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Abstract—Many BigData applications (e.g., MapReduce, web
caching, search in large graphs) process streams of random key-
value records that follow highly skewed frequency distributions.
In this work, we first develop stochastic models for the probability
to encounter unique keys during exploration of such streams
and their growth rate over time. We then apply these models to
the analysis of LRU caching, MapReduce overhead, and various
crawl properties (e.g., node-degree bias, frontier size) in random
graphs.

I. INTRODUCTION

Large-scale distributed systems (e.g., Google, Facebook)
operate on streams of key-value pairs that arise from
disk/network-based processing of massive amounts of data.
Due to the enormous size of input, streaming is the com-
monly used computational model, where the arriving items
are scanned sequentially and processed one at a time. While
MapReduce [6] is one application that by design employs
streaming, other types of jobs can be modeled under the same
umbrella. For example, caching can be viewed as computation
on streams, where the frequency of duplicate items determines
performance (i.e., hit rate). Large-scale graph-processing al-
gorithms that output edges/nodes in bulk (e.g., BFS search)
can also be reduced to streams, where performance may be
determined by the size of the frontier (i.e., pending nodes), bias
in the observed degree, and/or discovery rate of new vertices.

It is common to replace keys with their hashes and ap-
ply computation that outputs data in random order, either
by design (e.g., reversing edges in graphs) or as byproduct
of some previous computation (e.g., sorting by a different
key in an earlier stage of MapReduce). This results in real
workload consisting of randomized streams, in which keys
are shuffled in some arbitrary order. Understanding statistical
properties of these streams is an important area of research as it
leads to better characterization of MapReduce, caching, graph
exploration, and more general streaming. However, existing
analysis is not just scattered across many fields [1], [2], [4],
[5], [8], [9], [10], [12], [17], [21], but is also lacking in its
ability to accurately model the stochastic properties of random
streams.

In this work, we first formalize one-dimensional (1D)
streams as discrete-time processes {Yt}t≥1, where each item
Yt observed at time t is unique (i.e., previously unseen)
with some probability p(t) and duplicate otherwise. Given
the frequency distribution of keys, we first derive p(t) and

∗Supported by NSF grants CNS-1017766 and CNS-1319984.

obtain the number of unique keys observed by time t. Then,
we extend our modeling framework to two-dimensional (2D)
streams {Xt, Yt}t≥1, where random variables Xt and Yt are
correlated due to the nature of the workload (e.g., adjacent
nodes in a graph).

To demonstrate the usefulness of the derived results, we
apply them to obtain the overall miss rate of Least Recently
Used (LRU) caches, with results verified over both simulated
and real streams. Next, we analyze MapReduce computation,
where we obtain the amount of data generated by each sorted
run as a function of RAM size and, consequently, the total I/O
overhead of the reduce phase. This has recently emerged as
an important problem [2], [9], [21], with no prior closed-form
analysis. Finally, we apply our 2D stream models to charac-
terize Breadth First Search (BFS) crawls on directed random
graphs and develop a number of interesting results (e.g., degree
distribution of seen/unseen/crawled nodes, frontier size), all
functions of crawl time t. We also use these results to present
a comparative analysis between BFS and a number of other
crawling methods.

II. LITERATURE REVIEW

Although we examine a number of problems (i.e., LRU
performance, MapReduce overhead and crawl characteristics)
under one single framework of data streams, the existing
literature on these problems is spread across multiple fields.

Caching: There has been much work [4], [5], [7], [8] on
deriving the cache miss rate under various replacement policies
(e.g., LRU, LFU, random, FIFO) and specific distributions
of key frequency. For example, [8] provides an asymptotic
analysis of LRU for Zipf and Weibull cases. Another set of
results [4] studies the miss rate of fixed items in the dataset.
In contrast, our LRU model applies to all distributions of key
frequency and random, rather than fixed, keys in the stream.

MapReduce: Since their introduction, both MapReduce [6]
and its open-source implementation Hadoop [20] have received
a great deal of academic and industry attention. The authors
in [2], [9], [13] offer models for the size of sorted runs
produced from MapReduce computation and those in [13]
extend these results to multi-pass merging. They assume a
constant multiplicative factor that converts the size of input to
the number of keys in the sorted runs; however, the complex
dependency on RAM size, hidden in this relationship, is not
modeled. We overcome this limitation by showing how to
use our stream formalisms to combine RAM utilization with



statistical stream properties to obtain the exact size of sorted
runs and total disk I/O.

Random Graphs: Crawl characteristics of BFS and its sam-
pling bias have been studied extensively in the literature [1],
[10], [12], [17]. A characterization of degree bias as a function
of crawl fraction and a method for its correction are presented
in [10]. This method’s main limitation is that it considers only
undirected random graphs. Furthermore, this approach requires
a modified BFS where every edge is constructed at crawl
time by selecting both ends randomly. Such modification fails
to preserve source-destination edge pairing inherent in graph
exploration. Instead, our analysis deals with directed graphs
and does not require any modification to the BFS algorithm.

III. RANDOMIZED 1D STREAMS

We start by introducing our terminology, assumptions, and
objectives. We then develop a stochastic model for the unique-
ness probability p(t) and the size of the unique set.

A. Terminology

Assume a collection V of n unique keys. Suppose I(v)
for each v ∈ V is the number of times v appears in the
input stream. Using graph-theory terminology, we often call
v a node and I(v) its in-degree. Define T =

∑
v∈V I(v) to

be the length of the stream, which we assume is randomly
shuffled. Then, realizations of the stream can be viewed as
a 1-dimensional stochastic process {Y1, . . . , YT }, where Yt is
the random key in position 1 ≤ t ≤ T . For simplicity of
presentation, let random variable I have the same distribution
as the in-degree of the system:

P (I < x) =
1

n

∑
v∈V

1I(v)<x. (1)

As the stream is being processed, let St =
∪t

i=1{Yi} be the
set of keys seen by time t and suppose Ut = V \ St contains
the unseen keys at t. Then, define p(t) = P (Yt ∈ Ut−1)
to be the probability that key Yt has not been seen before
time t, which is the central metric for assessing performance
of streaming algorithms. This includes crawl characterization,
cache analysis, and MapReduce computation. To develop a
tractable model for the uniqueness probability p(t), we must
place certain constrains on the appearance of keys in the
stream, as discussed next.

B. Stream Residuals

We start by defining a special class of streams that com-
monly occur in practice (e.g., MapReduce data processing,
DNS queries, workload arrival to web servers), where the
keys are hashed to random values before being streamed from
storage into the program and there is no (or little) correlation
between adjacent items. Define Z(v, t) to be an indicator
variable of v being in position t, i.e.,

Z(v, t) =

{
1 Yt = v

0 otherwise
, (2)

and consider the following.

Definition 1: A stream is called to possess Uniform Residu-
als (UR) if the probability of seeing v at time t is proportional
to the number of remaining copies of v in the stream:

P (Yt = v|Yt−1, . . . , Y1) =
I(v)−

∑t−1
τ=1 Z(v, τ)

T − t+ 1
. (3)

Note that {Yt}t≥1 is not a Markov chain since Yt at every
step depends on the entire history of the process. To understand
(3) better, define H(v, t) to be the number of times v is seen
in [1, t]:

H(v, t) =
t∑

τ=1

Z(v, τ), t = 1, 2, . . . , T, (4)

where H(v, 0) = 0 and H(v, T ) = I(v). While H(v, t) is a
sum of Bernoulli random variables, it is tempting to speculate
that it is binomial; however, this is false since each Z(v, t)
depends on prior values Z(v, 1), . . . , Z(v, t− 1) and:

t∑
τ=1

Z(v, τ) ≤ I(v), (5)

which makes set {Z(v, t)}t non-iid.
Now, letting R(v, t) = I(v)−H(v, t) be the residual degree

of v and unconditioning (3) by taking expectation over all
sample paths, we get a more intuitive definition of UR streams:

P (Yt = v) =
I(v)− E[H(v, t− 1)]

T − t+ 1
=

E[R(v, t− 1)]

T − t+ 1
, (6)

which shows that the probability to encounter v is proportional
to its expected number of residual copies in the interval
[t, T ]. The rest of the analysis assumes that streams under
consideration exhibit the UR property.

One interesting conclusion emerges from (6). Observe that
the residual degree of an unseen key v always equals its total
degree I(v). Therefore, the probability of discovering such
nodes is:

P (Yt = v|v ∈ Ut−1) =
I(v)

T − t+ 1
. (7)

C. A Few Words on Simulations

Throughout this section, we simulate MapReduce streams
by first establishing sequence {I(v)}v∈V under a given dis-
tribution. We use Zipf I with different shapes α as an
approximation to in-degree of the web [3] and binomial as
a model of degree in G(n, p) random graphs. Then, we repeat
each key v exactly I(v) times, assign it a random hash based
on its position in the stream, and then sort the result by the
hash, which gives us one realization of the stream. Changing
the seed to the hash function, we execute this process a number
of times to generate many sample paths of the system. In the
next section, we use streams produced by crawls over random
graphs and focus on a single sample-path. Finally, the last
section of the paper employs real (non-simulated) input.

To put this discussion to use, Fig. 1(a) illustrates the distri-
bution of H(v, t) using a node with I(v) = 20 and t/T = 0.5.
Notice that the binomial fit has a much higher variance than the
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Fig. 1. Simulations with Zipf I under α = 1.2, E[I] = 10, n = 10K.

true distribution, which is a consequence of the dependency in
(5). Fig. 1(b) verifies that (7) is indeed applicable to randomly
sorted streams, where we track a random node with I(v) = 1.

D. Single Node

Our examination begins with properties of a fixed node v,
which we will need later for the more advanced results. Define
stream fraction ϵt = t/T and consider the following result.

Lemma 1: Assume t and x are integers such that 0 ≤ x ≤
t ≤ T . Then, the following holds:

t−1∏
τ=0

(
1− x

T − τ

)
=

x−1∏
τ=0

(
1− t

T − τ

)
≈ (1− ϵt)

x. (8)

In our application of (8), t usually represents time and x
the random degree of a node, where x ≪ T holds. Under
these conditions, Lemma 1 is important in its ability to create
a simple, yet very accurate approximation to a product of
millions (if not billions) of terms. In fact, when x = 1, the
(1− ϵt)

x term in (8) is exact. Leveraging this observation, we
obtain the following result.

Theorem 1: The expected residual degree of v at time t is:

E[R(v, t)] = (1− ϵt)I(v). (9)

Substituting (9) into (6), Theorem 1 shows that the proba-
bility of v being hit at t is time-invariant:

P (Yt = v) = E[Z(v, t)] =
I(v)
T

, (10)

which is sometimes called the Independent Reference Model
[15]. This result is confirmed in Fig. 2(a), which shows that
P (Yt = v) indeed stays constant throughout the stream and
its value is a function of I(v), but not the time. Thus, nodes
with high degree are more likely to be seen irrespective of
which portion of the stream is being examined. Interestingly,
(10) shows that the distribution of Z(v, t) does not depend on
t and thus {Z(v, t)}t is a set of identically-distributed random
variables; however, from (5), we know they are dependent.

The next result derives the likelihood for a given node v to
remain unseen throughout an entire interval [1, t].

Theorem 2: The probability that v is still unseen at time t:

p(v, t) = P (v ∈ Ut) ≈ (1− ϵt)
I(v). (11)

To verify (11), we use a Zipf stream and select two random
keys: one with degree 1 and the other with degree 4. Then, we
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Fig. 2. Verification under Zipf I with α = 1.2, E[I] = 10, n = 10K.
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Fig. 3. Verification of (13) under E[I] = 10, n = 10K.

observe the corresponding values of p(v, t) in simulations and
compare them with model (11) in Fig. 2(b), which shows that
the model is accurate. As expected from (11), p(v, t) is linear
for the degree-1 node and nonlinear for the degree-4 node.

Armed with Theorem 2, we can solve the opposite problem
from that in (7) to produce a useful result that will help us
later establish how the degree of newly discovered nodes varies
with time.

Theorem 3: Conditioned on the fact that node v is hit at
time t, the probability that v was unseen at t− 1 is:

P (v ∈ Ut−1|Yt = v) ≈ (1− ϵt)
I(v)−1. (12)

E. Uniqueness Probability

We now are ready to obtain the main result of this section.
Theorem 4: The probability that the t-th key in the stream

Yt refers to a previously-unseen node is:

p(t) = P (Yt ∈ Ut−1) ≈
E[I · (1− ϵt)

I−1
]

E[I]
. (13)

To perform a self-check, we analyze p(t) for two special
cases. First, assume constant degree I(v) = d ≥ 1 for all
v ∈ V . In this case, (13) simplifies to:

p(t) ≈ (1− ϵt)
d−1

, (14)

which is the probability that none of the Yt’s remaining
d− 1 appearances have fallen into the interval [1, t). Second,
consider a stream of unique items, i.e., I(v) = 1 for all v ∈ V .
In this scenario, (13) produces the correct p(t) = 1 for all t.

We compare Theorem 4 against simulations in Fig. 3. It is
clear that in both cases the model is accurate in the entire range
[1, T ]. Also observe that p(t) in the Zipf case (b) demonstrates
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Fig. 4. Verification of (16) under E[I] = 10, n = 10K.

a heavier tail, which is a consequence of many low-degree
nodes that stay undiscovered until the very end. On the other
hand, the binomial curve quickly finds the majority of the
nodes and p(t) decays to zero exponentially fast. To explain
this intuition better, we next analyze p(t) as t → T . Rewriting
(13) by splitting between degree-1 nodes and all others:

p(t) ≈ P (I = 1) + E[I · (1− ϵt)
I−1|I > 1]P (I > 1)

E[I]
,

where the second term decays to 0 as ϵt → 1 and we get:

lim
t→T

p(t) ≈ P (I = 1)

E[I]
, (15)

which means that the last point in the curve is solely deter-
mined by the number of degree-1 nodes in the stream. Since
E[I] = 10 and nearly 40% of the nodes in the Zipf stream are
degree-1, we immediately obtain p(T ) = 0.04, which agrees
with Fig. 3(b). On the other hand, the binomial stream contains
fewer than 0.1% unique nodes and thus exhibits p(T ) < 10−4.
Our experiments with a number of other in-degree distributions
(e.g., uniform) and graph structures (e.g., hypercube) provide
similarly accurate p(t) results.

F. Set of Unique Nodes

Modeling the size of St allows characterization of cache
performance and estimation of hash-table sizes required to
store unique items as the stream is being processed. We come
back to these issues later, but in the meantime define ϕ(A) to
be the size of set A and present the following result.

Theorem 5: The expected size of the seen set at time t is:

E[ϕ(St)] ≈ nE
[
1− (1− ϵt)

I] . (16)

We compare this result against simulations in Fig. 4 and
observe that it is accurate. Note that the seen set grows more
rapidly in the binomial case (a). For example, it accumulates
84% of the keys in the first 20% of the stream, while Zipf in
subfigure (b) discovers only 45% of the nodes by that time.
The reason is that ϕ(St) is essentially the integral of p(t),
which in the binomial stream contains much more mass in the
beginning.

IV. RANDOMIZED 2D STREAMS

This section formalizes 2D streams and uses them for
analyzing graph traversal algorithms (e.g., BFS, DFS).
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Fig. 5. Verification of p(t) in BFS crawls with E[I] = 10, n = 10K.

A. Terminology and Assumptions

We start by describing a family of graphs where assumption
(3) holds for common search algorithms. Consider a simple
directed random graph G(V,E), where V is the set of n nodes
and E the set of T edges. To ensure uniform residuals, we
generate in/out-degree sequences {I(v)}v∈V and {O(v)}v∈V

according to the corresponding distributions such that:

T = |E| =
∑
v∈V

I(v) =
∑
v∈V

O(v), (17)

and then apply the so-called configuration model [16] to create
random edges in the system. We describe this process next.

We use time-varying multi-sets Din(t) and Dout(t) in the
construction process. For each v ∈ V , we insert I(v) copies
of the node into initial set Din(0) and O(v) instances of it
into Dout(0). At every step 1 ≤ t ≤ T , a directed edge is
formed between randomly selected nodes x ∈ Dout(t − 1)
and y ∈ Din(t − 1), both of which are then removed from
the corresponding sets. Note that the generated graph G is
a random instance among all possible graphs that can be
constructed from a given degree sequence.

Next, we describe the crawl process. We consider algorithms
that crawl/visit each node exactly once. Suppose at time t,
node u is removed from the frontier Ft according to some
exploration strategy. Then, all O(u) out-edges of node u, i.e.,
(u, v1), (u, v2), . . . , (u, vO(u)), are processed at consecutive
time steps t, t+ 1 . . . t+O(u)− 1, which creates correlation
between the visited edges (i.e., they all have the same source
node). If neighbor vi is previously unseen, it is appended to
the frontier Ft+i−1; otherwise, it is discarded. The crawler
selects the next node from the frontier at t + O(u) and the
process repeats.

We can now define the stream of edges produced by
graph crawling as a 2D discrete-time stochastic process
{(Xt, Yt)}Tt=1 on E, where Xt is the crawled node and Yt the
destination node (i.e., one of Xt’s out-neighbors), both random
variables. Randomness arises due to the stochastic nature of G,
where each sample path {(Xt, Yt)}Tt=1 operates on a different
instance of the graph. Defining Ct =

∪t
i=1{Xi} to be the

set of already-crawled nodes by time t, frontier Ft can be
expressed as St \ Ct. Before the crawl starts, both sets are
empty, i.e., C0 = F0 = ∅. The choice of initial node X0 does
not affect the analysis and is omitted from the discussion.
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Fig. 6. Verification of E[ϕ(St)] in BFS crawls with E[I] = 10, n = 10K.

B. Degree of the Seen Set

We start by examining the stream {Yt}Tt=1 of destination
nodes produced by a crawler and verify that our earlier results
are in fact applicable in this situation. Figs. 5-6 compare
respectively models (13), (16) against BFS simulations on
graphs with binomial and Zipf degree, where each graph
contains the same number of nodes n and edges T . The figures
show that both models are still very accurate. Armed with
this confirmation, we draw our attention to inferring more
advanced properties of the crawl process.

Let I(St) and O(St) denote respectively the number of
in/out edges incident to the nodes in the seen set St, i.e.,

I(St) =
∑
v∈St

I(v), O(St) =
∑
v∈St

O(v). (18)

Then, we have the following result that helps understand
the properties of the seen nodes and their average degree.

Theorem 6: The expected number of in/out edges incident
to the nodes in the seen set is respectively:

E[I(St)] ≈ nE[I · (1− (1− ϵt)
I)], (19)

E[O(St)] ≈ nE[O · (1− (1− ϵt)
I)], (20)

where O is the random out-degree of a node in the system.
Interestingly, (19) can also be expressed as p(t)T , which

shows that the in-degree of the seen set follows the same
curve p(t) scaled by the total number of edges T . The other
model (20) captures correlation between in/out-degree in the
system. If the two variables I and O are independent, the
result expands to nE[O]E[1 − (1 − ϵt)

I ] = E[O]E[ϕ(St)].
This makes sense as it multiplies the size of St by the
average out-degree in the graph. However, when the two
degree variables are dependent, the formula no longer admits
a simple expansion.

With this general knowledge, we can quantify the degree
bias of the nodes placed into the seen set. Define the average
in/out-degree of the nodes in St respectively as:

Ī(St) =
E[I(St)]

E[ϕ(St)]
, Ō(St) =

E[I(St)]

E[ϕ(St)]
, (21)

and consider the following result.
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Fig. 7. Verification with Zipf I under α = 1.5, E[I] = 10, n = 10K.

Theorem 7: The average in/out-degree of the nodes in the
seen set is:

Ī(St) ≈
E[I · (1− (1− ϵt)

I)]

1− E[(1− ϵt)I ]
, (22)

Ō(St) ≈
E[O · (1− (1− ϵt)

I)]

1− E[(1− ϵt)I ]
. (23)

In Fig. 7(a), we compare (22) against BFS simulations. The
plot shows that the average in-degree in the seen-set starts at
a much higher (i.e., 6 times in this example) value than E[I].
Consistent with previous findings about BFS bias [1], [12],
[17], the model confirms that BFS finds nodes with high in-
degree earlier during the crawl. It also stochastically quantifies
the amount of bias, which has not been shown before in the
literature. To perform a self-check, notice that when I and
O are independent, (23) simplifies to the average out-degree
E[O], which is confirmed by Fig. 7(b).

C. Destination Nodes

Another related property is the degree distribution of des-
tination nodes Yt of the discovered edges as the crawl pro-
gresses.

Theorem 8: The in-degree distribution of Yt is given by:

P (I(Yt) = k) =
kP (I = k)

E[I]
. (24)

Note that (24) has been known in the literature [14] as the
degree distribution of random walks on undirected graphs. The
main benefit of this relationship is that bias-correction methods
for random walks [10] can be applied to BFS in our scenarios.
Specifically, using an observation of Yt for t ∈ [1,m], the
following is an unbiased estimator of P (I = k):∑m

t=1 1I(Yt)=k

k
∑m

t=1 1/I(Yt)
. (25)

Next, we derive the expected degree of Yt’s.
Theorem 9: The average in/out-degree of Yt is independent

of time and equals:

E[I(Yt)] =
E[I2]

E[I]
, E[O(Yt)] =

E[IO]

E[I]
. (26)

We verify the in-degree model (26) against simulations in
Fig. 8(a). Since we normalize both the model and the observed
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Fig. 8. Verification of models (26) and (28) with Zipf I and α = 1.5, E[I] =
10, n = 10K.

values by E[I2]/E[I], the simulation staying constant at 1
indicates that the model is accurate.

The next lemma will become useful shortly in the analysis
of nodes being added to the seen set at every time step t.

Lemma 2: The probability that the discovered node at t is
equal to v, conditioned on its being unseen, is:

P (Yt = v|Yt ∈ Ut−1) ≈
I(v)(1− ϵt)

I(v)−1

nE[I(1− ϵt)I−1]
. (27)

Now we are ready to derive the expected degree of the nodes
that are moved from Ut into St as the crawl progresses. These
are the nodes discovered for the first time at t.

Theorem 10: The expected in/out-degree of the discovered
node at t, conditioned on its being unseen, is given by:

E[I(Yt)|Yt ∈ Ut−1] =
E[I2 · (1− ϵt)

I−1]

E[I(1− ϵt)I−1]
, (28)

E[O(Yt)|Yt ∈ Ut−1] =
E[IO · (1− ϵt)

I−1]

E[I(1− ϵt)I−1]
. (29)

We verify the in-degree model (28) against simulations
in Fig. 8(b), which confirms the model. Interestingly, the
expected degree of nodes added to St also starts at E[I2]/E[I]
for ϵt = 0 and then drops to z = minv∈V {I(v)} as ϵt → 1.
To show the latter, we can apply L’Hôpital’s rule to the ratio
in (28) since both the numerator and denominator tend to zero.
Thus, after some number of differentiations:

lim
ϵ→1

∑
v∈V I(v)2(1− ϵ1)

I(v)−1∑
v∈V I(v)(1− ϵ1)I(v)−1

=
z!zP (I = z)

z!P (I = z)
= z. (30)

However, unlike Fig. 7(a), which also begins at E[I2]/E[I],
the decay rate of (28) is much faster.

In summary, the models in this section characterize a crawl
process by quantifying the various properties of Yt to which
the current edge (Xt, Yt) points.

V. APPLICATIONS

In this section, we examine a number of problems that
deal with streams, where p(t) is useful for measuring various
quantities of interest. We first use it to analyze LRU cache
performance, both on simulated and real streams. After that,
we derive a stochastic model for the volume of data (also
called disk spill) produced from MapReduce computation.
Finally, we study the properties of Xt’s in edge streams and
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(b) random Zipf stream (α = 1.2)
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Fig. 9. Verification of miss rate model (32).

obtain a number of metrics that apply to modeling crawls in
random web graphs. Note that the first two cases work with
1D streams, while the last one employs 2D streams.

In addition to simulated workloads, we use two real-world
data sets for the experiments in this section. The first one is
the host-level out-graph produced by IRLbot [11], while the
second one is a URL out-graph of WebBase [19], both dating
back to June 2007. The former graph contains 641M unique
nodes and 6.8B links, standing at a hefty 60 GB. The second
contains 635M unique nodes and 4.2B links. It is smaller at
35 GB, but still larger than RAM size of our servers, which
requires disk-based streaming and batch-mode processing.

A. LRU Cache

We start by formulating the miss rate of an LRU cache
using the p(t) model (13). Assume a cache of capacity C data
items, fed by an input stream of length T . Suppose that the
cache is full (i.e., contains C unique keys) after processing τ
keys from the stream, where τ is a function of C. Defining
by m(t) the miss rate of LRU at time t, we get:

m(t) =

{
p(t) t < τ

p(τ) t ≥ τ
. (31)

which can be explained by the fact that once the cache
saturates (i.e., t ≥ τ ), it experiences the same miss rate p(τ)
for the rest of the stream. This can be simplified to:

m(t) = p(min(t, τ))) =
E[I · (1− ϵmin(t,τ))

I−1]

E[I]
, (32)

To obtain τ , define f(t) to be a monotonically increasing
function equal to the expected number of unique items seen
by time t:

f(t) = E[ϕ(St)] = nE
[
1− (1− ϵt)

I] . (33)
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Due to monotonicity of (33), the inverse f−1(.) exists and
thus τ can be obtained as f−1(C). Although, there is no
closed-form inversion to f(t) unless I follows a well-known
distribution, we can perform this job numerically. We compare
model (32) against random streams in Fig. 9(a)-(b), where the
x-axis is drawn on a log-scale. After the cache is saturated,
the miss rate in (a) stays 3 times higher than in (b), which
shows the ineffectiveness of caching in a binomial stream,
where items are constantly evicted from the cache. On the
other hand, the Zipf stream contains a few high-degree nodes
and the LRU policy keeps most of them in the cache.

We test model (32) on the IRLbot graph, where we stream
all edges sequentially from disk and pass them through an
LRU cache. Fig. 9(c) shows the result with two cache sizes
– 100M and 200M keys. The Webbase graph in Fig. 9(d) is
run with C = 25M, 50M, and 75M items. These figures show
that the model is accurate for different types of input and
cache sizes. Note that [4], which derives a popular LRU model,
shows the miss rate for key v at time t as e−I(v)t/T , which
can be viewed as Taylor expansion of the more accurate model
for p(v, t) in (11). In fact, comparing the two models, this
approximation works only when I(v)t/T ≈ 0. Our work in
this section is totally different from the results in [4], because
we focus on the overall miss rate m(t) rather than that of a
fixed node v.

B. MapReduce

The MapReduce programming paradigm consists of two
phases – map and reduce. In the former phase, input data are
processed using a user-provided parsing function that outputs
a stream of key-value pairs. It is then sorted and combined
in the reduce phase, as illustrated in Fig. 10(a). Our work
below analyzes the reduce phase whose details are given in
Fig. 10(b). Specifically, the reduce phase begins by producing
k ≥ 1 sorted runs, each representing a portion of input that
can fit in RAM. The sorted runs are then written to secondary
storage after eliminating duplicates through some combiner
function θ(.). We assume that key-value pairs (v, a) and (v, b)
are combined into a single result (v, θ(a, b)), where all keys
and values are fixed-size scalars. After sorting is finished, the
runs are streamed back to RAM and combined using k-way
merge. The final output is another stream sorted by the key,
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(b) WebBase web graph

Fig. 11. Verification of (36).

in which each node v appears exactly once.
Assume that keys and values occupy K and D bytes,

respectively. The main memory can store at most r key-
value pairs and r ≪ T . The MapReduce computation goes
through k = ⌈T/r⌉ cycles, each of which loads r records
from the stream to memory, sorts the result, and eliminates
duplicates by running the combiner. The size of each sorted
run is given by the number of unique keys q(r) out of the
r loaded during the cycle. Unfortunately, there is no accurate
model in the literature to compute this number. Most of the
existing methods [2], [13] sidestep this problem by assuming
some known constant that converts r into the size of each run
q(r).

Since the order of the keys are random, the streams under
consideration fall under our assumptions in the beginning of
the paper. This allows us to use model (16) to compute the
size of each sorted run. Observe that in a stream of size r, the
number of unique keys is given by model (16) as:

q(r) = E[ϕ(Sr)] = nE[1− (1− ϵr)
I ], (34)

which, unlike the assumption in [2], [9], [13], is far from linear
in r. Since there are k sorted runs from k cycles, their total
size is:

q = nk(K +D)E[1− (1− ϵr)
I ]. (35)

Note that the full input stream of size (K + D)T is read
in the beginning and n unique pairs are written at the end.
Counting both read and write I/O for each sorted run, we get
the total amount of disk overhead as:

w = n(K +D) (1 + E[I] + 2kE[1− (1− ϵr)
I
]). (36)

To examine (36), we use a MapReduce task that computes
the earliest time δ(v) = min{t ≥ 1 : Yt = v} each node v
is seen in the stream. Therefore, each key-value pair consists
of an 8-byte key (i.e., hash of the node ID) and an 8-byte
timestamp representing the time of its earliest discovery. The
combiner function is simply the minimum of the two values
under consideration.

We run the above computation on the IRLbot and WebBase
graphs under varying RAM capacities. The results are shown
in Fig. 11, which demonstrates that the model is accurate in
both cases. For example, Fig. 11(a) shows that the disk I/O
for processing the IRLbot graph is 215 GB with r = 20M
pairs in RAM. This value of r represents 3.1% of n and
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Fig. 12. Verification of frontier out-degree (40) with Zipf I and α =
1.5, E[I] = 10, n = 10K.

0.29% of T . Excluding 70 GB of the input and final output,
the remaining 145 GB are sorted runs. This demonstrates
how intermediate I/O, necessary during disk-based sorting,
constitutes a significant portion of MapReduce overhead.

Also observe that the results in (36) allow accurate modeling
of the total completion time of MapReduce jobs (we omit
the map phase as it is highly user-dependent and usually
much faster than the reduce phase). Assume that the sorting
and merging speed are respectively s and g keys per second.
Furthermore, suppose the disk I/O speed is d bytes per second.
Then, the total time needed for the reduce phase is:

Γ =
T

s
+

w

d
+

nk

g
E[1− (1− ϵr)

I ]. (37)

Result (37) specifies the MapReduce runtime for a given
RAM size r. In addition to analyzing latency, this model
can help optimize the MapReduce architecture by suggesting
proper selection of r for a given (s, d, g), or vice versa.

C. Frontier in Graph Traversal

Frontier size is a crucial metric for crawlers, because it
dictates the amount of resources required for maintaining
crawl queues. The larger the crawl queue, the more overhead
it places on uniqueness checks, which are needed to avoid
re-crawling the same pages, and frontier prioritization, which
sorts all pending nodes based on some importance metric.
Here, we develop models of frontier size for a number of
crawling strategies and present a comparison among them.

Recall that the frontier at time t is denoted by Ft. Similar
to (18), define the combined out-degree of nodes in Ft as:

O(Ft) =
∑
v∈Ft

O(v). (38)

This can also be written as the number of out-edges ema-
nating from the seen nodes minus the total out-degree of the
nodes moved into the crawled set:

O(Ft) =
∑
v∈St

O(v)−
∑
v∈Ct

O(v). (39)

Taking an expectation of (39), we get:

E[O(Ft)] = nE[O(1− (1− ϵt)
I)]− t. (40)

We examine in simulations two cases of degree dependence:
a) O = I with a positive correlation; and b) O and I
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(a) correlated degree (42)
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(b) uncorrelated degree (43)

Fig. 13. Verification of the frontier size in BFS with Zipf I and α =
1.5, E[I] = 10, n = 10K.

drawn independently from the same Zipf distribution. Fig. 12
compares model (40) against the observed values from BFS
simulations, showing that the model is accurate. Observe that
the curve in Fig. 12(a) is heavily skewed to the left, reaching
its maximum value (i.e., 0.7T ) after seeing just 15% of the
stream. On the other hand, E[O(Ft)] in Fig. 12(b) peaks
after processing 30% of the stream, but at a significantly
smaller value (i.e., 0.38T ). After the peaks, both curves drop
to zero with a linear slope, just as predicted by the model. For
exploration of large graphs of unknown size (e.g., the web),
the shape of these curves provides insight into crawl coverage
(i.e., percentage of links processed thus far) – positive slopes
in (40) indicate that most links are yet to be seen.

We finally arrive to the most interesting metric of this
section – size of the frontier. Observe that ϕ(Ft) increases
by addition of previously unseen nodes, which happens with
probability p(t), and removal of crawled nodes. Whenever a
node Xt is removed from the frontier for crawling, all of its
O(Xt) outgoing edges are processed before the next removal.
Therefore, the rate of node removal from Ft is 1/O(Xt).
Approximating E[1/O(Xt)] ≈ 1/E[O(Xt)], the size of the
frontier at t is:

E[ϕ(Ft)] ≈ E[ϕ(Ft−1)] + p(t− 1)− 1

E[O(Xt−1)]
. (41)

Quantity E[O(Xt)] depends on the crawl strategy that
orders the frontier and the degree-properties of the graph.
We next examine a number of such cases and compute the
corresponding E[O(Xt)]’s. First, we consider BFS with an
arbitrary degree distribution. Note that after v is inserted into
the BFS queue at t, all O(Ft) out-edges currently pending in
Ft will be processed before v is crawled. Therefore, we can
estimate the average time between the first discovery of a node
at t and its crawl as E[O(Ft)]. Using (29), this leads to:

E[O(Xt+E[O(Ft)])] = E[O(Yt)|Yt ∈ Ut−1]

=
E[IO(1− ϵt)

I−1]

E[I(1− ϵt)I−1]
. (42)

Applying (42), we compute E[O(Xt)] for all t iteratively.
Note that (42) skips values for some t’s, which are interpolated
from the neighboring values. We then substitute E[O(Xt)]
into (41) to compute E[ϕ(Ft)] for all t. Fig. 13(a) compares
this model against simulations and confirms its accuracy. Our
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Fig. 14. Verification of model (44) in FRN with Zipf I and α = 1.5, E[I] =
10, n = 10K.

second case involves uncorrelated in/out-degree, where we can
estimate the size of the frontier by dividing its total out-degree
by E[O]:

E[ϕ(Ft)] =
E[O(Ft)]

E[O]
= nE[1− (1− ϵt)

I ]− t

E[O]
. (43)

Note that we get the same result as (43) after expanding
the recursion in (41) and using

∑t
τ=1 p(t) = E[ϕ(St)].

In Fig. 13(b), we compare model (43) against BFS on the
uncorrelated-degree graph. Observe that Fig. 13(b) closely
follows Fig. 12(b) since they are scaled versions of each other.

Our third crawl method, which we call Frontier RaNdom-
ization (FRN), picked candidates randomly from the frontier.
In contrast to BFS, FRN avoids back-to-back hits against the
same website and achieves better politeness guarantees during
large-scale web crawling [18]. Since any node in the frontier
is equally likely to be picked, E[O(Xt)] in FRN is simply the
average out-degree of the nodes in Ft. Hence,

E[O(Xt)] =
E[O(Ft)]

E[ϕ(Ft)]
. (44)

We use E[O(Xt)] from (44) in (41) to compute the
E[ϕ(Ft)] model for all t iteratively. Then, we compare the
result against FRN simulation in Fig. 14. Part (a) of the
figure shows the correlated case, which is skewed to the left
compared to Fig. 13(a) under BFS. Since both curves have
the same E[O(Ft)], we can conclude that FRN still exhibits
degree-bias for crawled nodes, but due to randomization of
the frontier, the bias is less prominent compared to BFS. The
uncorrelated case in Fig. 14(b) is, as expected, almost identical
to the uncorrelated scenario in BFS.

Observe in Fig. 13(a) that BFS grows the frontier set to
70% of n. In contrast, FRN’s frontier does not exceed 55% of
n as shown in Fig. 14(a). This can be explained by the fact
that BFS discovers unique nodes at a higher rate and grows
its queues faster compared to FRN. As a result, FRN is not
only more polite, but also more efficient in resource usage.

VI. CONCLUSION

We proposed an accurate analytical framework for char-
acterizing applications that process random data streams, in-
cluding such properties as the probability of uniqueness for
discovered keys, the number of unique values accumulated by

a certain time t, the average degree of seen nodes, and the
size of the frontier during crawls on large-scale graphs under
three different strategies. We demonstrated that these models
were applicable not just to synthetically generated streams,
such as those produced by BFS on random graphs, but also
real workloads stemming from LRU caching and MapReduce
processing of IRLbot and WebBase graphs.
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