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Abstract—Existing methods of measuring lifetimes in P2P
systems usually rely on the so-called Create-Based Method (CBM)
[16], which divides a given observation window into two halves
and samples users “created” in the first half every ∆ time units
until they die or the observation period ends. Despite its frequent
use [2], [17], [19], this approach has no rigorous accuracy or
overhead analysis in the literature. To shed more light on its
performance, we first derive a model for CBM and show that
small window size or large ∆ may lead to highly inaccurate
lifetime distributions. We then show that create-based sampling
exhibits an inherent tradeoff between overhead and accuracy,
which does not allow any fundamental improvement to the
method. Instead, we propose a completely different approach
for sampling user dynamics that keeps track of only residual
lifetimes of peers and uses a simple renewal-process model to
recover the actual lifetimes from the observed residuals. Our
analysis indicates that for reasonably large systems, the proposed
method can reduce bandwidth consumption by several orders of
magnitude compared to prior approaches while simultaneously
achieving higher accuracy. We finish the paper by implementing
a two-tier Gnutella network crawler equipped with the proposed
sampling method and obtain the distribution of ultrapeer life-
times in a network of 6.4 million users and 60 million links. Our
experimental results show that ultrapeer lifetimes are Pareto with
shape α ≈ 1.1; however, link lifetimes exhibit much lighter tails
with α ≈ 1.9.

I. INTRODUCTION

Peer-to-peer networks are popular platforms for many ap-
plications such as file-sharing, content distribution, and mul-
timedia streaming. Besides modeling and simulating system
dynamics of P2P networks under churn (e.g., [3], [6], [8],
[11]), validation of proposed techniques in real networks has
recently become an important area for understanding P2P
performance and design limitations in practice. In this regard,
several efforts have been undertaken to characterize peer-to-
peer systems by measuring churn-related user behavior (e.g.,
distribution of lifetime, inter-arrival delays, and availability)
[1], [2], [4], [5], [17], [19], topological information (e.g.,
degree distribution and clustering coefficients) [13], [21], and
traffic flow rate [8], [18].

Sampling of large-scale networks usually faces two fun-
damental problems – 1) obtaining an unbiased distribution
of the target quantity and 2) keeping bandwidth overhead
reasonable as system size increases. While sampling bias in
topology measurement is understood fairly well [20], the same
issue in lifetime sampling has not been addressed before.
What makes the latter problem different is that sampled users
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cannot be queried for their lifetimes or even arrival instances.
Measurement in such cases generally requires taking repeated
snapshots of the system every ∆ time units, detecting new
arrivals by user appearance in a given snapshot, and inferring
departures based on user absence in another snapshot. Since
∆ cannot be lowered below the delay it takes to crawl the
network, the issue of precisely reconstructing the lifetime
distribution from measured samples remains open.

In this paper, we aim to formalize the notion of lifetime
sampling bias, understand its source in existing methods, and
design a robust and bandwidth-efficient sampling mechanism
for estimating peer and link lifetime distributions in unstruc-
tured P2P networks (e.g., Gnutella [7], KaZaA [9]). Note that
peer lifetimes are important for understanding general user
behavior, their habits, and application performance offered by
the peers to the system. Link lifetimes, on the other hand, have
a significant impact on resilience [11], [22] and routing ability
[10] of the network since broken links, rather than dead peers,
contribute to formation of stale neighbor pointers, network
disconnection, and routing failure.1

We start by creating a novel analytical framework for under-
standing and characterizing bias in network sampling. We first
explain what constitutes inaccuracy in measuring the target
distribution of lifetimes F (x) and define sampling methods to
be biased if, given an infinite population of sampled users,
they cannot reproduce F (x) in all discrete points j∆ in the
interval [∆, T ]. Armed with this definition, we then offer a
closed-form model for the measurements obtained by Create-
Based Method (CBM) [16], which is a widely used heuristic
for sampling lifetimes in computer systems. We show that
both CBM and its modification in [2], [17], [19] are biased
as long as ∆ > 0, where the bias is caused by two factors –
inconsistent round-offs (i.e., some user lifetimes are rounded
up and others down) and missed users (i.e., users arrive and
depart within a ∆ interval). In fact, we generalize this result
to show that any sampling technique that attempts to directly
measure user lifetimes every ∆ time units is biased as long
as ∆ > 0 and that the bias is not removable regardless of the
mathematical manipulation applied to the measured samples.

To overcome the discovered limitations of direct sampling,
we next propose a technique called ResIDual-based Estimator
(RIDE), in which a crawler takes a snapshot of the entire

1There are many reasons why peer lifetime may be different from link
lifetime, which include peers reaching their maximum neighbor capacity and
dropping excess links, leaves migrating from one ultrapeer to another to
achieve better performance, path outages between certain nodes, and demotion
of ultrapeers to leaf status.
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network and then tracks the residual (i.e., remaining) lifetimes
of the users seen in the first crawl. We show that this approach
produces an unbiased version of the residual distribution
H(x), which allows us to develop a simple mechanism based
on renewal churn models of [11], [22] that accurately re-
constructs the lifetime distribution F (x) from the sampled
residuals with a negligible amount of error.

The next issue we address is bandwidth consumption. With
small ∆ and large T , CBM requires significant overhead
since it must track all users that appear in the system in
the observation interval, i.e., old peers discovered early in
the crawl and new ones constantly arriving into the system.
In RIDE, however, initial users die quickly and the amount
of bandwidth needed to sustain the crawl decays to zero
proportionally to the tail of the residual lifetime distribution
H(x). Additional bandwidth savings are possible if the initial
set S0 of users found in the system is uniformly subsampled
and only ε-fraction of the users is monitored during the interval
[0, T ]. For example, given Pareto lifetimes with α = 1.1
observed in our experiments, window T = 24 hours, and
sampling interval ∆ = 3 minutes, the proposed technique
reduces the download overhead compared to that in CBM by
a factor of 16 for ε = 0.1 and a factor of 125 for ε = 0.01.

We finish the paper by implementing a Gnutella crawler that
is about 18 times faster than the fastest prior crawler [19],
which allows it to cover the entire network of 6.4 million
users (1.2 million contacted ultrapeers) in under 3 minutes.
Our results using RIDE indicate that ultrapeer lifetimes are
Pareto distributed with shape α ≈ 1.1, which is very close to
the results of [2]. At the same time, Gnutella links are much
more volatile and can be described by a Pareto distribution
with shape α ≈ 1.9. These results, fed into the latest resilience
models for unstructured systems [11], [12], [22], suggest that
node isolation among joining ultrapeers in Gnutella and thus
partitioning of the network must indeed be extremely rare
events.

The remainder of the paper is organized as follows. In
Section II, we formalize sampling and bias. In Section III,
we derive the sampling bias of CBM and examine it under
different simulation settings. We propose the residual-based
method and discuss its simulation results in Section IV. We
examine the bandwidth overhead of the various methods in
Section V and present our measurement study of Gnutella in
Section VI. Section VII reviews prior work and Section VIII
concludes the paper.

II. FORMALIZING LIFETIME SAMPLING

A. Target Distribution

We start by defining the objective of our measurement
process. Assume that each user spends a random amount
of time in the system, where the lifetime L of the next
joining user is drawn from some distribution F (x). This is
similar to the heterogeneous churn model proposed in [22].
Then, the goal of the sampling process is to estimate with as
much accuracy as possible function F (x), which we assume
is continuous almost everywhere2 in the interval (0,∞). As

2The set of points in which F (x) is discontinuous must have measure 0.

shown in [22], distribution F (x) represents the lifetimes of
arriving rather than existing peers in the system. The latter
metric is known in renewal process theory as the spread of
user lifetimes and can be obtained from F (x) using simple
integration.

The measurement process is assumed to have periodic
access to the information about which users are currently
present in the system. This process allows the sampler to test
whether a given user i is still alive as well as discover the
entire population of the system at any time t. However, due to
bandwidth and connection-delay constraints on obtaining this
information, the sampling process cannot query the system for
longer than T or more frequently than once per ∆ time units,
where ∆ usually varies from several minutes to several hours
depending on the speed of the crawler and network size.

Given the above requirements, notice that reconstructing
the entire F (x) from discrete samples is simply impossible.
There are three biases arising from discrete sampling: 1) the
measuring process cannot observe any lifetimes larger than T ;
2) all samples are rounded to a multiple of ∆; 3) an empirical
distribution based on a finite sample size will not necessarily
match the theoretical one. We are not concerned with the last
issue since all methods require an infinitely large sample size
to converge to the desired distribution F (x). Instead, we are
interested in the bias arising from finite T and non-zero ∆.

We start with the following definition that formalizes sam-
ples obtained during periodic measurements.

Definition 1: A non-negative random variable X∆ for some
∆ > 0 is called lattice if:

∞∑

j=1

P (X∆ = j∆) = 1, (1)

where ∆ is called the periodicity of X∆ and points xj = j∆
are called the support of X∆.

For all lattice distributions, we assume that P (X∆ ≤ 0) =
F (0) = 0 and that the probability mass of X∆ starts from the
point x1 = ∆.

We are now ready to define a sampling process.
Definition 2: A (∆, T )-sampling process is a lattice random

variable M∆ with periodicity ∆ and P (∆ ≤ M∆ ≤ T ) = 1.
Note that the above defines a sampling process using the

limiting distribution of the values it measures (i.e., assuming
an infinite population size). The reason for doing so is to
understand whether a method can provide accurate results
given a sufficiently large sampling size. As we show below,
some methods always exhibit bias, no matter how long they
measure the system.

Definition 3: For a random variable X , function E(x) is
called an estimator of X in some interval [a, b] if it is the CDF
of some random variable Y that approximates X in [a, b].

Note that Y can be arbitrarily dissimilar to X , in which case
the estimator will be biased. We next explain what makes an
estimator unbiased.

Definition 4: A (∆, T )-sampling process with estimator
E(x) is unbiased with respect to a target continuous random
variable X if it can correctly reproduce the distribution of X
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in all discrete points xj in the interval [∆, T ] for any ∆ > 0:

E(xj) = P (X ≤ xj) (2)

for xj = j∆ and j = 1, 2, . . . , T/∆.
Since one may measure different aspects of the system,

we finally classify sampling methods based on whether they
measures the target random variable or some other related
distribution.

Definition 5: A (∆, T )-sampling process of a random vari-
able X is called direct, if it measures quantities whose
distribution is the same as that of X . It is called indirect
otherwise.

For example, direct lifetime sampling must measure session
lengths of all arriving users, while indirect sampling may
record the lifetimes of peers alive in the system at some
time t. Given an established relationship between the two
metrics, an estimator can then be used to reconstruct lifetimes
L from indirect samples. In another example, direct sampling
of network size must count the number of users present in
the system at different times t, while indirect sampling may
measure the arrival process of peers into the system. With
proper selection of the indirect sampling method, estimation
may be more accurate and/or may require lower overhead than
direct sampling. We demonstrate one such example later in the
paper.

III. DIRECT SAMPLING

In this section, we first examine the source of bias in direct
sampling and study the problem of constructing an unbiased
estimator for measuring lifetimes. We then derive a model for
the distribution obtained by Create-Based Method (CBM) and
demonstrate examples of its bias.

A. General Results

In direct sampling, the measured random variable M∆ is the
lifetime of individual users conditioned on them being smaller
than T and being present in the crawl:

P (M∆ ≤ x) = P (L ≤ x|L ≤ T, not missed), (3)

where missed samples arise when a user joins and departs
between consequent crawls. Note, however, that not all users
with lifetimes smaller than ∆ are missed and that some of
them are actually taken into account in the distribution of
M∆. Another issue that we discover in this work is that some
lifetime samples are rounded up and others rounded down
during the measurement, which together with missed users
gives rise to the bias we derive below. We next formalize
round-off errors and explain how they affect direct sampling.

Definition 6: For a continuous random variable X , a (∆, T )
sampling process is consistent if measured samples are all
rounded up to the nearest multiple of ∆.

Since a crawler in direct sampling never knows the exact
arrival time of users it observes, there is an ambiguity in
how to round-off the lifetimes of measured peers. Consider
the example in Fig. 1, where sample L1 = 0.5∆ is indistin-
guishable from sample L2 = 1.8∆ from the perspective of
the crawler. This causes both of these lifetimes to be rounded

∆

observation window

user departure

inconsistent sample

consistent sample
missed sample

L
1

L
2

L
3

L
4

Fig. 1. Round-off inconsistencies in direct sampling.

off to ∆, which using our terminology makes L1 consistent
and L2 inconsistent. Also observe in the figure that samples
L3 = 0.4∆ and L4 = 0.6∆ are completely missed by the
crawler, even though sample L1 is captured. This case can
also be treated as inconsistent round-off as we define below.

Let

Qj =

{
1 inconsistently rounded down to xj

0 otherwise

to be an indicator variable of the event that a user’s lifetime
xj ≤ L < xj+1 is inconsistently rounded down to xj by the
sampling process, where rounding down to x0 = 0 represents
missing the entire sample. For simplicity of notation, we define
ρj = P (Qj = 1) and obtain the probability of inconsistent
round-off in the interval [xj , xj+1) in the next theorem.

Theorem 1: In direct sampling, the probability that lifetime
samples are inconsistently rounded down to xj = j∆ (j =
0, 1, ..., T/∆) is:

ρj =
1
∆

∫ xj+1

xj

F (x)dx− F (xj), (4)

where F (x) is the CDF of the lifetime distribution of samples.
Equipped with result in (4), we next derive an unbiased

estimator for the continuous random variable L.
Theorem 2: For direct lifetime sampling, the following is

an unbiased estimator of L:

E(xj) = P (M∆ ≤ xj)P (L ≤ T |Q0 = 0)(1− ρ0) + ρ0 − ρj ,
(5)

where ρj is given in (4).
Note that both (4)-(5) are exact, but due to limited space

we do not show simulations verifying their accuracy. From
the result of Theorem 2, it becomes clear that unbiased
measurement requires access to the distribution of samples
(i.e., variable M∆), the fraction of observed lifetimes that
are no larger than T (i.e., P (L ≤ T |Q0 = 0)), and all
individual ρj . While the first two metrics are easily measurable
in practice, recovery from inconsistent round-offs requires the
exact join time of each sampled user and the number of missed
users. Unfortunately, within the constraints of our problem
(i.e., crawling of alive users with a period no less than ∆), the
effect of round-off errors is impossible to overcome no matter
what manipulation is applied to M∆.

B. Create-Based Method (CBM)

We next study how inconsistent round-offs exhibit them-
selves in a widely used [2], [17], [19] direct sampling algo-
rithm called Create-Based Method (CBM), first introduced by
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Fig. 2. Illustration of sampling in CBM.

[16] in the context of operating systems. Recall from [16]
that CBM uses an observation window of size 2T , which is
split into small intervals of size ∆. Within the observation
window [0, 2T ], the algorithm takes a snapshot of the system
at the beginning of each interval. To avoid sampling bias,
[16] suggests dividing the window into two halves and only
including samples that appear during the first half of the
window, disappear somewhere within the window, and stay
in the system no longer than T time units. Fig. 2 shows
an example of create-based sampling with three valid, four
invalid, and two missed lifetime samples. The invalid cases
include users who join the system before the observation
window begins or in its second half, a peer that survives
beyond time 2T , and a user whose lifetime is larger than T .

Based on the collected snapshots, the algorithm obtains
individual lifetimes M∆ and calculates the corresponding
distribution P (M∆ ≤ xj) for j = 1, 2, ..., T/∆. Assume that
N is the number of users that arrive into the system in the
first half of the window [0, T ] and N(x) is the number of
such users with lifetimes less than or equal to x. Observe that
N(T ) is the number of valid samples collected by CBM and
limN→∞N(T )/N is the simply metric P (L ≤ T |Q0 = 0)
defined earlier. One possible way to estimate F (x) is to take
the ratio of N(xj) to N(T ) as the estimator of the probability
P (L ≤ xj), which leads to our first CBM estimator [16]:

EA(xj) = lim
N→∞

N(xj)
N(T )

= P (M∆ ≤ xj). (6)

Recent work in [2], [17], [19] normalizes EA by the
percentage of samples no larger than T (i.e., N(T )/N ) and
defines the following modified estimator:

EB(xj) = lim
N→∞

N(xj)
N

. (7)

With the result in (5), we can express both CBM estimators
as functions of the actual distribution F (xj) = P (L ≤ xj).

Theorem 3: Both CBM estimators (6)-(7) are biased when
any ρj > 0 and produce the following distributions:

EA(xj) =
F (xj)− ρ0 + ρj

F (T )− ρ0
, EB(xj) =

F (xj)− ρ0 + ρj

1− ρ0
.

(8)

The result in (8) shows that EB is closer to F (x) than EA

since its accuracy is not affected by the value of T . Next, we
explore in more detail the effect of (∆, T ) on the fidelity of
these estimators using model (8) and simulations.
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Fig. 3. Estimator EA with Pareto lifetimes (n = 106 users, T = 24 hours,
α = 1.1, β = 0.05, and E[L] = 0.5 hours).

C. Effect of Bias on CBM

We first explain how T and ∆ skew the shape of estimator
EA. To simplify the discussion below, define Ē(x) = 1−E(x)
to be the tail distribution of any CDF function E(x). It then
follows from (8) that:

ĒA(x) =
F̄ (x)− F̄ (T )− ρj

F (T )− ρ0
, (9)

which shows that the measured tail distribution is a shifted and
scaled version of the true tail. The influence of the shift/scale
factors on the right side of (9) could be illustrated using the
example of a Pareto distribution commonly used to model user
lifetimes [11], [22]:

F (x) = 1− (1 + x/β)−α, α > 1, x ≥ 0, (10)

with E[L] = β/(α− 1). We use CBM with T = 24 hours in
a hypothetical network with n = 1 million users that join and
depart using the churn model of [22]. Even though F (T ) =
99.8% of users have lifetimes smaller than T , Fig. 3 shows that
EA suffers from significant bias that increases as ∆ becomes
larger. Not only does the measured distribution EA produce
incorrect estimates α ≈ 2.4, β ≈ 0.5 of Pareto parameters
when fitted with the corresponding curve, but the shape of the
tail in Fig. 3 does not even resemble that of F̄ (x), which may
lead to erroneous conclusions about the family of distributions
F (x) belongs to.

We now study how ρj affects the shape of EB . It follows
from (8) that for j = 0, 1, 2, ..., T/∆:

ĒB(xj) =
F̄ (xj)− ρj

1− ρ0
, (11)

which is the true tail shifted by ρj and then scaled by 1− ρ0.
For small ρj ≈ 0, this transformation on log scale preserves
the Pareto shape parameter α as seen in Fig. 4, but makes scale
parameter β inaccurate (i.e., α ≈ 1.14, β ≈ 0.15 for ∆ = 15
minutes). For cases of non-negligible ρj that arise when ∆
is very large or when distribution F (x) does not admit shape
invariance during scaling (e.g., Gaussian, uniform), estimator
EB may produce significantly misleading results.

IV. INDIRECT SAMPLING

In this section, we seek a solution to the problem of
achieving both high accuracy and low overhead using indirect
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Fig. 4. Estimator EB with Pareto lifetimes (n = 106 users, T = 24 hours,
α = 1.1, β = 0.05, and E[L] = 0.5 hours).

sampling. It has been suggested [1], [11], [22] that users in
peer-to-peer systems can be modeled as alternating between
available (ON) and unavailable (OFF) states. Inspired by these
efforts, we now propose our measurement algorithm, called
ResIDual-based Estimator (RIDE), that exploits renewal the-
ory [14] to reconstruct F (x) from sampled residual lifetimes.

A. Churn Model

Consider a P2P system with n participating users, where
each user i is either alive (i.e., present in the system) at time
t or dead (i.e., logged off). This behavior can be modeled by
an ON/OFF process {Zi(t)} for each user i = 1, 2, ..., n:

Zi(t) =

{
1 user i is alive at time t

0 otherwise
. (12)

This framework is illustrated in Fig. 5, where Xi and Yi are
the durations of user i’s ON (life) and OFF (death) periods,
respectively, and R(t) is the remaining lifetime of user i at
time t. Assume that {Xi} are drawn from distribution Fi(x)
and {Yi} from Gi(x). It has been proven in [22] that the
lifetime of the next joining user into the system is drawn from
a weighted distribution:

F (x) = ω

n∑

i=1

Fi(x)
E[Xi] + E[Yi]

, (13)

where ω = 1/
∑n

l=1 (E[Xl] + E[Yl])−1. As before, define L
to be the lifetime of the next joining peer whose distribution
is specified by F (x). Then, the goal of our and other mea-
surement studies is not to sample each of Fi(x), but rather to
measure the users’ aggregate behavior F (x) = P (L < x).

B. RIDE

We first define the sampling algorithm in RIDE and then
discuss its estimator ER(x). At time 0, RIDE takes a snapshot
of the whole system and records in set S0 all users found to be
alive. For all subsequent intervals j (j = 1, 2, ..., T/∆) of ∆
time units, the algorithm keeps probing peers in set S0 either
until they die or T expires. After the observation window is
over, the algorithm obtains the distribution of residual lifetime
M∆ of the users in set S0.

Two important properties about residual sampling can be
drawn from its definition: 1) no valid samples can be missed

X
i

Y
i

R(t)

t

Fig. 5. Process Zi(t) depicting user i’s ON/OFF behavior.

∆

user departure

irrelevant user

valid sample

0 1 2 3 j… j—1

Fig. 6. Sampling residuals in RIDE.

since only users who are alive at time t = 0 are valid
measurements; 2) no samples can be inconsistently rounded
off since all valid residual lifetimes start from the time of the
first crawl. Fig. 6 illustrates an example of five valid samples
captured in the first crawl and five irrelevant lifetimes that are
safely ignored by the algorithm.

Given the above observations, it immediately follows that
the measured distribution can be used to obtain an unbiased
estimator of the actual residual distribution:

P (R(t) ≤ xj) = lim
|S0|→∞

N(xj)
|S0| , (14)

where as before N(x) denotes the number of samples in S0

smaller than or equal to x. At any time t À 0, the distribution
of the remaining lifetime R(t) of users present in the system
is given by [22]:

H(x) = P (R(t) ≤ x) =
1
µ

∫ x

0

(1− F (u))du, (15)

where µ = E[L] is the expected lifetime of a joining peer
and system size n is sufficiently large for all Zi(t) to be in
equilibrium. This leads to the following result.

Theorem 4: For residual lifetime sampling, the following is
an unbiased estimator of L:

ER(xj) = 1− h(xj)
h(0)

, (16)

where xj = j∆ and h(xj) is the PDF of R(t). Furthermore,
the expected user lifetime is given by E[L] = 1/h(0).

Since H(x) is obtained without bias, it is now possible
to numerically compute its derivative h(x) using Taylor ex-
pansion with error bounded by O(∆k/k!), where k = T/∆
is the number of samples in the curve. For ∆ = 3 minutes
and T = 24 hours commonly used in our experiments, the
resulting error is ∆480/480! ≈ 10−1960, which for all practical
purposes can be considered zero. In simulations, however, we
find that using only 3 points is often sufficient for achieving
good estimation accuracy (see below).
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Fig. 7. Original and subsampled estimator ER with Pareto lifetimes (|S0| =
106 users, T = 24 hours, ∆ = 15 minutes, α = 1.1, β = 0.05, and
E[L] = 0.5 hours). Both examples use 3-point derivatives.

C. Subsampling

It is worthwhile mentioning that residual sampling acquires
all valid samples during the very first crawl. Therefore, given
that |S0| is sufficiently large, it is possible to randomly
subsample the initial set of users and track the residuals of
only ε percent of the entire user population. This significantly
reduces traffic requirements and allows RIDE to achieve orders
of magnitude lower bandwidth overhead in practice compared
to CBM. One example of applying subsampling is shown in
Fig. 7, where a system of 1 million users in the same setup as
in Fig. 4(b) is subsampled by a factor of 100. First notice in
Fig. 7(a) that RIDE recovers F (x) with much higher accuracy
than EB and obtains α = 1.099 and β = 0.049. Second,
observe in Fig. 7(b) that RIDE achieves reasonable estimation
accuracy (α = 1.13, β = 0.087) even with just 10, 000 users;
however, the tail of the subsampled distribution is highly
variable, which potentially makes it difficult to understand the
distribution’s qualitative behavior.

To overcome the tail noise arising when |S0| is heavily
subsampled, we next present an algorithm for reducing the
variance in the measured distribution ER(x). Notice that
ER(x) is a mapping between two discrete sets, i.e., from set
X = {j∆} to set Y = {j/|S0|} for j = 1, 2, . . . , T/∆. For
each y ∈ Y , we find all xi ∈ X such that ER(xi) = y and
calculate the corresponding average x̂(y):

x̂(y) =
∑

i xi1ER(xi)=y∑
k 1ER(xi)=y

, (17)

where 1A is the indicator function of event A. Denote by X̂
the set of all possible x̂(y) from (17), i.e., X̂ = {x̂(y)|y ∈ Y}
and define inverse averaging to be a relation (x̂(y), y) for all
y ∈ Y . By smoothing out the tail, inverse averaging improves
the shape of the distribution and allows better accuracy in
estimation.

Next, we examine two cases of inverse averaging using
the example in Fig. 7(a) subsampled with ε = 0.1 and
ε = 0.01. The resulting distributions are shown in Fig. 8,
which demonstrates much better preservation of the Pareto
shape in the tail and less oscillations than without the use
of inverse averaging. For ε|S0| = 105 in Fig. 8(a), curve
fitting produces α = 1.12, β = 0.067, and for ε|S0| = 104

in Fig. 8(b), we obtain α = 1.09, β = 0.079. This shows
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Fig. 8. Inverse averaging applied to ER for Pareto lifetimes (|S0| = 106

users, T = 24 hours, ∆ = 15 minutes, α = 1.1, β = 0.05, and E[L] = 0.5
hours). Both examples use 3-point derivatives.

that even when ∆ is comparable to the average lifetime E[L]
and with very few samples, RIDE is capable of reasonably
accurate estimation. Due to limited space, we omit additional
simulations that show insensitivity of RIDE to selection of ∆
and T , significant improvement in accuracy for less heavy-
tailed cases, and convergence of E(x) to F (x) as |S0| → ∞.

V. OVERHEAD

This section formalizes the overhead of the various studied
sampling methods and compares bandwidth requirement of
RIDE to that of CBM.

In CBM, we are interested in the expected overhead of
crawling all users in the graph every ∆ time units in the
interval [0, T ] and then probing peers that were present in the
system at time t = T under they die or their lifetime exceeds
T time units. After some technical manipulation, we obtain
the following result.

Theorem 5: Total bandwidth overhead of (∆, T )-sampling
using CBM is given by:

bCBM =
Cn

∆

(
T +

∫ T

0

[H(T )−H(x)]dx

)
, (18)

where n is the number of users in the system, C is the cost of
probing or crawling a user, and H(x) is the CDF of residual
lifetimes.

Note that RIDE only probes users that are captured in the
first crawl until they die or T expires. Taking into account
ε-subsampling, we have the following theorem.

Theorem 6: Total bandwidth overhead of (∆, T )-sampling
using RIDE is given by:

bRIDE =
C|S0|

∆

(
∆ + ε

∫ T

0

[1−H(x)]dx

)
, (19)

where ε is the fraction of peers retained in the initial set S0.
As long as ε|S0| is sufficiently large, RIDE has the same

accuracy as ER(x), but at significantly smaller overhead.
Define q(ε) to be the ratio bCBM/bRIDE for |S0| = n and
notice that for very small ε/∆, metric q(ε) reduces to a
simple formula T/∆, which for example is 480 for T = 24
hours and ∆ = 3 minutes. Assuming Pareto lifetimes with
shape α, Table I shows the exact savings gained by using
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TABLE I
COMPARISON OF OVERHEAD USING E[L] = 1 HOUR, ∆ = 3 MINUTES

α T q(0.1) q(0.01) α T q(0.1) q(0.01)

1.1 24 hrs 16 125 2 24 hrs 71 319
48 hrs 17 151 48 hrs 116 573
72 hrs 18 164 72 hrs 157 811

residual subsampling. The table shows that RIDE can reduce
traffic overhead by a factor of 16 − 800 compared to CBM
depending on the tail weight of F (x), sampling duration T ,
and subsampling factor ε.

In practice, one can choose ε based on the size of the initial
set S0 such that ε|S0| is fixed at some pre-determined value.
Simulations show that ε|S0| between 104 and 105 users allow
accurate reconstruction of F (x) even when lifetimes are very
heavy-tailed and ∆ is large. Given this dynamic selection of
ε, it becomes clear that RIDE can scale to arbitrarily large
systems since it requires monitoring only a fixed number of
users that does not depend on system size |S0|. Note that
similar subsampling is not possible in CBM since the latter
requires full system crawls to discover new users.

VI. EXPERIMENTS

In what follows in this section, we apply the residual-based
algorithm to crawl the Gnutella network and estimate the
distributions of peer/link lifetimes.

A. Gnutella Crawler

Recent Gnutella networks are implemented in a two-tier
structure that contains ultrapeers and leaves. Ultrapeers are
responsible for forwarding search requests between each other,
while leaves stay at the “edge” of the network and connect to
several ultrapeers that provide them with search capabilities. A
recent extension to the Gnutella protocol provides a crawler-
friendly mechanism: upon receiving a crawl request (i.e., a
handshake message with the “Crawler” field), a Gnutella client
replies with a complete list of the identities of its neighboring
peers. According to our experiments, an ultrapeer on average
connects to 28.5 ultrapeers and 25.7 leaves, while a leaf is
usually attached to only one or two ultrapeers.

To sample lifetimes of real Internet users using RIDE, we
designed and built a scalable Gnutella crawler called GnuS-
pider that can operate in networks with millions of hosts and
maintain reasonably small values of sampling period ∆. As
most other crawlers, GnuSpider starts the crawl using a default
seed file of ultra-peers and then contact them to obtain their
neighbor lists, which are then used in a BFS search to discover
all currently alive ultra-peers in the system. Neighbor lists in
Gnutella include other ultra-peers with whom a connection is
currently active, suggested ultra-peers who may or may not
be online, and leaf peers currently attached as children. The
crawler records leaf peers for statistical purposes, but only
contacts nodes found in the other two lists.

Our GnuSpider implementation is a single-threaded Win-
dows process that uses asynchronous completion ports (IOCP)
to manage up to 60, 000 simultaneous connections to other
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Fig. 9. Statistics of a 3-minute crawl on July 22, 2006 (single-core, dual-CPU
Xeon computer @ 3GHz).

hosts. To reduce the effect of timeouts and allow scalability,
GnuSpider limits all TCP connection timeouts to 9 seconds,
includes a low-overhead management of the BFS queue, and
avoids socket re-binding between connections. Figures 9(a)-
(b) show bandwidth consumption in one crawling example
and the number of connections per second generated by the
crawler. As seen in the figure, the crawler downloads data at
sustained rates of 30 mb/s and attempts on average 400, 000
connections per minute. Since a certain percentage of SYN
requests encounter dead or firewalled peers, the number of
successful ultra-peer contacts lingers at 216, 000/min.

Experiments with GnuSpider show that we can cover the
entire Gnutella network in 3 minutes and typically discover
close to 6.4 million users in the process (1.2 million of which
are the ultra-peers that we attempt to contact and 5.2 million
are leaf nodes). During the first 120 seconds of the crawl,
the discovery rate of new leaves shown in Figure 9(c) varies
between 40, 000/second and 10, 000/second and that of new
ultra-peers stays on average at 3, 000/second. It can also be
seen from the figures that the last 60 seconds of the crawl
usually produce a very small number of new peers since most
of these connections experience a timeout. As illustrated in
Figure 9(d), 90% of ultra-peers (i.e., 1.1 million) and leaf
nodes (i.e., 4.5 million) can be discovered in just 100 seconds.

Comparison of GnuSpider to crawlers in prior experimental
P2P work is shown in Table II, which provides the sampling
period ∆, window duration T , the number of peers periodi-
cally probed with SYN packets or discovered during an actual
crawl, and the crawling speed in terms of contacted hosts per
minute. Observe in the table that GnuSpider is not only 18
times faster than the fastest crawler in prior literature [19],
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TABLE II
COMPARISON OF P2P MEASUREMENT STUDIES

Approach Measured Interval Duration Peers seen Crawling Year Connections
network ∆ T Probed Crawled machines crawled per minute

GnuSpider Gnutella 3 min 24− 72 hrs – 6.4 million 1 2006 400, 000
Stutzbach et al. [19] Gnutella 7 min 48 hrs – 1.3 million 7 2004 22, 500
Liang et al. [13] FastTrack 5 min 65 hrs 965 – N/A 2004− 2005 N/A
Bustamante et al. [2] Gnutella 21 min 7 days – 500, 000 17 2003 < 5000
Bhagwan et al. [1] Overnet 20 min 7 days 2, 400 – 1 2003 N/A
Chu et al. [4] Gnutella 10 min 9 wks 5, 000 – 1 2002 N/A
Ripeanu et al. [15] Gnutella hours – – 48, 195 N/A 2001 < 1000
Saroiu et al. [17] Gnutella 7 min 60 hrs 17, 125 – N/A 2001 N/A

but it also discovers almost 5 times more concurrent users
than any other study.

B. Peer Lifetimes

Users arriving into Gnutella immediately attempt to estab-
lish several neighboring connections to other peers currently
in the system to increase their own resilience and enable
themselves to route requests into the network. However, since
leaves and users behind firewalls do not generally accept
connection requests, selection of neighbors is often limited
to non-firewalled, or as we call them responsive, ultrapeers.3

Therefore, measurement of responsive ultrapeers provides the
most useful information about the lifetime of future neighbors
acquired by arriving users and allows parameter selection
for existing P2P models based on lifetime distributions [10],
[11], [12], [22]. Thus, our experiments below focus only on
lifetimes of ultrapeers that respond to our connection requests
and the links associated with them.

To measure peer lifetimes for the plots shown below, we
first obtained using GnuSpider the initial set S0 of about 468
thousand responsive ultrapeers and subsampled it using ε =
0.213. Then, GnuSpider probed ε|S0| = 100, 000 users for
T = 72 hours checking if each peer was alive every 3 minutes.
It should be noted that we found that in our experiments that
a certain amount of peers exhibited erratic behavior, i.e., they
would respond to one request, then become silent for several
subsequent requests, and eventually become responsive again.
This phenomenon appeared when a peer either was too busy
to reply or implemented a certain rate-limiting strategy. To
filter out the effect of this behavior, we set a threshold u for
how many times a peer must appear unresponsive before we
declare that user dead. In the crawls below, we use u = 3.

After the observation window in GnuSpider had expired, an
off-line program read the GnuSpider logs and applied RIDE
to reconstruct F (x). Fig. 10(a) shows the resulting inverse-
averaged tail distribution 1−ER(x) for the set of responsive
ultrapeers. The figure matches well with a Pareto distribution
with α = 1.09 and β = 0.85, where the shape parameter is
very close to that observed in [2]. Denote by r the expectation
of residual lifetimes conditioned on the fact that R(t) is within
the observation window T , i.e., r = E[R(t)|R(t) ≤ 72]. Crawl

3The Gnutella protocol suggest that peers behind firewalls should not
become an ultrapeer. But in our measurement, about 5% of users behind
firewalls act as an ultrapeer.
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Fig. 10. Inverse-averaged estimator ER(x) for responsive peers and links
in Gnutella. Both cases use 3-point derivatives.
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Fig. 11. Inverse-averaged estimator ER(x) for different types of links in
Gnutella. Both cases use 3-point derivatives.

results show that r = 10.5 hours, but 5% of the peers in S0

leave the system in just 8 minutes.
We next proceed to compare the associated link lifetime

distribution with that of peers in terms of α and r.

C. Link Lifetimes

It is straightforward to apply the residual-based algorithm to
measure the link lifetime distribution in Gnutella networks. In
the experiment of section VI-B, GnuCrawler kept track of the
links of responsive ultrapeers found in S0 and updated their
status (i.e., connected or broken) in subsequent crawls. Using
this information, we applied the same processing program
to extract link residuals from GnuSpider logs and perform
the proposed recovery technique to obtain ER(x). Fig. 10(b)
shows that the resulting distribution of all link lifetimes is also
power-law, but this time with α = 1.92, which is much larger
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than that in the peer lifetime distribution. This observation
establishes that the lifetime of a link is probabilistically smaller
than that of a peer and one may expect more frequent changes
in neighboring relationships. We also find that r is 3.8 hours
and 16.4% of links disappear within 8 minutes.

Next, we treat the links between ultrapeers and leaves sepa-
rately from those among ultrapeers and plot the corresponding
distributions in Fig. 11. Interestingly, the figure shows that the
ultra-leaf links are slightly more stable (i.e., exhibit a heavier
tail) than ultra-ultra links: the former has α = 1.88 and the
latter has α = 1.99; the conditional expected lifetimes r of the
two types of links are 3.9 and 3.5 hours, respectively. This can
be plausibly explained by the fact that a leaf is usually inactive
in collecting information about alternate ultrapeers and is thus
less likely to switch its attachment point.

D. Discussion

With the experimental results of this section, we are now
able to study resilience properties of Gnutella networks by
applying models from [11], which use the average residual
link lifetime and average node degree d as input parameters.
Given d = 28.5 neighbors observed in our experiments and
a 1-minute failed-neighbor replacement delay, we obtain that
the probability for the network to disconnect at the ultrapeer
level is below 10−64. However, leaves may be isolated with
a non-negligible probability, because they only have one or
two attachment points, i.e., d ≤ 2, which we plan to explicitly
verify in future work.

VII. RELATED WORK

Some of the first P2P sampling studies date to 2001 [15],
[17] and the first use of CBM can be traced to Saroiu et al. [17]
who sampled 17, 000 Gnutella peers every 7 minutes using
TCP SYN packets over a period of 60 hours. In a follow-up
effort in [4], Chu et al. used a similar method, but probed
5, 000 peers every 7 minutes for 10 weeks. Bhagwan et al. [1]
improved over [4], [17] by implementing the Overnet protocol
and probing a randomly chosen subset of peers in the system
to measure their availability (i.e., the portion of time they were
present online). Their experiment selected 2, 400 out of around
90, 000 peers and kept probing them every 20 minutes for 7
days. Liang et al. [13] measured lifetime distributions of links
in the KaZaa network, but these experiments were limited to
the connections passing through the authors’ monitoring hosts.

More related work can be found in [2] and [19]. Busta-
mante et al. [2] implemented a Gnutella sampler using 17
monitoring clients that periodically probed 500, 000 peers in
the network every 21 minutes for 7 days. In more recent work,
Stutzbach et al. [19] developed a much faster crawler that
in 2004 was able to cover the entire Gnutella network of
158, 000 ultrapeers within 7 minutes. The closest approach
to understanding sampling bias is another recent paper by
Stutzbach et al. [20], which focused on capturing unbiased
snapshots of joint properties of users currently alive in P2P
systems using random walks.

VIII. CONCLUSION

In this paper, we showed that direct lifetime sampling
suffered from estimation bias and did not admit any funda-
mental improvement besides reducing probing interval ∆. To
overcome this limitation, we proposed and analyzed a novel
residual-based lifetime sampling algorithm, which measured
lifetime distributions with high accuracy and required several
orders of magnitude less bandwidth than the prior approaches.
Using this method, we sampled Gnutella users and discovered
that lifetimes of peers and links exhibited power-law distri-
butions, but with different shape parameters, where links are
indeed much more volatile than actual peers.
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