeoff Analysis

Now, we are ready to explore the design space of constants
(K, p) to strike a balance between accuracy and scalability.
Suppose that a router requires that E[WR(t)] ≤ W0 and
E[TR(t)] ≤ T0. Further assume that the number of sampled
flows E[M(t)] is known and fixed (i.e., fixed p, window T ,
and flow-size distribution). Define two constants:

Kl =
(tc + tp)E[M(t)]

2(T0 − (th + tp))
, (75)

and
Ku =

W0 − E[M(t)](wc + wf )

wp
. (76)

Assuming Kl ≤ Ku, it then follows from (73) and (74)
that one can choose any value K ∈ [Kl,Ku] to satisfy the two
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Fig. 13. Lower and upper bounds on table size K with varying probability
p. Gray areas display the acceptable range of K and p.

constraints on memory and speed. We show below how to vary
p in order to maximize accuracy while ensuring Kl ≤ Ku.

To understand this better, consider the following example.
Assume that the original traffic contains n = 106 flows with
a power-law distribution P (L ≤ i) = 1 − i−1.1. With p =
0.01, residual-geometric sampling obtains E[M(t)] = 3.9 ×
104 sampled flows. Table II gives the constants we use to
compute the expected memory consumption and processing
time in (73) and (74). We also impose the following constraints
on memory and delay: W0 = 1.65MB and T0 = 24ns.1 Fig.
12 illustrates the acceptable ranges of table size K derived
from the models. The figure indicates that table size K can
be any value between Kl = 7.9× 104 and Ku = 2.3× 105 to
simultaneously satisfy both requirements W0 and T0.

Note that for some values of E[M(t)] it is possible that
Kl is larger than Ku and thus the constraints cannot be met.
Therefore, we next vary p to show how the choice of K will
be affected. Fig. 13 plots Ku and Kl as functions of p, where
both curves are obtained from the corresponding models.
Notice from the figure that Kl monotonically increases and
Ku monotonically decreases in p. This implies that interval
[Kl,Ku] eventually shrinks to a single point K0, after which
no feasible assignment of table size K exists.

Since larger p implies more accurate estimation (i.e., the
router sees more flows M in the interval [0, T ] and thus
estimates distribution {hi} more accurately), it is desirable
to select the maximum p that allows the router to satisfy the
space and speed constraints. This occurs in a single optimum
point p0 that corresponds to Kl = Ku = K0. In our example,
we get p0 = 0.0165 and K0 = 1.2× 105.

VII. PERFORMANCE EVALUATION

In this section, we evaluate our models using several Internet
traces in Table III from NLANR [24] and CAIDA [3]. Trace
FRG was collected from a gigabit link between UCSD and
Abilene in 2006. We extracted from it additional traces with
only Web, DNS, and NTP flows (also seen in the table).
Additionally, we use three traces from CAIDA: LARGE – a
one-hour trace from an OC48 link, MEDIUM – a one-minute
trace from a OC192 link, and SMALL – a 7-minute trace from
a gigabit link.

As the table shows, URGE typically sees a reasonably large
number of flows M over the entire interval [0, T ]; however,

1These values allow to hold about 105 flow records (each with a flow ID
and a counter) and process 1-Kbit packets at OC-768 rates (i.e., 40 Gbps).
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TABLE III
REDUCTION IN THE NUMBER OF FLOWS USING RESIDUAL SAMPLING WITH p = 0.01 AND DIFFERENT TYPES OF PERIODIC REMOVAL OF DEAD FLOWS

source trace total flows n total pkts nE[L]
sampling only removal only both
E[M ] r1 E[N(t)] r2 E[M(t)] r3

NLANR

FRG 1, 756, 702 131, 821, 685 117, 995 15 21, 645 81 2, 669 658
Web 239, 174 6, 497, 894 26, 051 9 9, 698 24 985 240
DNS 120, 446 292, 977 2, 073 44 600 152 19 4, 797
NTP 382, 489 720, 447 4, 086 54 3, 036 73 77 2, 887

CAIDA
LARGE 9, 653, 609 117, 250, 415 519, 144 19 262, 525 37 21, 590 447

MEDIUM 2, 317, 369 43, 837, 666 139, 316 17 281, 137 8 53, 903 43
SMALL 200, 910 2, 179, 574 12, 862 16 44, 414 5 5, 948 34

TABLE IV
PERFORMANCE OF URGE WITH p = 0.001 AND HASH TABLE SIZE K = E[M(t)]

source trace E[WR(t)] E[TR(t)]
# of flows # of size-one flows

actual (n) estimated (ñ) error actual (n1) estimated (ñ1) error

NLANR

FRG 31KB 24.1ns 1, 756, 702 1, 736, 261 1.16% 768, 742 749, 958 2.44%
Web 10KB 21.4ns 239, 174 253, 996 6.2% 13, 686 13, 922 1.72%
DNS 257B 21ns 120, 446 124, 176 3.1% 76, 607 78, 045 1.88%
NTP 752B 21.1ns 382, 489 375, 326 1.87% 281, 370 279, 096 0.8%

CAIDA
LARGE 132KB 28.1ns 9, 653, 609 9, 717, 315 0.66% 4, 535, 449 4, 630, 037 2.09%

MEDIUM 341KB 23.7ns 2, 317, 369 2, 278, 984 1.66% 1, 299, 343 1, 273, 989 1.95%
SMALL 23KB 21.2ns 200, 910 202, 604 0.84% 93, 575 95, 106 1.64%
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Fig. 14. Estimating single-flow usage in the FRG trace with p = 0.001.

the number of active flows N(t) and those constantly kept in
memory M(t) is much smaller. For the FRG trace, for exam-
ple, E[M ] is 15 times smaller than n, while E[N(t)] is 81
and E[M(t)] is 658 times smaller. In general, NLANR traces
benefit more from the removal of dead flows than CAIDA
data, because former was collected over two consecutive days
and thus had a larger observation window T , which led to
larger ratios r2 and r3. The same reasoning also explains the
fact that the LARGE trace exhibits much higher benefit from
removing dead flows than MEDIUM or SMALL traces.

A. Memory and Speed

We use the settings of Table II to compute the amount of
memory consumed by URGE according to (73). As shown in
the third column of Table IV for p = 0.001 and K = E[M(t)],
the required memory size is small and rarely exceeds 40 KB.
Even for the LARGE trace that has the most flows in this
comparison, URGE only needs 132 KB of RAM, much smaller
than roughly 120 MB required for keeping all flow counters.
We also compute per-packet processing time from (74) based
on Table II and show in the fourth column of Table IV that
E[TR(t)] ≤ 25 ns in the majority of the studied cases.
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Fig. 15. RRMSE of single-flow usage in the FRG trace with p = 0.001.

B. Estimation Accuracy

First, we examine the problem of estimating the total
number of flows n in [0, T ] and size-one flows n1 in this
interval. The seventh and tenth columns of Table IV list the
absolute error of models (58) and (59), respectively. With the
exception of the Web NLANR trace, these estimates are within
approximately 3% of the correct value.

We next evaluate the performance of URGE in estimating
single-flow usage. Fig. 14 plots the expectation of estimated
flow sizes (averaged over 100 iterations) along with the actual
values obtained from the FRG trace using p = 0.001. The
figure shows that the estimator e(Rl) from previous work
tends to overestimate the sizes of small flows, while URGE’s
estimator ê(Rl) accurately follows the actual values. We also
compare the relative errors of the two studied methods in Fig.
15, which indicates that URGE has RRMSE bounded by 1
for all flows, while e(Rl) exhibits very large δl for small and
medium flows, which is an increasing function of 1/p.

For the flow-size distribution, we first examine three values
of p to compare its effect on the accuracy of URGE in the FRG
trace. Fig. 16 indicates that estimation for all three values of p
are very consistent and all of them follow the actual distribu-
tion accurately. In our experiments with p = 0.0001, URGE
recovered the original PMF {fi} using only M = 7, 616 total
flows out of n = 1.75M.
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Fig. 16. Estimating the flow size distribution using URGE in the FRG trace.
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Fig. 17. Estimating the flow size distribution using URGE in NLANR traces with p = 0.001.
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Fig. 18. Estimating the flow size distribution using URGE in CAIDA traces with p = 0.001.

Finally, we apply URGE with p = 0.001 to NLANR traces
of different traffic types and plot in Fig. 17 the estimated
distributions along with the actual ones. As the figure shows,
the flow statistics of different applications can be accurately
estimated by URGE. We observe a similar match in our
experiments with three CAIDA traces as shown in Fig. 18.

VIII. CONCLUSION

In this paper, we proved that previous methods based on
residual-geometric sampling had certain bias in estimating
single-flow usage and were unable to recover the flow-size
distribution from the sampled residuals. To overcome this
limitation, we proposed a novel modeling framework for
analyzing residual sampling and developed a set of algorithms
that were able to perform accurate estimation of flow statistics,
even under the constraints of small router RAM size, short
trace duration, and low CPU sampling overhead.
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