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Agenda

e Introduction
— Background
— Motivation

 Analyzing GED
e Generic Framework

« Extending GED results
— PLRG/BA/AB/GLP

e Comparison

e Conclusion
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Introduction

 Topology modeling Is an inter-disciplinary topic
— Computer networks, social/biological/physics systems

 |ts goal is to explain how real networks have come
Into being

— To develop random graph models that capture the
properties found in those systems

 |n the context of computer networks, these models
are useful for performance evaluations

— Routing delay, resilience, load balancing, etc.
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Background — Metrics

e Metrics of interest

— Main: degree distribution, assortativity and clustering
coefficients

— Auxiliary: diameter, spectrum, rich-club connectivity

 Degree correlation of level k is the joint degree
distribution of k adjacent nodes

* Previous work (Mahadevan 2006) demonstrates
that up to 3-level degree correlation suffices to
characterize most of existing topologies

 Thus, we focus on degree correlation in this talk

4/30
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Background — Metrics 2

e Assume an undirected graph G = (V, F) of n
nodes with degrees d,, ..., d

n

« L1) Degree distribution CDF F(x) = P(d<x)
—where d Is the degree of a random node in V

— Scale-free graphs exhibit power-law degree

distributions F(z) = 1-(8/x)>  shape a>1
scale

« L2) Assortativity coefficient r(G) is the Pearson
correlation coefficient of node degrees of links

— It indicates the tendency of high degree nodes
connecting frequently to other high degree nodes

>
=
£
)
2
-
-
=
%
<
)
]
>
()]
|_
o)
@)
-
Q
@)
7))
0
s’
S
Q
=
o
O

5/30



Background — Metrics 3

» L3) Clustering coefficient v(G) quantifies how likely
the neighbors of a node are to be connected

v(G) = EiEV—V(}) 7 The set of nodes with
/ -
v—y)) degree no less than 2

—where +; Is individual clustering of node :
T, d:> 2 The number of triangles

—1)/2° ™ = residing on node i

% = G
« We study how r(G) and y(G) change as graph
Size n grows

— This allows us to evaluate graph models in terms of
their two-/three-node correlation
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Background — Models

e Graph models
— GED (Chung 2002) |
— PLRG (Aiello 2000)
— BA (Barabasi 1999)<
— AB (Albert 2000) -

- Node
weight

Preferential attachment
and incremental

—GLP (Bu2002) | growth

—HOT (Ffabrikant 202} Geographic distance or
— SWT (Jin 2003) - wealth evolution and
— WIT (Wang 2006) random walk

A
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Backaround — Models 2

« Classification
— Non-evolving and evolving

r R

SWT

WIT

Qon-evolving evolviny
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Backaround — Models 3

« Classification
— Degree-based and link-based

- N

GED PLRG

Qegree-based Iink-basey
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Motivation

« Many large-scale networks show invariant degree
correlation

—r(G) and +(G) stay constant with growing n

 However, many algorithms have decreasing
degree correlation as n increases

* No prior analysis has examined this issue In
topology models

— Only partial results are available in the literature for
a>2

e Goalis to study 1<a<?2 for popular generators
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Graph Models

>
=

D

()

2

-

D

=

o

<

)

]

>

()]

|—

G
@)

-
Q

@)

)

0

s’

S

Q
-

o

O

Analytical results Simulation resultg/3o



GED - Basics

 GED assigns random weights w, drawn from
Pareto distribution F(x)

* It then creates each link with probability p,;
i W W )
L 1
Pej = T ( D’

—where D iIs total weight: D = D e W

* Next, we formalize the relationship between
node weights and edge-existence probability

— We keep our formalization general enough so that it
can be applied in any graph G
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Link Formation — General Discussion

» Define w(z, y) to be the probability of two nodes
being connected given their weights x and y

 For GED, this #-function is simply given by

w(x,y) = min (%J, 1)

* We next see how FE|r(G)] and E|y(G)| can be
computed using the w-function
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Assortativity Coefficient - GED E[ is the kuth

e For any graph,

moment of degree

we can express E[r(G)] J

Elr(GR)] = __E[d)p—E?[d?]

E[d] E[d°] - E?[d”]

—where p IS given by: ; r-function

p=n [[ zyn( W) (@)f (y)dady

Graph size

- Weight PDF

« Theorem 1: the expected assortativity
coefficient of GED graphs is asymptotically:

E[r(G)] = «

'@(—nl_a) l<a<?2
© (—n_l Iog2 n) a=2
0 a> 2

\
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Clustering Coetfficient

« Theorem 2: With Pareto distributed weights, the
expected GED clustering is asymptotically:

Ol %logn) 1<a<?
Ey(@)] ={ (ntlog?n) a=2
\ o(n 1) a>2

« Derivations are fairly convoluted
— See the paper for details

 We next extend our results of GED to other
degree-based models
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Generic Framework — Equivalence

e Assume two topology algorithms A and B

— With edge-existence probabilities 7 ,(z, y) and 7 5(x,
y), respectively

— With the same weight distribution F(x)

« We say A is asymptotically m-equivalent to B If
7 .(x, y) is upper/lower bounded by 7 5(z, y):

crrg(z,y) <malz,y) < cymp(z,y)

—where 0 < ¢; < 1 and ¢, >1 are some constants
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Generic Framework — Equivalence 2

 Properties of m-equivalence
— Symmetric and transitive

 Theorem 3: If algorithm A Is m-equivalent to B,
then their expected correlation coefficients have
the same asymptotic trends:

BrGAl_ o EGA)] _
ol (Cp) | m Bly(@p)]

—where ¢, and ¢, are bounded by:

c3 ¢
L U
cr, < cr < cp, %SWSE
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Graph Models
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Non-Evolving Model — PLRG

PLRG generates w, virtual copies for node

Then, it randomly pairs up virtual nodes to form
actual links

Theorem 4: PLRG’s w-function Is:

m(z,y) =1—e /D

Theorem 5: PLRG Is m-equivalent to GED

Thus, PLRG has the same asymptotic degree
correlation as GED
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Graph Models
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Evolving Model — GLP

e At each time step t,
— With probability p, GLP adds m new links among
existing nodes

— With probability 1—p, it adds a new node with m new
links connecting to existing nodes

 The probability of selecting existing node 2 IS
proportional to its degree d,— A\

pi(t) = d;(t) — A -
> (@) = A)

* No weights used in GLP construction

— Thus, we cannot directly apply the GED analysis here
21/30

A < 1isthe
shift parameter
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Evolving Model — GLP 2

« However, we can still use the framework by setting
weight w, = d, — X for each node ¢

« Theorem 6: GLP’s w-function is given by:

— 1 _ o a—2
w(w, y) Rl 1/2exp( o D(p+c2a: )) et e

_1/2 exp( Cl% (p-l—c ya_z)) parameter

=

Total weight
—where ¢, and c, are constants

« Theorem 7: GLP iIs m-equivalent to PLRG
— By transitivity, GLP Is also m-equivalent to GED
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Evolving Model — BA/AB

e BA Is the same as GLP with =2, p=1, and A=0
 AB without edge rewiring iIs GLP with A = —1

 Corollary 1: BA and AB without rewiring are -
equivalent to GED

 Consider that BA has a=2 and its clustering Is
E[v(G)] = ©(n" " log® n)

e This result has been derived (Barabasi 1999)
— It Is just a coproduct of our generic framework
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Degree-Based Models — Discussion

e Conclusion: all studied degree-based algorithms
become uncorrelated as n—oo and their decay

rates are given by:

r@(—nl_a) l<a<?2
E[r(G)|=5 © (—n_l Iog2 n) oa=2
0 a> 2

' O(nl ™ %logn) 1 <a <2
Evy(@)] =} ©(n1log?n) a=2
\ o(n 1) o> 2
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Graph Models
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Link-Based Algorithms

« SWT forms p percent of links using geographic
preference and the rest using random pairing

e HOT models each attachment decision as an
optimization problem with two objectives

— Last-mile cost and reachabillity

 WIT adjusts the number of links based on a
stochastic wealth process

— Neighbor selection is based on random walks

 We study these algorithms in simulations
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Comparison

 We use the Internet AS-level graph as the
benchmark

— Route-Views and RIPE

 We extract E|r(G)] and E[y(G)] from historical
data of the BGP graph observed during the last 7
years
— The graph size increases from 4,000 to 23,000 nodes

* The data shows E|r(G)] and E|y(G)] of the
Internet do not change much over the years
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 Next, we compare the studied models
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Comparison — Degree-Based
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Comparison — Link-Based
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Conclusion

 We developed an analytical framework for
modeling degree-based algorithms

— We found that all studied degree-based methods
become uncorrelated as n — oo

 Our simulations showed that some of the studied
link-based algorithms were capable of keeping
E[r(G)| and E|v(G)] time-invariant

e Future work
— Extension to other degree-based methods
— Analysis of link-based models
— Higher-order degree correlation 30/30
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