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Agenda

 Introduction
* Underlying model of residual sampling
* Analysis of existing estimators

 Proposal of new estimators

e Performance evaluation

e Conclusion
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Introduction

« Traffic monitoring is an important topic for today’s
Internet

— Security, accounting, traffic engineering

It has become challenging as Internet grew in scale
and complexity

 In this talk, we focus on two problems in the
general area of measuring flow sizes
— Determining the number of packets of elephant flows
— Recovering the distribution of flow sizes
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Related Work

e Packet sampling
— Sampled NetFlow (Cisco)
— Adaptive NetFlow (Estan, SIGCOMM’04)
— Sketch-guided sampling (Kumar, INFOCOM’06)
— Adaptive non-linear sampling (Hu, INFOCOM’'08)

 Flow sampling
— Sample-and-hold (Estan, SIGCOMM’'02) |
— Flow thinning (Hohn, IMC’03)
— Smart sampling (Duffield, IMC'03/SIGMETRICS’03)
— Flow slicing (Kompella, IMC’05)
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Analysis of Underlying Model

e Our talk is based on the sampling method proposed
by sample-and-hold (Estan, SIGCOMM’02)

 We call this method by Residual-Geometric
Sampling (RGS) due to two reasons:

— This belongs to the class of residual-sampling techniques
(Wang, INFOCOM’'07/P2P’09)

— It can be modeled by a geometric process

e Our analysis of RGS covers two goals:
— Providing a unifying analytical model
— Understanding the properties of samples it collects

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)




Analysis of Underlying Model 2

e How does RGS work?

— For a sequence of packets traversing a router, it checks
each packet’s flow id = iIn some RAM table

— If z 1s found, Iits counter is incremented by 1

— Otherwise, an entry Is created for x with probability p and
this packet is discarded with probability 1 — p

 The state of a flow can be modeled by a simple
geometric process

l—p p
/\\4 1 \
Ao Sampled )
Sampled P A
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Analysis of Underlying Model 3

e \We need several definitions:
— Assume that flow sizes are 1.i.d

— Given a random flow with size L, define geometric age
A; the number of packets discarded from the front

— Define geometric residual R; the final counter value

« A flow of size 9 is not sampled until the 4t packet
Flow size L=9

Packets
from a flow

< >4 >

Age A,;=3 Residual R;=6
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Analysis of Underlying Model 4

 Assume flow size L has a PMF f::
fi = P(L =1)

« Lemma 1: Probabillity p, of a flow being selected by
RGS Is: |
ps =1— Zfil fi(L —p)*

 Lemma 2: PMF h, of geometric residual R, can be
expressed as:

_ P fi(1—p)i—
h; = *

Ps
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Previous Method — Single-Flow Usage

* Prior work on RGS (Estan, SIGCOMM’02)
suggested following estimator of single-flow size:

e(R) =R —1+1/p

« Theorem 1: For given size [, the expected value of
estimator e(R)) is:

E[G(Rl)] — 1_(]l__p)£

|t tends to overestimate the original flow size by a
factor of up to 1/p

10



Simulations — Estimated Size

p=0.01 p=0.001
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Previous Method — Single-Flow Usage 2

e Quantifying the error of individual values e(R,) in
estimating flow size [

— Relative Root Mean Square Error (RRMSE)
6 = E[(Y; — 1)?

where Y; = e(R;)/l is relative error

 Theorem 2: RRMSE of the existing RGS estimator:

_ J1-p=l(I-L)p*(A-p)'=(1-—p)'T!
o= \/ ’ lzpéggl—(lp—p)g) -
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Simulations — Relative RMSE
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Previous Method — Flow-Size Distribution

e Consider PMF ¢, of e(R;) and compare it with f;
q; = P(e(Rp) = 1)
 Theorem 3: PMF of flow sizes estimated from e(R;)

IS: B ?:*:y(i) fj(l—p)j_y(i)p
q; = Ds

—where p, Is the probability of a flow Is selected and

y(1) = [+ 1 = 1/p]

* The estimated distribution g, IS quite different from
actual fz 14
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Simulations — Flow Size Distribution
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URGE - Single-Flow Usage

* For single-flow size, we propose following

estimator: ~ > same

e(Rp) =Rp—1+1/p

—» different

(1-p)fiL

p

« Lemma 3: é(Ry) is unbiaseo

for any flow size [

e Theorem 4: RRMSE of e(R;) as:

o = \/1—p—l—lp(p;—?)(1—p)5_(1_p)2z+1
l lng(l—(l—p)l)
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URGE Simulations — Single-Flow Usage
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URGE Simulations — Relative Error
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URGE - Flow Size Distribution

 Lemma 5: The flow size distribution f, can be
expressed using PMF of geometric residual A, as:
- hi—(1—p)hit1
¢ p+(1-p)hy

* For flow size distribution, we propose following
estimator:

~ _ Mi—(1-p)M; 4,
i Mp+(1—p)M;

 Corollary 2: Estimator {g;} is asymptotically
unbiased, that is, {g;} converges in probability to
f; as the number M of sampled flows — oo
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URGE Simulations — Flow Size Dist.
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URGE Convergence

22

I © We next examine the effect of sample size M on
o the convergence of estimator

[=

— T 10°

% N AN

f,E, 10'2— \\ 107} \.3\5

® : \“\ i DAY

P4 2| N N -2 ! h \\'\.

|q—)‘ é 10 \\\\L“ $10 _

ol o AN 07 AN

S N o N

n |- - -actual distribution \\ |-~ actual distribution

5 |— estimated distribution L |——estimated distribution

.l?}_ o flow size 0 " flow size "
=

S p=10-4, M=3,090 p=10"°, M=337

O



URGE Convergence 2

e Theorem 5: For small constants » and & with
probability 1 — &, following holds for j € [1, ¢+1]

[hj — hj| < nh;
If sample size M is no less than:

M= 5= (@1 —¢/2))°

where ®(x) is the CDF of the standard Gaussian
distribution N(0,1)
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Performance Evaluation

 \We applied our estimation algorithm to the traces
collected by NLANR and CAIDA

— All of them confirm the accuracy of URGE

« As example, we show our experiment on dataset
FRG, collected from a gigabit link between UCSD
and Abilene
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Performance Evaluation — Usage
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Performance Evaluation — Distribution
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Conclusion

 We proposed a novel modeling framework for
analyzing residual sampling

— Proved that previous estimators based on RGS had
certain bias

 We also developed a novel set of unbiased
estimators

— Verified them both in simulations and on Internet traces

* Results show that the proposed method provides
an accurate and scalable solution to Internet traffic
monitoring
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e Thanks!

The End
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