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Abstract—In this paper, we examine the asymptotic behavior of
degree correlation (i.e., the joint degree distribution of adjacent
nodes) in several scale-free topology generators GED [13], PLRG
[1], GLP [10], BA [3], AB [2]. We present a unifying analytical
framework that allows tractable analysis of degree correlation in
all studied models and derive asymptotic formulas of two degree
correlation metrics – assortativity and clustering. Our results
indicate that all studied generators become uncorrelated as graph
size increases, which is inconsistent with time-invariance of these
metrics in real networks such as the Internet [36], [48], [50]. Since
the class of degree-based generators is incapable of reproducing
evolving characteristics of the Internet, we study three other
models that evolve graphs using different rules than preference
of degree (e.g., based on random walks [50], optimization [17],
and geometry [23]) and show using simulations that these models
are much more viable alternatives for replicating the complex
structure of Internet-like graphs.

I. INTRODUCTION

Recent research suggests that many graphs found in the real
world (such as social relationships, scientific collaborations,
Internet autonomous system connectivity, web-page linkage,
telephone call logs, various molecular structures, etc.) exhibit
drastically different characteristics from those of classical
Erdös-Rényi random graphs [16]. Besides the well-known
heavy-tailed distribution of node degree [14], [18], real-world
graphs demonstrate a strong correlation among the degree of
adjacent nodes (e.g., large-degree nodes are more likely to be
paired with small-degree nodes, or triangle formation is more
likely between large-degree nodes). A significant research
effort is currently under way to better understand the evolution
of complex networks and design generators that can reproduce
graph theoretic metrics found in these structures [1], [2], [3],
[10], [12], [17], [22], [23], [27], [47], [50], [52].

Recent studies [28], [41] demonstrate that degree correla-
tion (formally defined below) is sufficient for characterizing
the structure of a random graph, where correlation among
up to three neighboring nodes is enough to capture many
commonly used graph properties. In fact, the authors of [28]
propose a generator that randomly rewires links until it can
match the desired degree correlation. The resulting graphs are
then shown to replicate such global properties as coreness,
spectrum, distance distribution, and betweenness of many
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existing topology generators. However, this approach is very
computationally intensive and requires the knowledge of the
joint degree distribution of neighbors in the target graph, which
may be difficult to obtain in practice. Furthermore, the brute-
force approach of [28] does not easily allow the graph to
evolve and does not capture any qualitative characteristics of
the system it creates.

To understand the fundamental properties of degree correla-
tion in existing topology generators and how well they match
those of existing networks, we propose a new analytical frame-
work for modeling two- and three-node correlation in power-
law random graphs with a specific focus on the evolution of
the system. It is well-known that static properties of graphs
(i.e., those observed at a fixed time t) can be captured with
sufficient accuracy by many existing generators. However,
a more interesting question [50] has recently emerged as
to whether these generators can replicate the behavior of
real graphs as time evolves. Specifically, for a fixed set of
initial parameters, [50] shows that the trend of clustering
coefficients of many evolving degree-based generators exhibits
a significant discrepancy with that of the Internet as observed
in [36], [48]. As clustering coefficients are a special case
of three-node correlation, our proposed framework allows to
understand what causes this discrepancy and whether it can
be overcome within the studied class of topology generators.

The class of models we study in this work is called degree-
based since link formation between individual nodes depends
only on the current degree of potential neighbors, or equiva-
lently, weights assigned to them. Many traditional generators
such as GED [13], PLRG [1], GLP [10], BA [3], and AB
[2] fall into this category. On the other hand, generators that
implement neighbor selection based on additional information
(besides node degree) constitute a completely different class
of link-based models (e.g., WIT [50], HOT [17], and SWT
[23]), which are not modeled in this paper, but briefly studied
in simulations (see below).

A. Main Results

We first study GED as a foundation for understanding
correlation in degree-based random graphs. We derive the
asymptotic decay rate of the expected assortativity coefficient
r(G), which captures two-node correlation in the system, and
the expected clustering coefficient γ(G), which captures three-



node correlation, as graph size n → ∞. Specifically, our
analysis demonstrates that:

E[r(G)] =





Θ
(−n1−α

)
1 < α < 2

Θ
(−n−1 log2 n

)
α = 2

0 α > 2

(1)

and

E[γ(G)] =





Θ(n1−α log n) 1 < α < 2

Θ(n−1 log2 n) α = 2

Θ(n−1) α > 2

, (2)

where α > 1 is the shape parameter of the power-law degree
distribution.1 This analysis shows that GED is asymptotically
uncorrelated for all values of α > 1 and provides an explana-
tion of the phenomena observed earlier in [50], where GED’s
clustering decayed to zero while that of the Internet remained
constant.

Full derivation of (2) for 1 < α < 2 involves a great
deal of tedious integration (see [49, Theorem 2]), which is
unrealistic to perform for each studied method and sometimes
even impossible depending on the type of function used to
construct each link. To expand the GED result to a wider class
of additional methods, we next propose a general framework
for reducing degree-based generators to GED in order to
obtain their asymptotic assortativity and clustering. We show
that as long as the link-existence probability function π of a
new method can be bounded by that of GED, its correlation
asymptotically behaves the same as (1)-(2). We then show that
this condition, which we call asymptotic π-equivalence, holds
for PLRG, GLP, BA, and AB. We not only obtain completely
novel results on the behavior of degree correlation in PLRG,
GLP, and AB, but we also provide an analytical platform of
π-equivalence that can be used to show similar results for any
degree-based generator with a power-law degree distribution.

We finish the paper by discussing the implications of results
obtained in this work. In particular, our results prove that
all existing degree-based generators become uncorrelated as
the graph grows in size. This is in stark contrast to networks
observed in real life, in which both assortativity and clustering
remain constant as the system evolves. This invariance of both
the degree distribution and its correlation has an important im-
pact on the design of future topology generators. Specifically,
we conjecture that the entire class of degree-based generators
is insufficient for capturing the evolving structure of small-
world graphs such as the Internet and illustrate in simulations
that link-based generators WIT [50], HOT [17], and SWT
[23] are much more effective in keeping node correlation
time-invariant. This suggests that the fundamental differences
between degree-based and link-based models first observed in
this work are indeed significant.

1Note that prior results of this nature [4], [7], [8], [14], [24], [46] are
available only for the “simple” case of α ≥ 2, which is not applicable to
many existing networks (e.g., the Internet AS graph has α ≈ 1.2).

II. BACKGROUND

In this section, we overview a small subset of related
work, introduce the notation commonly used in this field, and
mention several well-known models that we study later in the
paper.

Assume an undirected connected graph G = (V, E) with
vertex set V and edge set E . Suppose that the graph has
|V| = n nodes, whose degrees are given by d1, ..., dn. For
asymptotically large n → ∞, we treat node degree d as a
continuous random variable with CDF F (x) = P (d < x)
and replace all degree-based summations with corresponding
integrals. Since we solely focus on scale-free graphs, the CDF
function is assumed to be Pareto F (x) = 1− (β/x)α, where
β > 0 is the scale parameter and α > 1 is the shape parameter.
Denote by i ↔ j the event of link (i, j) being present in E
and by E[dk] the k-th moment of node degree in graph G.

A. Degree Correlation

The assortativity coefficient r(G) characterizes two-node
degree correlation and measures the extent to which nodes
connect preferentially to other nodes with similar degrees [31].
The expectation of r(G) is given by:

E[r(G)] =
E2[d]

∑
x

∑
y xyω(x, y)− E2[d2]

E[d]E[d3]− E2[d2]
, (3)

where ω(x, y) is defined as the probability that two arbitrary
connected nodes have degree x and y, respectively [15]:

ω(x, y) = P (di = x, dj = y|i ↔ j). (4)

Graphs with positive values of r(G) are so-called assortative,
graphs with negative r(G) are called disassortative, and graphs
with r(G) = 0 are called uncorrelated.

The most widely-used metric for three-node degree corre-
lation is the clustering coefficient γ(G), which quantifies how
likely the neighbors of a node are to be connected to each
other. Suppose that a given node i is contained in Ti triangles.
Recall from [51] that the clustering coefficient γi of node i
(as long as degree di is at least two) is defined as the ratio of
Ti to the maximum number of such triangles:

γi =
Ti

di(di − 1)/2
, di ≥ 2, (5)

and the clustering coefficient γ(G) of the graph is then defined
to be the average of γi over all nodes i with degree di ≥ 2:

γ(G) =
∑

i∈V−V(1) γi

|V| − |V(1)| , (6)

where V(1) is the set of both degree-zero and degree-one nodes
in G, i.e., V(1) = {j ∈ V : dj ≤ 1}. Note that other definitions
of the clustering coefficient exist in [8], [45], [53], but they
are not studied here.

The combination of assortativity and clustering has been
used in characterizing real networks [21], [34]. For power-law
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networks with shape parameter α > 2, the following results
have been established [7], [14], [32]:

E[r(G)] = 0, E[γ(G)] =
(E[d2]− E[d])2

nE3[d]
. (7)

However, little is known about the case of 1 < α ≤ 2
commonly found in real networks (e.g., the Internet). The
closest analysis to tackling this issue is given in [14], which
obtains E[γ(G)] as a complex summation that allows only
numerical computation and provides no qualitative asymptotic
behavior in the limit of large n. In this paper, we solve this
problem and establish the trend of E[γ(G)] for all α > 1.

B. Graph Models
In this section, we briefly mention several graph models that

produce power-law degrees. For a complete literature survey,
we refer readers to [15], [32], [37].

1) Non-Evolving Models: In this category, we mention
several generators that do not grow (evolve) the network over
time. One of the simplest power-law graph construction mod-
els is called Given Expected Degree (GED) [13], a specialized
algorithm of fitness models [7], [11], [19], [44]. In GED, a
sequence of weights {wi} is first generated according to a
Pareto distribution and then each edge (i, j) is created with
independent probability:

pij = min
(wiwj

D
, 1

)
, (8)

where D =
∑n

k=1 wk.
A similar graph construction method called Power-Law

Random Graph (PLRG) [1], or more generally configuration
models, which have been extensively studied in [5], [26],
[29], [30], [33], [35], and later extended in [28], [41]. PLRG
replicates each node i exactly wi times and then places random
edges between the replicated nodes with equal probability.

Additional non-evolving generators include random geomet-
ric graphs [23] and rewired small-world (Watts) networks that
exhibit heavy-tailed degree distributions [38], [51].

2) Evolving Models: Next, we review several models that
grow graph sizes over time. Since Barabási’s revival of this
direction in 1999, evolution models have taken the center stage
of modern topology modeling; however, the earliest evolving
model can be traced back to Simon’s work in 1955 [9], [42],
[43]. Several classes of generators can be described under
the umbrella of Generalized Linear Preference (GLP) [10],
in which the system grows by adding new links or joining
new nodes at each time step. The linking decision is based
on the the preferential-attachment function pi(t), which is the
probability of node i to be chosen at time t:

pi(t) =
di(t)− λ

∑n(t)
k=1(dk(t)− λ)

, (9)

where shift-parameter λ ∈ [−∞, 1] and the degree distribution
is Pareto with shape α = 2− λ ∈ [1,∞). Similar attachment
functions are used in BA [3] and AB [2] with certain changes
to λ and the algorithm for creating new links. Variants of (9)
are also used in non-linear preferential-attachment [25], [53]
and multi-scaling fitness models [6].

III. ANALYSIS OF GED

Recall that GED [13] assigns random weights wi drawn
from the Pareto distribution and then creates each link with
probability pij in (8). Next, we explore the asymptotic behav-
ior of GED’s degree correlation and answer the question of
whether it can be maintained for large n. We then demonstrate
that PLRG, BA, AB, GLP, and potentially many other graphs
can be modeled under the same analytical umbrella.

A. Link Formation

We first formalize the relationship between weights and
edge existence in G. Define π(x, y) to be the probability of
two nodes being connected given their weights x and y:

π(x, y) = P (i ↔ j|wi = x,wj = y). (10)

For GED, this function is simply:

π(x, y) = min
(xy

D
, 1

)
, (11)

where D =
∑n

k=1 wk is the total degree weight in the graph.2

Next, notice that the distribution of D is given by an
n-fold convolution of Pareto distributions, which makes the
analysis of degree correlation intractable. Therefore, most of
the derivations below approximate D with its expectation, i.e.,
D = nE[wi].

B. Two-Node Correlation – E[r(G)]

It has been shown in [7] that ω(x, y) in (3) can be described
in terms of π(x, y) as:

ω(x, y) =
nf(x)f(y)π(x, y)

E[d]
, (12)

where f(x) is the PDF of weights. Substituting (12) into (3)
and replacing the summations with integrals, we can express
E[r(G)] in terms of π(x, y):

E[r(G)] =
E[d]ρ− E2[d2]

E[d]E[d3]− E2[d2]
, (13)

where ρ is given by:

ρ = n

∫∫
xyπ(x, y)f(x)f(y)dxdy. (14)

Note that for finite n, all node degree is no larger than
n−1 and higher moments of d in (13) are finite. This leads to
the next result that expands the integral in ρ and derives the
asymptotic trend of E[d2] and E[d3] for Pareto distributions
with α ≤ 2. We omit all proofs from the paper due to the
page limit and refer interested readers to [49].

2The original model described in [13] does not have the min function
as in (11), but instead requires that wiwj < D. Since this constraint does
not hold in the Internet, we replace the inequality with the min function. A
recent extension of the original model has been proposed in [7] to construct
correlated graphs, however, their method is different from (11) and thus
orthogonal to our discussion.
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Fig. 1. Model (15) and E[r(G)] in GED simulations. All cases use 10, 000
iterations.

Theorem 1: The expected assortativity coefficient of GED
graphs is asymptotically:

E[r(G)] =





Θ
(−n1−α

)
1 < α < 2

Θ
(−n−1 log2 n

)
α = 2

0 α > 2

, (15)

where α is the shape parameter of the power-law weight
distribution.

To verify the model, we constructed 10, 000 GED graphs
with shape parameters α = 1.2 and α = 2 and extracted
the corresponding average assortativity coefficients. In Fig. 1,
we plot the curve of E[r(G)] and the corresponding model
(15), where we obtain the constant by fitting the model to the
actual value for the smallest n used in the simulations. As the
figure shows, the model matches simulations well. The result
(15) shows that for finite n, GED graphs are expected to be
disassortative, but as n → ∞, two-node degree correlation
disappears regardless of shape α. It is also worth noting that
for different α, the assortativity coefficient decays to zero at
different rates as specified in (15) – the heavier the tail, the
slower the decay.

C. Three-Node Correlation – E[γ(G)]

In what follows, we reduce the problem of deriving E[γ(G)]
to finding the average clustering coefficient of nodes with
a given weight. The first lemma indicates that the expected
clustering of a single node i (averaged over all possible
weight assignments in the graph) is sufficient for establishing
E[γ(G)].

Lemma 1: In any graph G, the expected clustering E[γ(G)]
is:

E[γ(G)] = E[γi|di ≥ 2], (16)

where i is the index of any node in graph G.
Next, expanding E[γi|di ≥ 2], we yield a more convenient

expression for E[γ(G)] in the next lemma.
Lemma 2: The expected clustering of a GED graph is given

by:

E[γ(G)] =
∫

E[γ(x)]f(x|di ≥ 2)dx, (17)

where E[γ(x)] = E[γi|wi = x, di ≥ 2] is the expected
clustering of nodes with weight x and f(x|di ≥ 2) is the
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(b) α = 3

Fig. 2. Verification of (20) in GED simulations with 1, 000 nodes and
10, 000 iterations).

conditional PDF of weight wi assigned to node i given that
its degree di ≥ 2.

To solve (17), we need to derive f(x|di ≥ 2). From Bayes’
formula P (A|B) = P (B|A)P (A)/P (B), we get:

f(x|di ≥ 2) =
P (di ≥ 2|wi = x)f(x)

P (di ≥ 2)
, (18)

which can be easily computed knowing that the distribution
of di is Poisson with mean wi = x [7]:

P (di = k|wi = x) =
xke−x

k!
. (19)

The last missing piece toward solving (17) is to develop a
formula for E[γ(x)].

Recall that E[γ(x)] = E[γi|wi = x, di ≥ 2] is the
conditional expectation of γi for a node with weight wi = x
and degree at least two. Expanding this metric by additionally
conditioning on weights of neighboring nodes j and k gives
the following lemma.

Lemma 3: The expected clustering of a node with weight
x is given by:

E[γ(x)] =
φ(x)
ψ2(x)

, (20)

where

φ(x) =
∫∫

π(u, v)π(x, u)π(x, v)f(u)f(v)dudv,

ψ(x) =
∫

π(x, u)f(u)du, (21)

and f(u) is the PDF of weights.
To verify (20), we created 10, 000 GED graphs with n =

1, 000 in which one node always had weight wi = x and
examined its average clustering coefficient E[γi|wi = x, di ≥
2]. Simulation results are compared to (20) in Fig. 2, which
shows that model (20) matches simulations very accurately.

Now, we are ready to derive an asymptotic formula for
E[γ(G)]. Combining the results in (18)-(20), we can expand
the integral in (17).

Theorem 2: With a power-law distributed weight sequence,
the expected GED clustering is asymptotically:

E[γ(G)] =





Θ(n1−α log n) 1 < α < 2

Θ(n−1 log2 n) α = 2

Θ(n−1) α > 2

, (22)
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Fig. 3. Model (22) and E[γ(G)] in GED simulations. All cases use 10, 000
iterations.

where α is the shape parameter of the power-law distribution.
We verified the model by constructing 10, 000 GED graphs

with shape parameters α = 1.2 as well as α = 2 and extracting
the corresponding average clustering coefficients, which is
plotted in Fig. 3 along with the corresponding model (22). The
figures shows that the model provides an accurate prediction
of the asymptotic trend in clustering. Additional simulations
show that (22) is accurate for different shape parameters α.

The result in (22) not only proves that GED’s three-node
correlation decays to zero for all values of α > 1, but also
provides the exact asymptotic decay rates.

IV. GENERIC FRAMEWORK OF CORRELATION ANALYSIS

Notice that the results in (13), (17) do not specify π(x, y)
and thus can be used to derive the corresponding metric for
any degree-based model with a known function π(x, y). We
next develop a generic framework that allows us to reuse the
results derived from (13), (17) in application to PLRG, BA,
AB, and GLP.

Consider a graph algorithm A that constructs random graphs
GA. Denote by πA(x, y) the probability of having a link
between any pair of nodes with weights x, y in graph GA,
where weights may be explicitly pre-assigned as in GED or
may represent the final degree of each node in the constructed
graph. We start with the following definition.

Definition 1: Consider two graph algorithms A and B that
operate with the same weight distribution F (x). Define A to
be asymptotically π-equivalent to B if the following holds for
all x ≥ 0, y ≥ 0:

cLπB(x, y) ≤ πA(x, y) ≤ cUπB(x, y) (23)

where 0 < cL < 1 and cU ≥ 1 are some constants independent
of x, y, or graph size n.

It is easy to verify that π-equivalence is both symmetric
and transitive, which we formulate in the next lemma without
proof.

Lemma 4: If A is π-equivalent to B, then B is π-equivalent
to A. If A is π-equivalent to B and B is π-equivalent to C,
then A is π-equivalent to C.

The next result follows after straightforward expansion of
upper/lower bounds on π(x, y) in formulas derived earlier and
shows that asymptotic π-equivalence leads to easy ways of

bounding the decay trend of two- and three-node correlation
in any graph algorithm.

Theorem 3: If algorithm A is π-equivalent to B, then

lim
n→∞

E[r(GA)]
E[r(GB)]

= cr, lim
n→∞

E[γ(GA)]
E[γ(GB)]

= cγ , (24)

where constants cr, cγ are bounded by:

cL ≤ cr ≤ cU ,
c3
L

cU
≤ cγ ≤ c3

U

cL
(25)

With the result in Theorem 3, the rest of the paper derives
bounds on π(x, y) in PLRG, GLP, BA, and AB. Specifically,
we show that all of these methods can be reduced to GED
through π-equivalence and thus exhibit the same asymptotic
decay rate in E[r(G)] and E[γ(G)] in GED.

V. PLRG

In what follows, we first give a formula for the link-
existence function π(x, y) of PLRG and then study PLRG
under the framework developed in the previous section.

Recall that PLRG first pre-assigns a random weight wi

drawn from a power-law distribution to each node i, generates
wi virtual copies of each node i, and then uniformly matches
these virtual nodes to establish the actual links [1]. To make
sure that the resulting degree di does not exceed the pre-
assigned weights wi, virtual nodes paired up during the process
are immediately removed from the system.

To understand the statement of the following lemmas, define
Mij and Lij to be random variables that specify the number
of edges between nodes i and j with and without counting
duplicate links, respectively, at the end of the graph formation
process. It follows that:

Lij =

{
1 Mij ≥ 1
0 Mij = 0

. (26)

Let the node matching process in PLRG start at time 1 and
finish at time D (recall that D is twice the number of edges),
where the node chosen at time 2k − 1 is paired up with the
node chosen at time 2k. Denote by pij(t) the probability of
forming a new edge between nodes i and j at time t. We
first show in the next lemma that pij(t) in PLRG does not
depend on time t and then apply this result to deriving a more
interesting expression for E[Lij ] = P (i ↔ j) = π(wi, wj).

Lemma 5: The probability pij(t) of forming a new link
between i and j is independent of t:

pij(t) =
2wiwj

D2
, (27)

where D =
∑n

k=1 wk.
The result in (27) specifies the rate of accumulating links

between i and j and leads to the following result stating the
expectations of Mij and Lij .

Theorem 4: The expected number of links between i and j
is given by:

E[Mij ] =
wiwj

D
, E[Lij ] = 1− e−wiwj/D. (28)
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Fig. 4. Simulations of PLRG (α = 1.2). All cases use 30, 000 iterations.
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Fig. 5. Simulations of PLRG (α = 1.2). All cases use 10, 000 iterations.

To verify the correctness of (28), we constructed 30,000
graphs PLRG and computed the average Mij and Lij of all
pairs of nodes that have the same weight products. Fig. 4 plots
E[Mij ] and E[Lij ] against the normalized weight product
wiwj/D, indicating that model (28) follows the actual values
accurately.

Note that the distribution of Lij specifies the link-existence
probability function π(x, y), which is formulated in the next
corollary.

Corollary 1: For PLRG, the link-existence probability
function π(x, y) is given by:

π(x, y) = 1− e−xy/D. (29)

Note that for xy/D ≈ 0, PLRG is identical to GED.
However, as xy increases, the two algorithms exhibit diverging
link formation probabilities and thus produce graphs with
numerically different assortativity and clustering.

With the result in (29), we next show that PLRG’s correla-
tion decays to zero at the same rate as that in GED.

Theorem 5: PLRG is π-equivalent to GED.
Corollary 2: As graph size n → ∞, two- and three-node

correlation in PLRG decays to zero according to (15) and (22).
Fig. 5 plots the average degree correlation coefficients

obtained from simulations of 10, 000 PLRG graphs with
α = 1.2 and indicates that the asymptotic models (15) and (22)
match the actual very well for PLRG. Numerous additional
simulations (omitted for brevity) have been conducted to verify
(15) and (22) for other values of α in PLRG.

VI. GLP

In the category of evolving models, we start with the most
general case of GLP and later reduce the obtained result

to BA and AB. Recall from [10] that at each time step t,
with probability p GLP adds m new links or with probability
1 − p joins a new node with m links. The way of selecting
existing nodes for building new links or attaching new nodes
is specified by the shifted preferential function pi(t):

pi(t) =
di(t)− λ

Dλ(t)
, (30)

where di(t) is the degree of node i at time t, λ ≤ 1 is the shift
parameter fed into the algorithm, and Dλ(t) =

∑n(t)
k=1(dk(t)−

λ) is the total shifted degree.

A. Derivation of π(x, y)
In what follows, we assume that all nodes join the system

sequentially and that each node i arrives at time ti. It has been
shown in [10] that degree di(t) of node i follows:

di(t) =
(

αt− b

αti − b

)1/α

(m− λ) + λ, (31)

where α is the shape of the Pareto degree distribution and b
is a constant:

α =
2m− λ(1− p)

m(1 + p)
, b =

m0λ

m(1 + p)
. (32)

The total shifted degree Dλ(t) at time t in GLP graphs is
then given by:

Dλ(t) = 2mt− (m0 + (1− p)t)λ = m(1 + p)(αt− b). (33)

Now, consider two nodes i, j in the graph and suppose that
j joins after i, i.e., ti < tj . Denote by Mij(t) the number
of duplicate links between i and j accumulated up to time t
and by Lij(t) the indicator variable that represents if any link
between i, j exists by time t:

Lij(t) =

{
1 Mij(t) ≥ 1
0 Mij(t) = 0

. (34)

Using similar technique as in PLRG, we obtain formulas
for Mij(t) and Lij(t). For simplicity, we only present in the
next lemma the result for α 6= 2 and leave the analysis of the
case α = 2 to the discussion of BA.

Theorem 6: For ti < tj , the expected duplicated links
between i and j in GLP with α 6= 2 is given by:

E[Mij(t)] = c1
(di(t)− λ)(dj(t)− λ)

Dλ(t)
(
p + c2(dj(t)− λ)α−2

)
,

(35)

and Lij(t) is asymptotically Bernoulli with expectation:

E[Lij(t)] = 1− e−E[Mij(t)], (36)

where c1 and c2 are constants:

c1 =
2

(1 + p)(2− α)
, c2 =

mλ(1 + p)
2(m− λ)α−1

. (37)

To verify models (35) and (36), we generated a GLP
graph with 106 nodes using parameters m0 = 2,m =
1.13, p = 0.4695, λ = 0.6. We fixed i = 1 and uniformly
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Fig. 6. Simulations of GLP (α = 1.2). All cases use 10, 000 iterations.
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Fig. 7. Simulations of GLP (α = 1.2). All cases use 10, 000 iterations.

randomly select node j from the rest nodes and computed
the average number of duplicate/non-duplicate links. Fig. 6
plots the obtained E[Mij(t)] and E[Lij(t)] against dj from
the simulations along with the model values. The figure shows
that models (35) and (36) follow the simulation results pretty
accurately.

Notice that the result in (36) assumes that node j arrives
after i. However, for any pair of randomly chosen nodes i, j,
their join times satisfy P (ti < tj) = P (ti > tj) = 1/2. Fur-
ther note that we set the weight of each node i to be its shifted
degree, i.e., wi = di−λ. This leads to the weight distribution
F (x) being the same Pareto distribution 1 − (x/β)−α as in
GED and allows application of π-equivalence later.

Corollary 3: In GLP with α 6= 2, link-existence probability
π(x, y) is given by:

π(x, y) = 1− 1/2 exp
(
−c1

xy

D

(
p + c2x

α−2
))

− 1/2 exp
(
−c1

xy

D

(
p + c2y

α−2
))

, (38)

where x, y are node weights, D is the total weight, and c1, c2

are given in (37).

B. Bounds on π(x, y)

Now we use simple exponential functions to bound π(x, y).
In the next lemma, we only show the results for the case of
λ > 0 (i.e., 1 < α < 2). However, the following results also
hold for λ < 0 after reversing the direction of each inequality.

Lemma 6: In GLP with λ > 0, the link-existence probabil-
ity function π(x, y) is bounded as follows:

1− exp
(
− xy

c4D

)
≤ π(x, y) ≤ 1− exp

(
− xy

c3D

)
, (39)
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Fig. 8. Simulations of BA. All cases use 10, 000 iterations.
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Fig. 9. Simulations of AB (α = 1.2). All cases use 10, 000 iterations.

where D is the total degree and c3, c4 are constants of D.
The following results show that we can infer the asymptotics

of E[r(G)] and E[γ(G)] of GLP from those of PLRG and,
through transitivity, those of GED.

Theorem 7: GLP is π-equivalent to PLRG.
Corollary 4: As graph size n → ∞, two- and three-node

correlation in GLP decays to zero according to (15) and (22).
Again, we verify Corollary 4 by constructing 10, 000 GLP

graphs and extracting r(G) and γ(G). We plot in Fig. 7 the
values from simulations as well as from models (15) and (22).
The figure displays that the model curves follow the actual
values very accurately.

It is interesting to note that while GLP has significantly
higher clustering than GED/PLRG according to [10], [50], the
results in Corollary 4 for the first time analytically show that
GLP is asymptotically the same as GED/PLRG in the limit of
large n.

C. Application to BA and AB

Note that BA is a special case of GLP with p = 0 and
λ = 0, from which it follows that α = 2 and b = 0. Notice
that (38) does not admit α = 2 since c1 = ∞. We repeat the
derivation of (35)-(36) with α = 2, p = 0, and λ = 0 to yield
the following results.

Theorem 8: The link existence probability π(x, y) in BA is
identical to that of PLRG given in (29).

Corollary 5: BA is π-equivalent to PLRG and the following
asymptotic decay rates hold for BA: E[r(G)] = Θ(n−1 log2 n)
and E[γ(G)] = Θ(n−1 log2 n).

Considering that AB without edge rewiring is just another
special case of GLP, we get the following results by setting
λ = −1 in (39).
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Fig. 10. Comparison of degree-based and link-based models to the Internet.
All markers are obtained from asymptotic models (15), (22) in (a) and from
simulations in (b). Arrows indicate the trends in corresponding curves.

Corollary 6: AB (without rewiring) is π-equivalent to
PLRG and its correlation satisfies (15), (22) as n →∞.

Not surprisingly, both BA and AB have decaying assorta-
tivity and clustering, just as GLP. Simulation results of BA
and AB are given in Fig. 8-9, which show that the asymptotic
degree correlation in BA and AB graphs can be accurately
predicted using (15), (22).

VII. DISCUSSION

In this section, we compare the evolution of degree correla-
tion given in (15), (22) to that of the Internet AS-level struc-
ture. We specifically focus on the subgraphs of the Internet
induced by provider-customer links, which have been shown
in [20] to exhibit a power-law degree distribution. According
to [20], the combination of BGP routing tables from [39], [40]
provides a reasonably complete view of the provider-customer
links in the Internet.

We first obtain more than 300 snapshots of the Internet
topology from BGP routing tables [39], [40], which cover the
last 7 years as the size of the Internet has increased from 4, 000
to 23, 000 nodes. We then extract degree correlation from these
snapshots and plot them in Fig. 10 with r(G) on the x-axis
and γ(G) on the y-axis. The figure indicates that both degree
correlation coefficients of the Internet, shown as dots inside a
small dashed rectangle, do not significantly change over the
years, which is consistent with observations in [50].

We also plot in Fig. 10(a) the corresponding metrics
computed from (15) and (22) for the studied degree-based
algorithms with graph size ranging from 103 to 107. The
figure shows that for small graph sizes, degree correlation of
GLP/GED/PLRG is close to that of the Internet; however, all

studied degree-based models converge both assortativity and
clustering to zero as system size increases. This contradicts
the behavior of these metrics in real networks and suggests
that attachment decisions of users in small-world graphs may
be based on additional factors besides the degree of potential
neighbors.

To support this conjecture, we next study three link-
based graph algorithms: Small-World Topologies (SWT) [23],
Heuristically Optimized Trade-offs (HOT) [17], and Wealth-
based Internet Topology (WIT) [50]. Recall that SWT forms
p percent of links using geographic preference and creates
the rest of the links using random pairing as in PLRG; HOT
models each attachment decision as an optimization problem
with the goal of minimizing both the geographical length of
potential links and the average number of hops to other nodes
in the graph; and WIT adjusts the number of links based on
an underlying stochastic wealth process and selects neighbors
based on random walks.

We configure SWT/HOT/WIT in simulations to produce
power-law degree distributions that are the similar to those
observed in the Internet. In SWT, we set p = 0.31 as in
[23]; in HOT, we add two new links to each new node as
in [50]; for WIT, we used the parameters of [50]. For each
of these three algorithms, we construct 10, 000 graphs with n
increasing from 103 to 107 and extract the averaged degree
correlation.

Observe from Fig. 10(b) that SWT exhibits decreasing
r(G) and γ(G) and displays a similar trend as degree-based
algorithms, which can be explained by the fact that SWT
contains PLRG-like random pairing. In contrast, notice that
HOT increases its clustering coefficient as the graph becomes
more disassortative, an opposite trend to that of degree-
based methods. Both approaches, however, exhibit much less
sensitivity to increasing n than degree-based generators and
reach a saturation point as n → ∞, which closely replicates
the qualitative behavior of the Internet. Finally, r(G) and
γ(G) of WIT graphs stabilize around those of the Internet,
even reaching and staying inside the dashed rectangle for
n ≥ 50, 000.

These results show the significant difference between
degree-based and link-based methods, as well as underline
the importance of modeling higher-order degree correlation
in constructed graphs.

VIII. CONCLUSION

In this paper, we examined several degree-based topology
generators and derived the asymptotic shape of their assortativ-
ity and clustering as n →∞. We found that all studied degree-
based generators were virtually uncorrelated for sufficiently
large graph size. Our simulations also showed that link-based
algorithms [17], [23], [50], which grew the system based
on the structure of the current graph rather than just the
degree, were much more capable of keeping two and three-
node correlation close to time-invariant.

Future work involves analysis of link-based methods and
impact of higher-order degree correlation on graph structure.
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