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Abstract—Video applications that transport delay-sensitive
multimedia over best-effort networks usually require special
mechanisms that can overcome packet loss without using retrans-
mission. In response to this demand, forward-error correction
(FEC) is often used in streaming applications to protect video
and audio data in lossy network paths; however, studies in the
literature report conflicting results on the benefits of FEC over
best-effort streaming. To address this uncertainty, we start with a
baseline case that examines the impact of packet loss on scalable
(FGS-like) video in best-effort networks and derive a closed-form
expression for the loss penalty imposed on embedded coding
schemes under several simple loss models. Through this analysis,
we find that the utility (i.e., usefulness to the user) of unprotected
video converges to zero as streaming rates become high. We then
study FEC-protected video streaming, re-derive the same utility
metric, and show that for all values of loss rate inclusion of FEC
overhead substantially improves the utility of video compared to
the best-effort case. We finish the paper by constructing a dynamic
controller on the amount of FEC that maximizes the utility of
scalable video and show that the resulting system achieves a
significantly better PSNR quality than alternative fixed-overhead
methods.

Index Terms—FEC rate control, Markov-chain loss, MPEG-4
FGS, utility of video, video streaming.

1. INTRODUCTION

ORWARD-ERROR correction (FEC) is widely used in the

Internet for its ability to recover data segments lost in the
network [3], [13], [21]. With a proper amount of redundancy
included in transmitted packets, FEC can reduce the impact of
packet loss on the quality of video, thus improving the perfor-
mance of streaming over best-effort networks. However, selec-
tion of FEC overhead becomes a fairly complicated task when
network path dynamics change over time, which in certain cases
may lead to reduced or negligible performance gain compared
to similar best-effort scenarios [1], [3], [9].

Although FEC appears intuitively beneficial, studies in the
literature report conflicting results on its performance in prac-
tice. Some of them (e.g., [1], [9]) show that FEC provides little
benefit to applications due to the extra overhead, while others
(e.g., [5], [7]) find FEC to be promising in the context of par-
ticular multimedia applications. To understand the benefits of
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FEC in Internet streaming, we first analyze the performance
of video streaming in best-effort networks and derive a closed-
form model for the penalty inflicted on scalable! video coding
under Markov and renewal patterns of packet loss. For this anal-
ysis, we consider end-user utility U as the main metric, which
we define as the percentage of received data in each frame that
can be used for decoding the frame, i.e.,

U=— ey
where M is the average number of bytes/packets used in de-
coding a frame and 7T is the average amount of data per frame
successfully delivered to the receiver. Deriving (1) in closed-
form, we show that best-effort streaming imposes a significant
penalty on video applications when packet loss randomly cor-
rupts the video stream and demonstrate that for any fixed packet
loss p > 0, the utility U — 0 as the streaming rate goes to in-
finity.

Given poor performance of best-effort streaming, we next
examine FEC-protected transmission of video data. Previous
studies in the literature (e.g., [7], [8], [23]) have examined the
dynamics of the loss process under a two-state Markov chain
and provided numerical models for obtaining the distribution of
the number of loss events in a block of fixed size n; however,
these models usually rely on complex recursive expressions or
tedious summations, neither of which sheds light in qualitative
or closed-form terms on the behavior of FEC in practice. To
overcome this limitation and ultimately compute (1), we study
the effect of Markov-based packet loss within an FEC block and
derive the asymptotic (i.e., assuming large sending rates) distri-
bution of the number of lost packets per FEC block. This model
offers a low-complexity version of the same result obtained by
the earlier methods and allows computation of other metrics of
interest related to FEC streaming.

Armed with this result, we next focus on investigating the
performance of video streaming with FEC protection under two-
state Markov-chain loss. Assuming that R is the streaming rate
of the application and F' is the rate of FEC packets, we employ
(1) to understand how the FEC overhead rate 1) = F/(R + F),
(0 < 1 < 1), affects the utility of received video. Using the
models derived in the second part of the paper, we show that U
exhibits percolation and converges to 0, 0.5, or (1 —)/(1 —p)
depending on the value of ¢ as the streaming rate R approaches
infinity. However, for finite R, we find that U achieves a unique

ITn scalable video (e.g., MPEG-4 FGS [14]), the enhancement layer is com-
pressed using embedded coding and can be easily re-scaled to match variable
network bandwidth during streaming. In such methods, the lower sections of the
enhancement layer are more important than the higher sections because their
loss renders all dependent data in the source frame virtually useless.
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global maximum in some point ¢* that depends on network
packet loss and FEC block size, which indicates that sending
more or less FEC than the optimal amount results in a reduction
inU.

Driven by the goal of maximizing the usefulness of network
bandwidth and achieving the highest visual quality under given
network conditions, we subsequently explore a simple control
mechanism that dynamically adjusts the amount of overhead
1) (t) based on the packet-loss information fed back to applica-
tion servers by their receivers. We find that such adaptive control
allows the application to maintain optimally high utility regard-
less of the variation in packet loss rates and deliver better PSNR
quality to the user compared to schemes with a static or sub-op-
timal allocation of FEC.

The rest of this paper is organized as follows. Section II dis-
cusses related work. Section III studies the impact of packet
loss in best-effort networks. Section IV characterizes packet-
loss events in an FEC block and Section V analyzes the perfor-
mance of FEC-based streaming. Section VI describes the pro-
posed mechanism for adjusting the amount of FEC and evalu-
ates its performance in ns2 simulations. Section VII concludes
the paper.

II. RELATED WORK

Several studies investigate the performance of FEC; however,
the conclusion on its effectiveness generally varies and often de-
pends on rate adjustment mechanisms that are used for including
FEC overhead. We next discuss some of the studies in favor of
and against FEC.

Altman et al. [1] study simple media-specific FEC for audio
transmission and show that it provides little improvement to
the quality of audio under any amount of FEC. This work uses
media-specific FEC that is sometimes less effective in recov-
ering lost packets than media-independent FEC [13]. Biersack
et al. [3] evaluate the effect of FEC for different traffic scenarios
in an ATM network. This study measures the reduction of loss
rate for each source and reports that the performance gain of
FEC quickly diminishes when all traffic sources employ FEC
and the number of sources increases.

Alternative approaches aim to maximize the effect of FEC by
choosing the proper amount of overhead and avoiding unlim-
ited rate increase by keeping the combined rate R + F' equal
to some constant S. Bolot ef al. [5] present a media-specific
method for adjusting FEC overhead under certain constraints
on the total sending rate S. That work achieves close to op-
timal audio-specific subjective quality. Frossard et al. [7] pro-
pose a method that selects rates 12 and F' using the distortion
perceived by end-users. The method is fairly complex since it
involves solving recurrence equations, which does not scale to
large FEC block sizes.

Note that none of the above studies uses a mechanism that
can select the proper amount of overhead dynamically based on
network conditions, or offers an explanation of how FEC over-
head affects the performance of video applications for a given
packet loss rate.
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III. IMPACT OF PACKET LOSS IN BEST-EFFORT NETWORKS

In this section, we examine the performance of video
streaming in the best-effort Internet assuming random packet
loss. We consider two loss models and study the expected
amount of recovered data in each video frame. Unlike previous
studies (e.g., [2]), we model the dependency between data in
each video frame and derive the expected percentage of useful
information transmitted over the bottleneck link.

Many studies (e.g., [22]) show that the pattern of Internet
packet loss can be captured by Markov models. Thus, we first
examine the dynamics of utility (1) assuming that the loss
process is a two-state Markov chain. Following the Markov
analysis, we study a more general distribution of packet loss
and model the network as an alternating ON/OFF process with
heavy-tailed ON (loss) and OFF (no loss) periods. While the
two modeling approaches are different, they both demonstrate
that the best-effort Internet imposes a significant performance
penalty on scalable streaming services and its handling of video
traffic is far from optimal.

A. Markov Packet Loss

We investigate the effect of packet drops on video quality
using the example of MPEG-4 FGS (Fine Granular Scalability)
[14].2 In what follows next, we apply the Markov packet-loss
model to FGS sequences, derive the expected amount of useful
data recovered from each frame, and define the effectiveness
of FGS packet transmission over a lossy channel. Note that in
our analysis, we only examine the enhancement layer (which
is often responsible for a large fraction of the total rate) and
assume that the base layer is fully protected. Even under such
conditions, best-effort networks deliver very low performance
to scalable flows, which progressively degrades as the streaming
rate becomes higher.

Assume that the long-term network packet loss is given by
p and the loss process can be modeled by a two-state discrete
Markov chain shown in Fig. 1, where states 1 and O represent
a packet being either lost in the network or delivered to the re-
ceiver, respectively. In the figure, 1 — pgg > 0 is the probability
that the next packet is lost given that the previous one has ar-
rived and 1 — pj; > 0 is the probability that the next packet

2Similar results apply to motion-compensated enhancement layers, which
suffer even more degradation under best-effort loss and are not modeled in
this work. However, the expected amount of improvement from FEC in such
schemes is even higher than that in FGS.



KANG AND LOGUINOV: MODELING BEST-EFFORT AND FEC STREAMING OF SCALABLE VIDEO IN LOSSY NETWORK CHANNELS 189

TABLE I
EXPECTED NUMBER OF USEFUL PACKETS (MARKOV MODEL)
Packet loss H =100 H = 1,000
p Simulations  Model (3) | Simulations Model (3)
0.0001 99.595 99.595 960.988 960.986
0.01 68.329 68.324 123.715 123.709
0.1 11.248 11.247 11.255 11.250
0.2 4.998 5.000 4.999 5.000
0.9 0.138 0.138 0.139 0.138

is received given that the previous one has been lost. In the sta-
tionary state, probability 7y and 7; to find the process in each
of its two states are given by:

1 — poo
e P—
— Poo — P11

_ l-pn
- b
2 — poo — P11

T T = (2)
Assume that FGS frame sizes H; are measured in packets and
are given by i.i.d. random variables. The exact distribution
of {H;} is not essential and typically depends on the coding
scheme, frame rate, variation in scene complexity, and the
bitrate of the sequence. The question we address next is what is
the expected amount of useful packets that the receiver can de-
code from each frame under p-percent random loss? To answer
this question, we denote by Z; the number of consecutively
received packets in a frame ;7 and next compute its expectation
E[Z;], which plays an important role in determining the utility
of received video.

Assume that the chain is stationary at the beginning of a frame
and let £ [Z'] be the expected number of useful packets per
frame if all frames are of size H. Then, we have the following
result.

Theorem 1: Assuming a two-state Markov packet loss in (2)
and fixed-size frames with H; = H, the expected number of
useful packets in each frame is:

H I—p H
E[Z]'] = o (1-pd). A3)

Proof: Assume that D; is the random distance in packets
from the beginning of frame j before the first packet-loss event.
Let X be the state of the Markov chain when the first packet in
frame j passes through the network. Note that if X; = 1, then
the amount of recovered data in the frame is Z; = 0; however,
if the loss process is in state X; = 0, then the recovered amount
depends on the value of D;, i.e., the decoder recovers Z; = D;
packets when D; < H and all Z; = H packets otherwise.
Then, we can write:

E[ZF] =mE [ZF1X, = 0] + mE [ZF X, = 1]

H
= <Z iP(D; = i|X, = 0)

=1

+H Y P(Dj:z'|X1:0)>. 4)

i=H+1

Conditioning on X; = 0, it immediately follows that D; are
geometric random variables with a conditional PMF P(D; =
i| X1 = 0) = pig (1 —poo), i > 1. Substituting 7y = 1 —m; =
1 — pin (4) and expanding the PMF of D;, we get (3). |
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Fig. 2. Simulation results of £ [ZH] and U for p = 0.1.

To verify (3), we simulate a Markov loss process in Matlab
with several values of packet loss p and keep probability pgg
equal to 1 — 0.8p and py;1 equal to (2p — 1 + peo(1 — p))/p
so that the average loss rate is p. For this example, we generate
a sequence of 10 million frames of size H each and randomly
corrupt them using a long Markov-chain loss sequence. Then,
we examine each frame j to obtain Z; and compare £ [Z]] to
the model in Table I for H = 100 and H = 1,000. As the table
shows, (3) matches simulations very well. Also observe in the
table that for H = 100 and a reasonably low packet loss of 1%,
the expected number of useful packets in each frame is only 68
even though the decoder successfully receives (on average) 99
packets per frame. When we use larger frames with H = 1,000,
the decoder can use only 123 packets on average out of each
990 packets it receives over the network. Moreover, the table
shows that under p = 10%, only 11 useful packets are recovered
from each frame regardless of the actual size of the frame. This
means that the bottleneck link under these conditions transmits
8 (H = 100) to 90 (H = 1,000) times more packets than the
receiver is able to utilize in decoding its video.

Itis easy to notice in (3) that E [ZF ] saturates at (1—p)/(1—
poo) as H — oo (i.e., streaming rates become high). This is
shown in Fig. 2(a) for p = 0.1 (pgo = 0.92and p1; = (2p—1+
poo(1l — p))/p = 0.28), in which the number of useful packets
recovered per frame indeed converges to (1 —p)/(1—pgo) = 11
as H becomes large.

Rewriting (1) using (3), we have for constant frame sizes:

n_ EE o s
H(l —p) (1 —POO)H

For instance, we get U = 0.12 for p = 0.1 (using the same
value of pgg, p11 as before) and H = 100, which means that
only 12% of the received FGS packets are useful in enhancing
the base layer. The trend of (5) is illustrated in Fig. 2(b), which
plots the utility of best-effort streaming for different values of
H and p = 0.1. As the figure shows, UH drops to zero inverse
proportionally to the value of H, which means that as H — oo,
the decoder receives “junk” data with probability 1 — o(1).

Next, we briefly study the result of Theorem 1 for arbitrary
frame-size distributions. For this purpose, we expand (3) to vari-
able frame sizes H;.

Corollary 1: Assuming a two-state Markov packet loss in (2),
the expected number of useful packets in each frame is:

E[Z)] = 11__—;;0 (1 _E [pgg]) . ©®)
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TABLE II
EXPECTED NUMBER OF USEFUL PACKETS (VARIABLE FRAME SIZE)
E[H;] | Simulations Model (6) Upper bound (3)
10 3.427 3.450 5.861
100 7.446 7.406 8.999
200 8.143 8.148 9.000
500 8.651 8.696 9.000

In the next theorem, we show that E[Z;] in any video se-
quence with the average frame size H is upper-bounded by (3).

Theorem 2: For a given average frame size E[H,;| = H and
Markov-chain loss, the expected number of useful packets per
frame is always upper-bounded by that in sequences with H; =
H:

E[Z;] < E[Z]]. (7)

Proof: Set u(z) = p{, and notice that u(z) is a strictly
convex function of x. Then, using Jensen’s inequality, it fol-
lows that E{u(H; )] is no less than u(E[H,]) and therefore 1 —
E [pg)j] < 1-—pli. Applying this observation to (3) and (6), we
immediately obtain (7). [ ]

We illustrate the result of Theorem 2 assuming a lognormal3
frame-size distribution, whose probability density function
(PDF) is given by:

f@) = —

¢~ (log w—u)2/2027 (8)
2o

where p and o2 are, respectively, the mean and variance

of log(H;). For the sake of this example, we use p = 0.1,
poo = 1 — p, 0 = 1.5 and compute p such that the mean
of the lognormal distribution E[H;] = e”*+°°/2 matches the
desired values. Table II shows the expected number of useful
packets in each frame of this sequence and the same metric in
the case of constant frame sizes H; = H. As the table shows,
E[Z,;] matches simulations well and is in fact upper-bounded

by E [Z]].
Similar observations apply to utility U, which we define as:
(1—p)E[H;] (1 = poo) E[H;]

From Theorem 2, it immediately follows that U is upper-
bounded by U

U<UH = 1_7276{]_
(1 —poo)H

This result indicates that regardless of the frame-size distribu-
tion, Markov loss implies that U — 0 as H — oo and the
convergence rate is no worse than linear.

The next question we address is how many useful packets can
be recovered in each frame if the pattern of network packet loss
deviates from the Markov model? We penetrate this problem
by obtaining £ [Z '] under a more general packet-loss pattern.
Note that since the exact distribution of H; is application-spe-
cific (i.e., unknown) and to conserve space, the rest of the paper

(10)

3Several studies have shown that MPEG frame sizes can be modeled by a
lognormal distribution [16], which explains our interest in it.
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Fig. 3. ON/OFF process V' (t) (top) and the transmission pattern of video frames
(bottom).

only deals with constant frame sizes and no longer considers
variable H;.

B. Renewal Packet Loss

Several studies have analyzed the characteristics of Internet
packet loss and reached a number of conclusions on the distribu-
tion of loss-burst lengths including that loss-burst lengths could
be modeled as exponential (e.g., [22]) as well as heavy-tailed
(e.g., [10]). We overcome this uncertainty by deriving closed-
form models for both cases, as well as the more generic case
when loss-burst lengths have an arbitrary distribution.

We explore the recurrent behavior of packet loss using a
simple stochastic model from renewal theory. Assume that the
packet loss process V(t) goes through ON/OFF periods, where
all packets are lost during each ON period and all packets are
delivered during each OFF period. Then, we can write:

V(t) = {1 loss at tlme?t ‘
0 no loss at time ¢

(11

Suppose that the duration of the i-th ON period is given by
a random variable X; and the duration of the ¢-th OFF period
is given by Y; (X; and Y; may be drawn from different distri-
butions). Fig. 3 illustrates the evolution of alternating process
V(). The figure also shows that if V' (¢) is sampled at a random
instant 7; where frame j starts and the process happens to be
in the OFF state, the distance to the next packet loss is given by
some residual process R(7;), whose distribution determines Z;.
We elaborate on this observation next.

Assume that X; and Y; are independent of each other and sets
{X;} and {Y;} consist of i.i.d. random variables. Then, V (¢) is
an alternating renewal process, whose j-th renewal cycle has
duration W; = X; 4+ Y; and whose n-th renewal occurs at time
epoch T, = 2?21 W;. Next, notice that long-term network
packet loss p is the fraction of time that the process spends in
the ON state, which allows us to write:

P = tlirgO PVt =1) = E[X;]

LI

Given network packet loss p, we are primarily interested in
the location of the first ON event after each frame starts, which
determines the number of consecutively received packets in that
frame. Suppose that 7; represents the time instants when the j-th
frame starts its transmission over the network. Then, we can
safely assume that points 7; are uncorrelated with the cycles
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TABLE III TABLE 1V
EXPECTED NUMBER OF USEFUL PACKETS (EXPONENTIAL MODEL) EXPECTED NUMBER OF USEFUL PACKETS (PARETO MODEL)
Packet loss H =100 H = 1,000 Packet loss a=2, H=100 a=3, H=100
P Simulations  Model (18) | Simulations Model (18) p Simulations  Model (19) | Simulations Model (19)
0.0001 99.491 99.491 951.599 951.530 0.0001 99.492 99.493 99.491 99.492
0.01 62.582 62.579 98.970 98.995 0.01 68.613 68.621 66.017 66.000
0.1 8.998 8.999 8.978 9.000 0.1 21.557 21.581 15.012 15.000
0.2 3.987 4.000 3.979 4.000 0.2 12.062 12.178 7.263 7.272
0.9 0.111 0.111 0.110 0.111 0.9 0.494 0.501 0.218 0.217
Packet loss a=2, H=1,000 a=3, H=1,000
p Simulations  Model (19) | Simulations Model (19)
of packet loss V() since the former is an application-specific 0.0001 052.713 953.006 052.956 052.985
parameter, while the latter depends on many factors (such as 0.01 237.278 237.391 164.950 165.000
network congestion and cross-traffic) that are not related to the 0.1 41.652 41.536 17.630 17.647
contents of the streaming traffic. Thus, we can view 7; as being 0.2 21.296 21.213 7.894 7.920
uniformly distributed within each renewal cycle of V() and 0.9 0.754 0.755 0.225 0.221

R(7;) as the residual life of Y; before the next renewal.

Notice that at 7;, there are two possible scenarios:

* V/(t) is in the ON state;

* V(1) is in the OFF state.

In the former case, the amount of useful data recovered in
the frame is Z jH = 0. However, in the latter case, this amount
will depend on the residual life R(7;) of the current OFF cycle
(see Fig. 3). Denote by Fy () the distribution of Y; and assume
that E[Y;] < oo. Next, define F'(z) = P(R(t) < z) to be
the distribution of the residual lifetime of the current OFF cycle.
Then, recall that F'(z:) can be expressed as [20]:

F@):Eleéza—zwgoym. (13)

Noticing that the distribution of X; does not affect £ [Z ]H ] s
we have the following result.

Theorem 3: Assuming a fixed frame size H, the expected
number of useful packets in a frame is determined solely by the
distribution of inter-loss durations Y; and equals:

H
E[zf]=( —p)/ F(x)da, (14)
0
where F'(z) = 1 — F(x) is the tail distribution of R().
Proof: Consider a frame j that starts at time instant
7;. Conditioning on V(¢) being in the OFF state at 7,

the number of recovered bits/bytes is the random variable
Z = min(R(r;), H), which leads to the following:

?

E[Z]'] = (1-p) (/0 wf(x)dx+H/: f(w)dx>, (15)

where term 1 — p is simply P(V(¢t) = 0) and f(z) is the PDF
of R(t). Using integration by parts, the first integral in (15) be-
comes:

H H
/:ﬁ@M:Hﬂm—/)H@M. (16)
Jo Jo
The second integral in (15) is:
H/Oof(x)dm:H—HF(H). 17
H

Adding (16) and (17) and rearranging the terms, we establish
(14). [ |

Note that (13) is based upon the limiting distributions of con-
ventional renewal theory, which provides an asymptotic result
on R(t) ast — oo. In order to examine the accuracy of the
model for finite £ <K oo, we obtain closed-form expressions of
(14) for exponential and Pareto distributions of Y; in the next
two lemmas and compare these results to simulations.

Lemma 1: For exponential Y; with rate A, the expected
number of useful packets in a frame is

E[zY] = lTp (1—e ). (18)

We illustrate the usage of (18) using exponential Y; with
several values of packet loss p. We set E[X;] = 1/(1 — p),
E[Y;] = 1/p (which leads to A = p), and generate over 20 mil-
lion random values X;, Y; to simulate the evolution of ON/OFF
process V(t) and obtain metric E [ZJH ] for a video stream
of fixed-size frames. Model (18) is compared to simulation
results for H = 100 and H = 1,000 in Table III. As shown
in the table, (18) follows simulation results very well and also
saturates at fixed values as H — oo. This result clearly implies
that UH converges toward zero for large H.

The next result shows that heavy-tailed inter-burst gaps Y;
actually improve £ [ZH]. In this case, we consider a shifted
Pareto distribution Fy (z) = 1 — (/8 + 1)~%, where z > 0,
a > 1,and B8 > 0. Notice that the domain of this distribution
is (0, c0), which allows us to construct a well-formed renewal
process and model arbitrarily small durations Y;.

Lemma 2: For Pareto Y; with finite mean E[Y;] < oo, the
expected number of useful packets is:

oo {(% + 1)2_" = 1} o #2

(1 p)Blog (% + 1)

E[ZI] = (19)

o =2

We also verify (19) using simulations with Pareto-distributed
Y; and keep E[X;] = 1/(1 —p), which leads to 3 being equal to
(a—1)/p. We compare simulation results with (19) in Table IV
for H = 100 and H = 1,000. First, notice in the table that
simulations match the model very well. Second, observe that
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Fig. 4. Packet loss patterns for exponential (top) and Pareto (bottom) Y.

the Pareto case delivers more useful packets on average than
the exponential case previously shown in Table III. This can
be explained by the properties of Pareto Fy (z), which tends
to create large inter-loss gaps followed by many small ones all
hitting the same frame. This is schematically shown in Fig. 4
where the Pareto loss events are more bursty and each frame
has a higher probability to start within a very large OFF burst.
Also notice that for « > 2, E [ZJH ] in (19) converges to a
constant equal to (1 — p)3/(a — 2) as H — oo and utility U#
asymptotically tends to zero as 1/H. For « = 2, the expected
number of recovered packets is approximately (1 — p)3log H,
which grows (albeit slowly) to infinity as H — oo. Never-
theless, even in this case, U¥ ~ log(H)/H — 0 for suffi-
ciently large frame sizes. Finally, for very heavy-tailed cases of
1 < a <2, E[Zf] is proportional to H?~% and utility U# ~
H'~ still becomes asymptotically negligible as H — oo.

C. Discussion

Note that for many Internet applications and protocols (such
as TCP), it is typically understood that uniform packet loss has
benefits over bursty loss. It is interesting, however, that our re-
sults imply that for streaming of embedded video signals, bursty
packet drops are more desirable than uniformly random. It is
further important to note that video-coding methods that use
error concealment may exhibit lower performance under bursty
loss, in which case the above conclusions would not necessarily
hold. In all other cases, subsequent losses within a given frame
have no effect on the already-useless frame data and thus lead
to better performance of the application as they allow a larger
portion of the remaining frames to be loss-free.

We next investigate FEC-based streaming as an alternative to
retransmission. We study the characteristics of packet drops in
an FEC-block in Section IV and discuss the impact of loss on
FEC-protected video in Section V.

IV. IMPACT OF PACKET Loss oN FEC

The distribution of the number of lost packets and the location
of the first loss in a block play an important role in understanding
the effectiveness of FEC. This section studies these two metrics
and offers a model for each assuming large sending rates.

We start by briefly discussing previous work on Markov loss
models and pointing out their shortcomings.

A. Background

The original work by Gilbert [8] examines loss events in com-
munication channels under a two-state Markov chain and pro-
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vides an error model based on recursive formulas that compute
the probability of losing a certain number of packets in a block
of a given size. Assume a Markov-chain loss model in Fig. 1
and define P(u, ) to be the probability of losing = packets out
of u transmitted ones. Next, notice that by conditioning on the
last state of the Markov loss process, probability P(u,z) can be
written as follows:

P(u,z) = P(u,z|0) + P(u,z|1) (20)

where P(u,x|j), 7 = 0or 1, represents the probability of losing
x packets out of u transmitted packets given that the loss process
is in state 7 at the end of the block.

Further note that P(u, 2|0) and P(u,|1) can be written as
recursive equations [23]:

P(u,x]0) = P(u—1,20)poo + P(u — 1,2[1)(1 — p11)
P(u,z|1) =P(u— 1,z — 1|1)p11
+ P(u— 1,2 —1|0)(1 = poo),

where poo and pi; represent transition probabilities of the
Markov chain shown in Fig. 1.

As two-state Markov loss models have become fairly stan-
dard, additional studies (e.g., [7]) examine methods of deriving
the above probabilities in closed-form. These approaches and
the resulting models are generally very complex both numeri-
cally and symbolically. In one example, Yousefizadeh et al. [23]
recently presented a closed-form solution to the recursive equa-
tions above. They derive the probability of receiving v = u — x
packets from a u-packet FEC block:

P(u, z[j) :Pgo_%ﬂ(l —.Poo)(l —p11) WL Py
+ g5 2 (1 = poo)? (1 = pr1)Wa Py,

=S (7)) (1))

X (Poopn)xilii ((1 = poo)(1 — p11))’,

=2 () ()

=0

where

~

i

poop11)” " (1 = poo)(L — p11)".

X

Note that this model holds only for particular conditions (such
asu > 2x + 1) and is computationally intensive for non-trivial
u even though it does not require solving recursive equations.
Also note that none of the previous models provides explicit
information about the distribution of the number of lost packets
per block or the location of the first loss event.

In Sections IV-B-E, we examine a new (asymptotic) method-
ology that computes the probability P(u, ) and related metrics
of interest in simple closed-form terms.

B. Basic Model

To investigate how the Markov loss process affects each block
of FEC, we define L(n) to be the random number of packets lost
in a given block of size n > 1. Notice that P(u,z) discussed
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in the previous subsection is simply P(L(u)
Bernoulli random variables:

= z). Next, define

X; = {1 packet % is lost. @

0 otherwise

where 1 < ¢ < n is the sequence number of the packet within a
given block of size n.

Then, the number of lost packets in the block is
L(n) = Y., X,. Note, however, that since loss events
X in the block are correlated under Markov loss, the distribu-
tion of L(n) as n — oo does not follow the de Moivre-Laplace
theorem for independent random variables. Instead, L(n) con-
verges to a Gaussian distribution N (nE[X;], Var[d_ X;]) as
long as {X;} are bounded and exhibit exponentially decaying
dependence* [17]. In such cases, the approximation error is
available explicitly and is of the order of (logn)?/\/n. With
this result in mind, normality of L(n) is easy to establish and
the only remaining pieces of the model are 4 = E[L(n)] and

2 = Var[L(n)], which we derive next.

C. Model Parameters

Assuming that the Markov chain is in the stationary state at
the beginning of the current block, we easily get:

n

(22)

p=E[Ln)]=E = np,

i=1

which is the same result as in the de Moivre-Laplace theorem
for sums of independent variables [12]. Notice, however, that
the variance of L(n) does not necessarily equal the usual npq,
where ¢ = 1 — p. To understand the next result, define B to be
the transition matrix of the two-state Markov chain in (2):

1 —poo
P11

Poo

B =
1—pn

(23)
Furthermore, denote by A1 and \s the eigenvalues of the tran-
sition matrix B and define a row vector v = (0, 1). Note that
since for all stochastic matrices A1 = 1, it is easy to obtain that
A2 = poo + p11 — 1. Then, we have the following lemma.
Lemma 3: Assume that each loss event in a block of size n
follows the two-state Markov chain in (2) and the chain is in the
stationary state at time 0. Then, the variance of L(n) is

2p(1 — p)As 1- A%
2= np(1 - - 2. 24
o =mp(l—p)+ T- U 1-x @4)
Proof: Writing 02 = E[L*(n)] — u?, we obtain
n 2
E[L*(n)]=E (Z Xl-)
=1
=nE [X]]+E |> > XiX;
i=1 j#i
n—1 n
=np+2Y» Y E[X;X (25)
i=1 j=i+1

4In the context of Markov chains, this means that the chain changes its state
with non-zero probability (i.e., poo > €, p11 > ¢ forsomee > 0) (see Theorem
8.9 in [4]).

Computing E[X; X;] in (25), we get

EX;X;]=P(X; =1X;, = 1)P(X; = 1) = myvB V7.
y (26)
Note that the above expression v B’ ~*vT is simply cell (1,1)

of matrix B7—*. Combining (25) and (26), we get:

n—1n—:

E[L*(n)] = np + 2pv [Z > B!

i=1 d=1

27)

Next, we compute B¢, which can be represented as a func-
tion of B’s eigenvalues by Sylvester’s theorem [15]. For 2 x 2
matrices, this leads to a simple closed-form result:

a2l —B M1 —B
=My T
A2 — A1 A1 — A2
where I represents the 2 X 2 identity matrix.

Finally, substituting (28) into (27) and recalling that we only
need cell (1,1) in B¢, we get:

B (28)

n—u

E[L*(n)] =np+ 2p iz [p+ (1 -p)Ag]

1d=1
—np+2p [ nin=1) , (n)} . (29
where
_(1=p)r 1-A3
Combining (22), (29), and (30), we get (24). |

Simulations confirm that (24) is exact (for examples, see
Table V discussed later).

D. Asymptotic Approximation

In this subsection, we examine asymptotic (i.e., for largeS n)
characteristics of the distribution of L(n). Note that unless 2 —
Poo — P11 = 1 — Ay is on the order of 1/n, the term A} in (24)
is virtually zero for non-trivial » > 1. Since p is fixed and B
cannot depend on 7, we can drop A3 in (30) to obtain:

-~ (1 - p)/\2 n— 1
1— X 1-X /)’
This leads to the following approximation on o2 = np(1 —
p) + 2pR(n) for large n:

2p(1 — p)Ag 1
Dty i)
Notice that when R(n)/n = 0, the model above simplifies

to the case of Bernoulli loss and o2 reduces to npg(1 + o(1)).
Thus, term R(n) determines the amount of “dependency” in the

sequence and the amount of deviation of ¢ from its uncorre-
lated version. For convenience, re-write (32) as:
] ) REEY

22 1
2=np(1-p) (1 21—
7 np( p) ( + 1-— )\2 |: (1 — )\2)71

As a result of this transformation, it is easy to observe as a
self-check that o2 ~ npg when \» ~ 0 (or pgg + p11 ~ 1), or

R(n) (31)

o? ~np(1

(32)

SThroughout the paper, “asymptotically large " means that np >> 0.
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Fig. 5. Distribution of L(n) for n = 400 and two different p.

in other words, when there is no dependency between X; and
X ;. This indeed reduces the Markov chain to the Bernoulli case
and allows the de Moivre—Laplace theorem to hold.

For large np, we can state that for 2 — pgg — p11 > € > O:

2
1m15—:pu—p)1+-2A2 . (34)
1—

n—oo M,
Combining the above discussion into a single approximation,
we obtain the following distribution of L(n).
Corollary 2: Assume that each loss event in a block of size
n follows the two-state Markov chain in (2), the chain is in the
stationary state at time 0, and 2 — pgg — p11 > € > 0. Then, the
distribution of L(n) for large n is:

(35)

L)~ N (np,npu _ p)M) .

2 — poo — P11

Next, we verify model (35) using Matlab simulations. We
create a Markov process using two different values of p with
two sets of transition probabilities (pgg, p11). We use pgg = 0.4,
p11 = 0.1 to obtain large packet loss p = 0.4 and pgy = 0.92,
p11 = 0.28 for smaller packet loss p = 0.1. Simulation results
are compared to the model in Fig. 5, where the curve “Gaussian
model” is the standard distribution N (np, npq) for independent
loss events and curve “our model” represents the distribution
predicted by (35). As the figure shows, model (35) matches the
simulation very well, while the classical Gaussian model ex-
hibits variance inconsistent with that of the actual distribution.
Also notice in the figure that the true distribution of L(n) may
have o2 both smaller and larger than the corresponding value
npq. The first example has pog + p11 = 0.5, which results in
02 ~ npq/3. The second example has pgg + p1; = 1.2, which
leads to 02 = 1.5npq. Further note that (35) holds for rela-
tively small n as well. Fig. 6 shows two examples for n = 50
and n = 20, respectively, where the match is just as good as in
Fig. 5.

Numerical assessment of the model is shown in Table V,
which illustrates several examples from the CDF tail of both
distributions in Fig. 6. As the table shows, for both values of 7,
(35) matches simulations very well.

E. Nonstationary Initial State

We now tackle the issue of non-stationary initial distribu-
tion of X¢, which is the state of the packet preceding the first
packet in the FEC block. This analysis will be required later for
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Fig. 6. Distribution of L(n) for p = 0.4 (poo = 0.4, p1; = 0.1).

TABLE V
COMPARISON OF (35) TO SIMULATIONS (p = 0.4)

n Metric Simulations  Model (35)  Gaussian model
50 W 20.000 20.000 20.000
o2 4.106 4.106 12.000
P(L(n) < 16) 0.043 0.042 0.156
P(L(n) < 24) 0.989 0.986 0.903
20 P 8.000 8.000 8.000
o2 1.706 1.706 4.800
P(L(n) < 6) 0.121 0.125 0.246
P(L(n) < 10) 0.979 0.972 0.873

the derivation of streaming utility U* . Define L.(n) to be the
random number of packets lost in a given block of size n con-
ditioned on the initial state X being 1 and . to be its mean:
te = E[L.(n)] = E[L(n)|Xo = 1]. (36)
Lemma 4: Assume that each loss event in a block of length

n follows the two-state Markov chain in (2). Then, the mean of
L.(n) for large n is:

1— A2
1— Ay

e = np + (1 = p)A2 (37
Proof: Note that the mean of L(n) conditioned on the value
of initial state Xg = x is:

EM@MXW:ﬂ:§:PQ3:HXW:m. (38)

To obtain P(X; = 1|Xo = x), we need cell (z, 1) from the
matrix B*. From (28), we easily establish that:

m (1=, xi?' (39)

Po= 1= = ()

Setting x = 1 and expanding (38) using (39), we get (37). &
Simulations confirm that (37) is exact. For large n, the term
A% becomes negligible and thus (37) can be simplified to:

A2(1—p)
A A2 P 4
fre R NP+ = " (40)
Next, define 02 to be the variance of L.(n):
0?2 = Var[L.(n)] = Var[L(n)| X, = 1]. 41)
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Fig. 7. Distribution of L.(n) for n = 400 and two different p.

Then, we have the following result.

Lemma 5: Assume that each loss event in a block of length
n follows the two-state Markov chain in (2). Then, the variance
of L.(n) for large n is:

1-2np—6 op — 1
p p+ 4

oer(p—1) |np+p+ - (42)
Y Y
where v = 2 — pgg — p11 > € > 0.
Proof: Write the conditional variance o2 as:
o2 =E[L*(n)|Xo = 1] — p2. (43)
Then, we can express the first term of (43) as:
E[L*(n)|Xo = 1] = E[L(n)| X, = 1]
n—-1 n
+2 Z Z E[X:X;|Xo = 1]. (44)
i=1 j=i+1

Notice that by conditioning on X¢ = z, F[X,X;] depends
on the value of ¢ in addition to the distance d = j — i:

E[X;X;|Xo = 2] = vB~V'P(X; = 1|Xg =z).  (45)

Using (45) and (39), we obtain:

BIXiXj1Xo=1]=(p+ (1= p)X7) (p+ (1= p)23). (46)

Denoting by G the double summation term in (44) and ex-
panding it using (46), we have:

-1 n

G=Y E[X:X;|Xo = 1]
+1

3

=1 =
n—1 1
) 1— )\J+
= p’i—p+p*+p(l—p)—2—
; 1—-2X
J=1
n—1 2
2 Vi (1-p) n+1
+y ((p UL )

3 .
_ =

+ 3 (mt-p) - -+ Y22 g

.
Il
-

TABLE VI
COMPARISON OF (49) TO SIMULATIONS (p = 0.4)

n Metric Simulations  Model (49)
400 Le 159.800 159.800
o2 32.053 32.053
P(Lc(n) < 142) 0.001 0.001
P(Lc(n) < 150) 0.051 0.050
P(Lc(n) <170) 0.971 0.970

Let G1, GG, and G5 be the first, second, and third summations
in (47), respectively. Expanding each term separately, we get:

Gi=(n—-1) (ﬁ%—p+p2+w>

1=\
p(1—p)A (1 -5
(1— )2 ;
o= 7 - iy R e

IR

Gy =

(1=p)*) A2 (1-2377)

1- -1 .

<( p)(np—1+p)+ T T

Using the same argument for large n as in the previous sub-

section and dropping terms /\’21*1 and )\’2”1, we can simplify
G4, G4, and G5 to:

2 2
B p’n >, p(1—p) p(1—p)A3
(@ —p)Xe A2
G2 = = UT1on )
_ _ _ (1—13)2 Ag
Gs = <(1 pp—l+p)+ =) 48)

Substituting Ao = pgo + p11 — 1 and using (40) and (48), we

obtain (42). [ |
Combining (37) and (42), the next asymptotic result follows
immediately.

Corollary 3: Assume that each loss event in a block of length
n follows the two-state Markov chain in (2). Then, the distribu-
tion of L.(n) for large n is:
Le(n) ~ N (pe,02) . (49)
We next present simulations that show the accuracy of (49).
For this example, we use n = 400 and two different values of
p and plot the distribution of L.(n) in Fig. 7. To demonstrate
the numerical match, we compute several metrics of interest for
p = 0.4 and compare them with (49) in Table VI. As the figure
and table show, (49) agrees with simulations very well.

V. PERFORMANCE OF FEC IN SCALABLE STREAMING

Our next step is to study the performance of FEC-based video
streaming considering two loss patterns and analyze the conver-
gence point of UH as H — oo.
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Since our main interest in FEC is how its overhead affects the
utility of received video, we examine a generic media-indepen-
dent FEC scheme based on (n, k) block codes (such as parity or
Reed-Solomon codes), where 7 is the total number of packets
in an FEC block and k is the number of redundant FEC packets
in the block. Thus, the actual number of video data packets in
each block is H = n — k and the FEC overhead rate (i.e., frac-
tion of FEC packets) v is k/n. Recall that under (n, k) block
coding, all H data packets are recovered if the number of lost
packets in a block is no more than the number of FEC packets
k. However, if the channel loses more than & packets, then only
those packets in the enhancement layer located before the first
loss in the block can be used in decoding.

A. Markov Packet Loss

In this subsection, we first investigate the expected amount
of data recovered in each block and in Section V-B analyze the
corresponding utility of received video.

To derive E [ZF], we again assume that L(n) is the
number of packets lost in a block of size n and define
Q = E[Z]"] L(n) > k] to be the expected number of useful
video packets recovered from an FEC block when L(n) is
greater than the number of FEC packets in the block. The
following result states the value of Q.

Lemma 6: Assuming a two-state Markov packet loss in (2)
and L(n) > k, the expected number of useful video packets
recovered per frame is:

Q=E[Z"| L(n) > k]

n—k—1

>

=1

o P(Le(n—i—1)>k—1)

_ DPooP11 — A2 i
— Poo P(L(n) > k)

1— X

(50)

Proof: Assume that D; is the random distance in packets to
the first loss in a block j as before. Then, we can obtain P(D; =
1) using the basic properties of Markov chains:

P(D; =i (51)

) o T ) Z =
~ \mopoo (1 —poo) i>1"
Next, write Q as:
n—k—1
Q=E[Z]|L(n) > k] = > iP(D; =ilL(n) > k).
i=1

K2

Using Bayes’ formula, we can get:
P(L(n) > k|Dj =4)P(D; = 1)

P(D; = i|L(n) > k) = IO

(52)
Next, note that we can compute:

P(L(n) > k|D; = i) = P(Lo(n —i— 1) > k— 1), (53)

which represents the probability of losing more than £ — 1
packets from n — ¢ — 1 transmitted ones conditioned on the
(7 + 1)-st packet being lost.

Finally, recalling that mo = (1 — p11)/(2 — poo — p11) =
(1 —p11)/(1 — X2) and with the help of (52), (53), and (51), we
get (50). [ |
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TABLE VII
COMPARISON OF (50) TO SIMULATIONS

p=0.4, n =400, 02 = 32.106

k P(L(n) > k) Q insimulations @ in (50)
170 0.0307 0.802 0.807
165 0.1656 0.863 0.865
160 0.4674 0.919 0.920
155 0.7874 0.964 0.963
140 0.9996 0.999 0.999

0 1.0000 1.000 1.000

p=0.1, n =400, 0% = 54.943

k  P(L(n)>k) Q@ insimulations @ in (50)
50 0.0809 8.245 8.002
45 0.2224 8.905 8.800
40 0.4593 9.604 9.601
30 0.9068 10.813 10.840
20 0.9983 11.231 11.224

0 1.0000 11.250 11.250

Notice that by utilizing the models derived in Section IV,
we can compute for asymptotically large n each of the terms
in (50) individually, which in turn allows us to calculate Q). To
verify (50), we compute () in simulations and show the result in
Table VII. For the first case, we use large packet loss p = 0.4
(poo = 0.4, p11 = 0.1), n = 400, and over 1 billion itera-
tions. As the table shows, (50) matches simulation results very
well. For the second case, we use smaller packet loss p = 0.1
(poo = 0.92, p11; = 0.28) and observe in the table that (50) is
reasonably accurate as well. It is worth noting that the model is
more accurate when np is large or 02 < np. Thus, due to the
small np and 02 > np, the match in the second case in Table VII
is not as good as that in the first case.

Using the result in (50), we easily get £/ [Z ]H ] .

Corollary 4: Assuming two-state Markov packet loss with
average loss probability p, the expected number of useful
packets recovered per FEC block of size n is:

E[ZH] = P(L(n) < k)H + P(L(n) > k)Q. (54)
B. Utility
Defining a new metric C(n) = QP(L(n) > k) and
re-writing (1) using (54), we get:
i _ P < WH +C(n) 55

n(1—p)

For convenience of presentation, define the overhead rate v as
a linear function of packet loss: 1) = np (where 7 is a constant).
Then, we have in the next theorem the asymptotic behavior of
UH as the video rate becomes large.

Theorem 4: Assuming a two-state Markov packet loss in an
FEC block of size n, average loss probability p, and FEC over-
head rate ¢» = np, (0 < ¢ < 1), the utility of received video
for each FEC block converges to the following:

0 O0<n<l1
lim U2 =05 n=1

H— 1—
o 2 1<n<l1/p

(56)
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Fig. 8. Simulation results of U/# and their comparison to model (56) for
Bernoulli loss and Markov loss (poo = 0.92, p1; = 0.28). In both figures,
p = 0.1.

Proof: Recalling that the distribution of L(n) is asymp-
totically normal with parameters ;o and o2 as discussed in
Section IV-D, we can write:

k
PEm) <k = [ flds (57)
where f(z) is the PDF of L(n).
Define ¢(z) to be the PDF of the standard normal distribution
and let z = (k — p)/o. Then, re-write (57) as:

P <k = [ ol 58)
Using 9 = np and k = 1n, re-write z as:
L = DVH +k)p (59)

Poo+p
\/(1 —7) 2*(;)000 *1]1111

Notice that (poo + p11)/(2 — poo — p11) > 0 and observe
from (59) thatas H — o0,z — —x0ifn <1,z — ocoifn > 1,
and z = 0 if » = 1. Thus, the probability P(L(n) < k) in (58)
converges to the following as H — oo:

0 O0<n<1
lim P(L(n) < k) = {0.5 n=1 (60)
oo 1 1<n<l1/p

Next, observe in (50) that since P(L.(n —i—1) > k—1)is
less than or equal to 1, C'(n) is upper-bounded by:

n—k—1
PooP11 — A2 =1 Poop11 — A2 ~
Cn) L ———— 1 =—-—=C, (61
(n) < 1— X ;Lpoo 1— (6D
where
n—k—1 )
C= > ipy' (62)
=1
Recalling that pgg > 0 and expanding (62), we get:
n—k n—k—
O: 1+(n_k_1)p00 _(n_k)poo ! (63)

(1= poo)?

Since C'/n — 0 as n — oo, so does C(n)/n. Thus, using
(60) in (55), and utilizing the fact that H = n(1 — ¢), we
immediately get (56). ]

! ! W
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2 08 = 08 ks\ﬂ*ﬁ—e—a——s«-e-ma
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(a) UH for finite n (b) Renewal loss

Fig. 9. (a) U computed from (55) for n = 100 and different values of 7.
(b) Simulation results of U# for renewal loss. In both figures, p = 0.1.

We next verify the asymptotic characteristics of the achieved
utility in (56). Before considering a general Markov loss model,
we first examine a special case with ppg = 1 — p (i.e., Bernoulli
loss). Fig. 8(a) plots simulation results of U* for different 7
and compare them with (56). As the figure shows, (56) matches
simulations very well and U¥ indeed converges to 0, 0.5, or
(1 —14)/(1 —p) = 0.9778 as the streaming rate becomes high.
For the general Markov loss case, we plot simulation results
U and compare them with the values predicted by (56) for
three different values of 7 in Fig. 8(b). As the figure shows,
U™ follows a trend similar to that in the Bernoulli case with the
exception of a slightly slower convergence rate (Markov chains
with dependency between the states are more slowly mixing
than the Bernoulli case). For instance, under the Markov-chain
loss, U899 = 0.016 for n = 0.8, while the Bernoulli case has
U899 — 0.007 for the same value of 7 (see Fig. 8).

In summary, the above result on U implies that 1) the
amount of overhead used in FEC has a significant impact on the
quality of received video; 2) U asymptotically achieves its
maximum when the amount of overhead v = np is just slightly
larger than the average network loss p. Note, however, that
when the streaming rate is finite (i.e., n < oo), UH depends
on n as well as n and the optimal amount of overhead can be
determined by minimizing (55). To demonstrate this, we show
one such example with finite n = 100 and p = 0.1 in Fig. 9(a).
As the figure shows, U H reaches its maximum at n = 1.7,
which is much larger than that predicted by (56). We leverage
this result later in the paper and next focus on more generic
patterns of packet loss.

C. Renewal Packet Loss

In this section, we study U under ON/OFF renewal packet
loss. Similarly to the result in (54) discussed in Section V-A, we
model the amount of useful data recovered from an FEC block
as:

E [z =E[Z|L(t) < k| P(L(t) < k)
+ E[Z]'|L(t) > k] P(L(t) > k),  (64)

where L(t) = :+n V (u)du is the number of lost packets in a
block of size n starting at time instant ¢ and V' () is the ON/OFF
process described in Section III-B. Unfortunately, computing
distribution P(L(t) < k) under an ON/OFF renewal process ap-
pears to be impossible in closed form even though many studies

(e.g., [18]) have attempted this task in the last 50 years. Hence,
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TABLE VIII
UTILITIES IN SIMULATION (RENEWAL LOSS)
Packet loss p | Convergence point (1 —1)/(1 — p)
0.01 0.9974 0.9979
0.1 0.9775 0.9777
0.2 0.9496 0.9500
0.4 0.8665 0.8666

we do not pursue this direction further and show instead conver-
gence of U using simulations without offering a closed-form
model.

For this case, we generate 20 million random values for ON
and OFF durations, where each of X; and Y; are i.i.d. Pareto. We
use E[Y;] = 10 and E[X;] = E[Y;]p/(1 — p) so as to keep the
average loss equal to p and plot the simulation results of U
for different values of 1 and p = 0.1 in Fig. 9(b). As the figure
shows, UH again exhibits a percolation point around 7 = 1 (i.e.,
1 = p) and converges to three different values depending on 7.

The final question we address is whether U converges to
the same values as in the Markov case. We conduct simulations
using very large n and several values of p. For each value of p,
we identify a convergence point, at which increasing H virtually
does not change the value of U (change in U after doubling
the value of H is less than 0.001) and illustrate in Table VIII
convergence values of U# for 7 = 1.2. As the table shows, U
approaches to (1 —1))/(1 — p) regardless of the value of p. This
is the same asymptotic result observed in the Markov loss case
discussed in the previous subsection. We also found that U
converges to 0.5 for = 1 and 0 for < 1, but omit these results
for brevity. This demonstrates that as long as the application can
measure p, the behavior of U for large n is almost the same
under many fairly general conditions of network loss.

The next question we address is how to select the proper
amount of overhead such that U is maximized for a given
streaming rate H and network packet loss p.

VI. ADAPTIVE FEC CONTROL

A. Framework

In a practical network environment (such as the Internet),
packet loss is not constant and changes dynamically de-
pending on cross traffic, link quality, routing updates, etc.
Hence, streaming servers must often adjust the amount of FEC
overhead according to changing packet loss to maintain high
end-user utility.

To remain friendly to other applications in the Internet and
avoid filling network paths with unnecessary FEC packets, a
streaming server must comply with the sending rate S suggested
by its congestion control algorithm. Given S, the streaming
server then determines FEC rate F' and video source rate I?
such that S = R + F'. Recall that to achieve high end-user
utility, overhead rate 1) must be slightly higher than packet
loss p as discussed in Section V; however, the exact value of
optimal 1* depends on the streaming rate and current packet
loss p (the latter of which is generally coupled with congestion
control and should be provided by its feedback loop).

Next, we discuss a simple approach that can select the proper
amount of FEC overhead using our previous analysis. The main
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Fig. 10. ns2 simulation topology.

problem is how to select optimal n* for a given packet loss p
and FEC block size n to achieve maximum utility. One simple
solution is to construct an optimization problem around (55):

n* = arg Hlf)lX UH(n,p,n), (65)
which can be easily solved using binary search and applying
models developed in the previous section as long as packet loss
p, block size n, and Markov properties of the loss process are
known. In practice, this can be implemented by fitting a Markov
model to the measured loss events and maximizing utility in
(65) regardless of whether the actual network loss exhibits
Markovian properties or not. Simulations below suggest that
the actual distribution of loss-burst lengths does not have a
significant effect on the result.

B. Evaluation Setup

In this section, we present simulation results of our adaptive
FEC-based scheme including the properties of U¥ and video
quality. We first simulate a Markov loss process, obtain packet
loss statistics for each video frame, and examine the resulting
utility and PSNR video quality of our method in comparison to
two approaches that use fixed amounts of FEC overhead. We
then conduct ns2 [11] simulations to briefly investigate whether
the results obtained from the Markov model are valid in more
realistic network environments. In all simulations, one video
frame (40,000 bytes without including the base layer) consists
of 200 packets, 200 bytes each (these numbers are derived from
MPEG-4 coded CIF Foreman with a 128-kb/s base layer coded
at 10 frames per second). For convenience of PSNR computa-
tion and to keep overhead reasonable, we use FEC block size
n = 200 packets.

For ns2 simulations, we use a simple topology shown in
Fig. 10, in which video source A sends packets at 3.2 mb/s to
receiver B over a single bottleneck link of capacity 20 mb/s.
To congest the bottleneck link, we use N FTP connections be-
tween nodes S; and D and 400 HTTP sessions between nodes
S5 and D5. All access links are 40 mb/s. Each cross-traffic flow
starts randomly and N varies over time to produce different
values of network packet loss p(t).

We start our investigation with the behavior of utility U .

C. Properties of UH

To illustrate the adaptivity of (65), we first present results
based on Markov loss simulations in Matlab. In this example,
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Fig. 11. Packet loss pattern obtained through Markov-chain simulation using
transition probabilities poo and p17.
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Fig. 12. Metric U achieved by the adaptive FEC overhead controller (65)
and its comparison to utilities obtained in two different scenarios that use fixed
amounts of overhead.

we simulate a streaming session with a hypothetical packet loss
pattern shown in Fig. 11(a). The evolution of p(t) in Fig. 11(a) is
obtained using the Markov chain in (2) with transition probabili-
ties poo and p1; plotted in Fig. 11(b). We consider two different
fixed-overhead schemes (we call them M; and M hereafter)
to compare with our adaptive method. To determine the fixed
amount of overhead, M; and M- use the lower (pr, = 0.1)
and upper (py = 0.4) bounds on packet loss in Fig. 11(a),
respectively.

We plot the achieved utility of FEC-protected video in
Fig. 12. As the figure shows, (65) maintains its utility very high
(in fact approaching the optimal value of U*) along the entire
streaming session with small deviations only at points when
p(t) transitions to its new value. Also observe in the figure that
fixed-overhead schemes M; and M, perform much worse even
though M5 sends more FEC than our scheme.

Next, we examine how (65) behaves under changing p(t)
obtained from ns2 simulations. In this case, we vary the number
of FTP connections IV every 5 control intervals and measure
long-term average packet loss at the receiver. The relationship
between N and the long-term average loss is illustrated in
Fig. 13(a) where the increase in packet loss is caused by the
well-known TCP scalability properties [6]. Changing the value
of N randomly over time, the network exhibits fluctuating
packet loss shown in Fig. 13(b). Using this information, the
sender estimates transition probabilities pgo and pq; for each
interval and uses them in FEC control. Fig. 13(c) and (d) plot
the evolution of U achieved by different FEC-control schemes
and show that our adaptive controller exhibits behavior similar
to that observed in Markov-loss simulations.

0.12

o

2 0.1
© 0.08
.g » 0.08
3 0.06 8

3 006
S0 %
- - a
) 0.04
g
H

o
<3
)

0.02

=)
o

100 200 300 400 500 600 0 20 40 60 80 100
Number of FTP flows N Control intervals

(a) Average loss rate
12 = adaplive 12 e adaptive
— M1 - M2

2z £
2 06 g 06

(b) Packet loss pattern

04 04
0.2 0.2
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Control intervals Control invervals
(c) pL = 0.01 (d) py =0.1

Fig. 13. (a) Average packet loss rate for different number of FTP flows N
in ns2 simulation. (b) Packet loss pattern obtained through ns2 simulation.
(c)-(d) Evolution of U achieved by the adaptive FEC overhead controller (65)
and its comparison to that of utilities obtained in two different scenarios that use
fixed amounts of overhead.

Analysis in previous sections suggests that both correlated
and uncorrelated loss patterns, as well as exponential and heavy-
tailed loss-burst lengths, lead to an almost identical behavior of
UH . Additional simulations with ns2 confirm that results based
on simple Markov-loss models can indeed be used as first-step
approximations to the real behavior of U in generic networks.
Future work will examine this issue in more detail and attempt
to understand how more complex loss patterns influence optimal
selection of FEC overhead.

D. PSNR Quality

We finish the paper by comparing the adaptive method with
fixed-FEC schemes using PSNR quality curves. We apply
packet-loss information obtained through ns2 and Markov
chain simulations to each MPEG-4 FGS frame of the Foreman
video sequence. We enhance each base-layer frame using con-
secutively received FGS packets and plot PSNR quality curves
accordingly. Note that for this comparison, we protected the
entire base layer in all cases and allow random loss only in the
FGS layer.

Fig. 14 plots PSNR curves for both simulation cases. Ob-
serve in Fig. 14(a) that M; suffers significant quality degrada-
tion when U drops around ¢ = 2 seconds (see Fig. 12(a)).
Similarly, M5 exhibits suboptimal video quality during the en-
tire streaming session due to its ¢ being too large. Compared to
the two cases M; and M, our adaptive method offers almost
6 dB higher PSNR than M, throughout the session and out-per-
forms M; by almost 10 dB for half the duration of the streaming
session.b Fig. 14(b) shows that the improvement in ns2 simula-
tions is not as dramatic as that in the Markov example due to the

6Note that a 1-dB gain in PSNR is usually considered significant [19].
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Fig. 14. PSNR of CIF Foreman reconstructed with different FEC overhead
control.

lower packet loss rates, but nevertheless amounts to a 3-9 dB
improvement.

VII. CONCLUSION

This paper studied the effect of random packet loss on scal-
able video traffic in best-effort networks and proposed an adap-
tive FEC overhead control mechanism that can provide high
quality of video to end-users. We also investigated the charac-
teristics of packet loss in an FEC block and derived practical
models for the distribution of the number of lost packets in a
block of fixed size under Markov packet loss. Furthermore, we
examined several stochastic loss models for streaming video and
conclusively established that proper control of FEC overhead
can significantly improve the utility of received video over lossy
channels.
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