
Characterizing Tight-Link Bandwidth of Multi-Hop
Paths Using Probing Response Curves

Seong-Ryong Kang
LTE Systems Lab, Samsung Electronics

Suwon, Gyeonggi 443-742, Korea
Email: sseong.kang@samsung.com

Dmitri Loguinov
Department of Computer Science, Texas A&M University

College Station, TX 77843, USA
Email: dmitri@cs.tamu.edu

Abstract—Bandwidth estimation plays an important role in
characterizing Internet paths. Existing approaches can be classi-
fied into measurement tools [3], [6], [9], [10], [16], [17], [23], [29],
which usually have extensive simulations, but no convergence
analysis for general cross-traffic, and theoretical models [5], [14],
[19], [20], [22], which usually have provable convergence, but
no practical implementation. Another issue in related work is
the unknown performance of certain proposed algorithms in
real networks where delay measurements are not perfect due to
various OS and hardware-related timing irregularities [26]. We
address the former issue by developing a measurement tool PRC-
MT that not only achieves asymptotic accuracy in multi-path
networks with arbitrary cross-traffic, but also simultaneously
measures the capacity and available bandwidth of the tight link.
We address the latter issue by performing a comparison study
of existing tools in Emulab and assessing their susceptibility to
timing irregularities of end-hosts. Our results show that PRC-
MT outperforms all existing tools in terms of accuracy, achieves
similar convergence delay, and does not require any manual
configuration. We also find that interrupt moderation may
cause existing tools (such as Pathload [10], Pathchirp [27], and
CapProbe [16]) to become quite inaccurate in certain network
configurations and exhibit behavior completely different from
that in ns2 [28].

I. INTRODUCTION

Bandwidth of Internet paths is an important metric for many
applications. However, without a direct access to network
resources, end-to-end bandwidth measurement under general
conditions on cross-traffic is a rather complex process [5], [20].
Unfortunately, theoretically justified techniques [19], [20], [22]
are commonly not available as practical tools that can be used
in real networks and vice versa (i.e., existing implementations
are often based on fluid models that exhibit bias in bursty
networks [20] and/or rely on heuristics with unknown the-
oretical performance). In addition, many current techniques
produce unreliable results in actual networks where packet
dispersions cannot be sampled accurately due to hardware
interrupt moderation and various OS-imposed overhead [26].
Our goal in this paper is to provide a useful implementation
of a theoretical model and examine its performance in non-
simulated networks in comparison with existing tools. We
perform this task below.

A. Measuring the Tight Link

Existing techniques usually estimate either the available
bandwidth [6], [11], [27], [29], or the bottleneck bandwidth

[3], [16] of the path. The former term refers to the unused
bandwidth At of the tight link (i.e., link with the smallest
available bandwidth) and is closely related to the rate at which
new applications can send into the path without congesting it.
The latter metric is the capacity Cn of the narrow link (i.e.,
link with the lowest speed), which can be viewed as an upper
bound on the sending rate that the path can support. Note that
At can be measured in all network configurations, while this
is not necessarily true for Cn.

Even though both At and Cn are useful metrics, certain
applications require capacity Ct of the tight link instead of Cn,
which allows them to compute the utilization of the tight link
and possibly achieve better characterization of what causes
bottlenecks in the path.1 Only a few approaches can measure
Ct [13], [14], [23], but they are either based on single-hop
models that are inaccurate in multi-path networks, or rely on
hop-by-hop probing, which we do not study in this paper.
A recent theoretical development [20] shows that both At

and Ct can be provably measured in any end-to-end path
with infinite buffers by exploiting a certain piece-wise linear
relationship between the sending rate rI of probe packets and
the corresponding arrival rate rO at the receiver. Although
this work opens a door for developing a new characterization
technique for tight links, it remains to be seen if an automated
implementation can achieve good performance in networks
with limited buffer space and exhibit overhead comparable to
that of existing tools.

Recall that [20] relies on correctly identifying the first two
linear segments of the probing response curve (PRC), which
is a functional relationship between rI/rO and rI . Identifying
and separating the linear segments in a stochastic PRC is a
non-trivial task since the curve itself may fluctuate and/or
deviate from the fluid piece-wise linear limit depending on
path-specific characteristics as well as the number of probes
per train and their size. In addition, building an entire PRC
sometimes requires sending a large amount of traffic into the
path and exhaustively probing a wide variety of sending rates
(i.e., as done in [21]). Thus, the main challenge in PRC-based
estimation is the development of automated algorithms for
detecting linear segments in practice and selecting probing

1Also note that certain bandwidth estimation tools [6], [29] require Ct in
order to measure At.

2

rates that result in quick convergence of the method.
In this paper, we tackle the above problems using an iter-

ative probing technique that we call PRC Measurement Tool
(PRC-MT), which is capable of estimating both At and Ct

in arbitrary multi-hop paths. PRC-MT autonomously selects
probing rates, train and packet size, and termination conditions
so as to achieve any desired tradeoff between accuracy and
overhead (i.e., better accuracy requires more probes and vice
versa). We implement PRC-MT in Linux and evaluate its
performance using Emulab [4]. We find that PRC-MT, limited
to the execution delay of prior methods (i.e., 90−120 seconds),
estimates At and Ct with 90− 99% accuracy in a wide range
of network configurations.

B. Timing Irregularities

Attempting to run existing tools in PlanetLab, we found
that some of them frequently produced no estimate at all
(e.g., Pathload [10], [11], [26]) while others returned results
that did not seem reasonable (e.g., CapProbe [16]). It be-
came immediately clear that one of the main factors that
differentiates bandwidth estimation in real networks from
that in ns2 is end-host timing irregularities, which include
hardware interrupt moderation [26] and OS scheduling delay
jitter (which depends on the CPU utilization of the host). We
sampled a number of hosts in PlanetLab and found that many
of them used interrupt moderation, which could be enabled at
the sender (i.e., packets did not leave the host immediately),
at the receiver (i.e., arriving packets were delivered to the OS
“bunched up”), or at both. In fact, modern gigabit NICs enable
interrupt moderation by default, which means that bandwidth-
measurement tools that are not robust to timing irregularities
are unlikely to be successful in real networks.

To reduce the effect of interrupt moderation, techniques
such as Pathchirp [27] and the current version of Pathload
[26] incorporate mechanisms that aim to “weed out” packets
affected by interrupt delays. Specifically, Pathchirp requires
manual modification to force it to send more probing pack-
ets to obtain an accurate estimate. For Emulab experiments
in this paper, we use 6 times more packets per probing
train (i.e., chirp) than the default value in order to achieve
reasonable accuracy. This modification reduces the effect of
interrupt delay, but prolongs the measurement. On the other
hand, Pathload attempts to filter out affected packets without
increasing the number of probing packets, which unfortunately
has a limited effect when interrupt delays become non-trivial.
This makes Pathload’s estimation much more susceptible to
error, which happens fairly often in practice. Kang et al. [15]
overcome this problem in a recent proposal called Interrupt
Moderation Resilient Pathload (IMR-Pathload), which utilizes
signal de-noising techniques such as wavelet decomposition
and window-based averaging in detecting a delay trend exists
in one-way delay samples of probe packets.

We assess the performance of PRC-MT in scenarios with
non-negligible interrupt delays in comparison with Pathload
[26], IMR-Pathload [15], Pathchirp [27], IGI/PTR [6] using
metric At and Pathrate [3], CapProbe [16] using metric Ct

when the narrow link coincides with the tight link. For
available bandwidth At, our results show that PRC-MT ex-
hibits no negative side-effects related to interrupt moderation,
converges in 90−140 seconds in all examined topologies, and
outperforms the other studied methods in terms of accuracy
(1−5% error). We also find that IMR-Pathload’s estimates are
generally within 7% of the correct value and its convergence
delay is 80−100 seconds. After manually tweaking Pathchirp’s
train size and running duration, we were able to reduce its error
to about 15% and execution time to 200 seconds; however, its
default version performs much worse. Even though we supply
IGI/PTR with the correct tight-link capacity Ct, both methods
exhibit 40−60% error, but on the bright side converge within
just 3− 5 seconds.

For tight-link capacity Ct, PRC-MT’s error is below 7%
in all studied cases, while that of Pathrate exceeds 15% and
that of CapProbe is close to 60%. The measurement delay of
prior methods is also significantly higher than that of PRC-MT
– almost 2200 seconds in Pathrate and 500 seconds in Cap-
Probe. Our Emulab results suggest that existing methods (in
their unmodified form) may experience certain non-negligible
performance issues in real networks, while techniques PRC-
MT (introduced in this work) and IMR-Pathload are much
more likely to remain robust in practical settings. In fact,
PRC-MT not only provides automatic self-configuration that
overcomes interrupt-moderation effects and achieves quick
convergence, but also simultaneously estimates At and Ct and
is asymptotically accurate.

II. BANDWIDTH ESTIMATION BASED ON PROBING
RESPONSE CURVE

In this section, we investigate practical issues and difficulties
of using PRC in measuring available bandwidth At and
capacity Ct of the tight link. We then develop empirical
algorithms that overcome these problems and lead to a new
measurement tool called PRC-MT, which can measure both
bandwidth metrics of the tight link over multi-hop paths
under arbitrary cross-traffic and routing patterns. We start by
describing the basic idea of this approach.

A. Basic Idea

Define rI to be a sending rate of packets in a probe-packet
train at the sender and rO to be their arrival rate at the receiver.
Further define F = rI/rO to be the ratio of rI and rO under
fluid cross-traffic. Then, F can be expressed as [20]:

F =
rI

rO
=





1 rI ≤ At

λt + rI

Ct
At ≤ rI ≤ B

, (1)

where λt is the amount of cross-traffic that traverses the tight
link, At and Ct are the respective available bandwidth and
capacity of the tight link, and B represents a certain input rate
that is greater than At but no less than the second smallest
available bandwidth of the path. Note that B is dependent
on the routing matrix of cross-traffic that traverses the path
and thus it is not possible to compute its value without

3

At B rI

rI/rO
F

Fig. 1. Relationship between input rate rI and output rate rO .

complete knowledge of cross-traffic routing patterns. Fig. 1
illustrates a hypothetical fluid response curve F , which shows
the relationship between rI/rO and rI .

Observe from the figure that F consists of piece-wise linear
segments (at least two in multi-link paths), which breaks at
particular input rates At and B. The first segment ends when
input rate rI equals the available bandwidth At of the tight
link, while the second segment breaks down at rate B. Hence,
to extract At, we need to identify the first break point where F
starts to become larger than one. On the other hand, it requires
to identify the second linear segment in F to compute the tight-
link capacity Ct since Ct = 1/α, where α is the slope of the
second line segment.

Now the question we have is how to find the first break
point for estimation of At and how to identify the second line
segment and compute its slope α for capacity estimation Ct

without even knowing the exact value of B in practice. We
address these issues in the following subsections.

B. Difficulties

Define Z to be the real probing response curve of a path
over which arbitrarily routed bursty cross-traffic flows traverse.
Note that Z is different from the fluid curve F (as long as a
probe-train length N and a probe-packet size q are finite) and
this makes the task of identifying the first break point and the
second linear segment in Z significantly more challenging than
that in the fluid case. Note from [20] that Z is lower-bounded
by fluid response curve F and asymptotically approaches F as
N → ∞ or q → ∞. However, the difference between Z and
F is non-zero (i.e., Z − F > 0) in real networks, where the
size of packets is typically limited by the maximum transfer
unit (MTU) of network elements and the packet-train length N
cannot be arbitrarily large since router queue sizes are limited.

Before discussing implications of this deviation of Z from
F , we explore how the response curve Z behaves with a
different probe-train length N by conducting experiments in
Emulab and ns2 [24] using a single-hop topology of capacity
Ct = 90 Mb/s. For this experiment, we keep link utilization
at 32% (i.e., At = 61 Mb/s and λt = 29 Mb/s) and plot the
response curve Z for several different values of N in Fig. 2.

Notice in Fig. 2(a) that when N is small (e.g., 15), Z
fluctuates substantially and exhibits large deviation from the
fluid lower-bound F . However, as N increases, Z shows
prominent two linear lines and its deviation from F becomes
smaller. For example, with N = 240, rO is within 1.5% of
rI until rI reaches around 61 Mb/s, which is the available
bandwidth At of the path in this setup. Note that the difference

58 60 62 64 66

1

1.05

1.1

1.15

Input probe rate r
I

R
at

io
 r

I/r
O

N=15
N=60
N=240
fluid bound

(a) Emulab (q = 1500 bytes)

58 60 62 64 66

1

1.05

1.1

1.15

Input probe rate r
I

R
at

io
 r

I/r
O

N=60
N=480
fluid bound

(b) ns2 (q = 200 bytes)

Fig. 2. Probing response curves for a different probe-train length N in
Emulab experiments and ns2 simulations.

between Z and F would be zero as N → ∞. We do not
show this since we cannot use arbitrarily large N in Emulab
without causing packet loss due to queue size limit. Instead, we
conduct ns2 simulations for different N with a smaller probe-
packet size q = 200 bytes to better demonstrate behavior of
Z for a large probe-train length N . As shown in Fig. 2(b), we
observe that the behavior of Z is similar to the Emulab result
and gets very close to F when N = 480.

Next, we discuss how the evolution of the real response
curve Z on input probe rate rI affects bandwidth estimation.
Recall that to estimate the tight-link bandwidth At and Ct, we
need to identify the end of the first line segment (for estimation
of At) and stable second linear line (for extraction of Ct) from
the response curve Z. For accurate discovery of the first break
point in Z, it is required that variation in Z should be small
for different rI . More importantly, in order to extract accurate
capacity estimates Ct, the second line segment in Z should
be parallel to that in F even though they do not match (i.e.,
deviation Z − F > 0). Note that if the second line segments
in Z and F are parallel, then we can use any two points on
the line in Z to compute its slope α, which reflects the true
capacity Ct of the tight link regardless of their locations as
long as they are on the second line segment. Further note that
under this condition, the amount of deviation Z − F has no
direct impact on estimation accuracy. However, if the second
line segment in Z is not parallel to that of fluid counter part F ,
then estimation accuracy of Ct depends on which two points
we select in computing the slope α, which makes the capacity
estimation be more susceptible to measurement errors.

To confirm the above discussion and demonstrate the direct
impact of the probe-train length N on estimation accuracy,
we conduct experiments using the same single-hop setup. First
define eC and eA to be the respective relative estimation errors
of capacity and available bandwidth of the tight link Lt of a
path:

eC =
|Ct − C̃t|

Ct
, eA =

|At − Ãt|
At

, (2)

where C̃t and Ãt are the respective estimates of the true
capacity Ct and available bandwidth At of the tight link Lt.
We then illustrate evolution of eA and eC for different N in
Fig. 3. As Fig. 3(a) shows, eA quickly drops from 28% (for
N = 10) to a value that is less than 2% as N becomes 60.
Similarly, estimation accuracy of Ct is significantly improved
from eC = 80% for N = 10 to eC = 3% for N = 120 (see

4

0 50 100 150 200
0

0.2

0.4

0.6

Probe−train length

R
el

at
iv

e
es

tim
at

io
n

er
ro

r

(a) eA

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Probe−train length

R
el

at
iv

e
es

tim
at

io
n

er
ro

r

(b) eC

Fig. 3. Evolution of relative estimation errors eA and eC of PRC-MT for
different N .

Fig. 3(b)). These results indicate the importance of having
sufficiently large N , which makes the line segments in the
response curve Z straight without much fluctuation and allows
accurate bandwidth estimation.

Note that even though a large N brings down fluctuation
of line segments in Z, using an arbitrarily large value is not
desirable since it increases measurement overhead and can
also induce too much packet loss within a probe train. On
the other hand, use of too small N results in high estimation
errors. Hence, it is clear that there exists a trade-off between
accuracy and overhead and thus proper selection of the probe-
train length N is very important in developing PRC-MT.
However, selection of appropriate value of N is non-trivial
since fluctuation of line segments in the real response curve
Z depends on many unknown factors (such as amount of cross-
traffic) that are specific for a path under investigation.

Now, the problem we need to solve is how to select N in
practice for a particular path such that the second line segment
in Z becomes parallel to that in F . We investigate this next.

C. Parameter Selection

Recall that for a sufficiently large N , the slope of the second
line segment in Z converges to a value that makes it parallel
to that of fluid curve F in an input rate range rI ∈ [At, B].
We can interpret this as that the ratio rI/rO saturates at a
certain value when the probe-train length N becomes large. To
confirm this, we examine the quantity of rI/rO for a different
N using the setup discussed in the previous subsection. For
this purpose, we send packets with rate rI = 68 Mb/s (which
is higher than the available bandwidth At = 61 Mb/s of the
path in this setup) with a varying N and plot rI/rO in Fig.
4. As the figure shows, rI/rO quickly drops to a value that is
slightly larger than the fluid-bound (i.e., (λt + rI)/Ct = 1.07)
as N increases. This leads us to investigating an empirical
method, which iteratively probes for N that makes the ratio
rI/rO saturate for a given input rate rI .

In what follows below in this section, we discuss a simple
selection procedure for N , which adjusts its value based on
variation of rI/rO for a given sending rate rI discussed above.
Although there is no particular constraints on the input sending
rate for this routine, it is preferable to use a rate that is not
so smaller than the available bandwidth At of the path since
variation of the ratio rI/rO for an input rate that is smaller
than At diminishes rather fast with small increase in a probe-

0 50 100 150 200
1

1.1

1.2

1.3

1.4

Probe−train length

R
at

io
 r

I/r
O

Ratio r
I
/r

O

fluid bound

Fig. 4. Evolution of ratio rI/rO for different values of N .

train length N [20]. Finding a rate that is no less than At

would be sufficient for this purpose and Asymptotic Dispersion
Rate (ADR) [2] of a path is a good candidate for the initial
value of rI since it is proven in [2] that At < ADR. Hence,
PRC-MT probes for ADR by sending a single packet train
and computes ADR = q/E[y] at the receiver (where E[y]
is the average inter-packet dispersion of packets in the probe
train). With the input sending rate rI determined, the rest of
the procedure for train-length probing is as follows.

Define γ to be the ratio of the current input and output
rates: γ = rI/rO and γold to be the previous value of γ.
Further define Nmin and Nmax to be a respective minimum
and maximum train length that can be adjusted by the user and
σ to be a certain threshold that can vary between zero and one.
The selection routine conducts binary search between Nmin

and Nmax to find a value that saturates γ. This procedure
tests if γ converges to a certain value for a given length N
by sending to the receiver packet trains of length N with rate
rI = ADR. To assess saturation of γ, the selection procedure
computes the following relative error metric ε:

ε =
|γ − γold|

γ
. (3)

Then, the routine decreases N if ε ≤ σ; increases otherwise.
Note that users can use any packet size qmin ≤ q ≤ qmax

(where we use qmin = 200 bytes and qmax = 1500 bytes),
in which case Nmin and Nmax are scaled up or down by
qmax/q. This routine ensures us to select a larger N when a
user chooses a smaller packet q, sufficing the condition for
stabilizing fluctuation of the line segments in Z as discussed
in the previous subsection. For experiments in Sections III and
IV, we use Nmin = 60, Nmax = 3000, σ = 0.02, and q = 200
bytes.

D. Bandwidth Probing

With the probe-train length N in hands, our next question
is how to identify the first break point in the response curve
Z, at which the input sending rate rI starts to become larger
than the arrival rate rO (see Fig. 1). To efficiently search for
this point, PRC-MT uses iterative probing-based search, which
is similar to Pathload [11]. Note, however, that the two tools
are different in a way that assesses whether an input rate rI

corresponds to At. For example, PRC-MT determines if the
current rate rI > At by directly comparing rI with rO, while
Pathload infers it by examining one-way delays of the probe
packets.

5

For probing, PRC-MT sends a group of K packet-trains
with a given rate rI . Then, based on how much fraction η
of them belongs to either rI > rO or rI < rO, it adjusts its
sending rate rI for next K probe-trains. Specifically, PRC-MT
decreases rI if ηK probe-trains are asserted to be rI > rO;
increases rI if they are asserted to be rI < rO. Note that it
is possible that neither of the above two cases happens (i.e.,
number of probe-trains that belong to either rI > rO or rI <
rO are less than ηK). If this is the case, we treat it like a
“grey region” in Pathload (see [11] for details).

Let [WL,WH] be an available bandwidth range updated
after each round of K probe-train measurements, where WL

represents the highest rate that has been identified to be less
than At for a certain round and WH represents the lowest rate
that has been identified to be higher than At up to that round.
After each round of probing, PRC-MT updates the bandwidth
range and selects a new probing rate rI for next round using
the way Pathload does. This search process continues until the
bandwidth range [WL,WH] around At becomes smaller than
a certain threshold ω that can be automatically selected (e.g.,
ω = 0.02ADR) based on measured ADR or given by the
user. PRC-MT returns Ãt = (WL + WH)/2 as the available
bandwidth estimate of the tight link when its internal algorithm
terminates. We empirically set η = 60% and K = 12 as their
respective default value in PRC-MT.

After finished probing the available bandwidth, PRC-MT
starts a procedure for the tight-link capacity Ct estimation. The
main focus of this routine is to select two points that will be
used to extract Ct from the second line segment. Note that to
facilitate estimation of Ct, PRC-MT records the sending rate
rI and its corresponding receiving rate rO during available
bandwidth probing whenever the current rI reduces the upper
bound WH due to rI being larger than rO. These recorded
points are the possible candidates for computing a capacity
estimate C̃t.

Note that we can select any two among the recorded points
to extract Ct in ideal case (i.e., the second segment is a
perfect straight line and there is no measurement noise). Un-
fortunately, however, there is no straightforward method that
chooses optimal two points with certain measurement noise
and an imperfect straight line, which leads us to exploring
empirical method (which we explain below).

Assume that there are m ≥ 2 recorded points (x1, y1),
. . . , (xm, ym), where xi and yi (i = 1, . . . ,m) are the re-
spective sending and receiving rates used during the available
bandwidth probing. PRC-MT first chooses (xi, yi), where xi

is the smallest among m points that satisfies xi ≥ WH . We
have two reasons for not using the point with rI = Ãt as the
first point. First, it is not very clear from the response curve
Z where the second line segment starts around At (see Fig.
2(a)). The other reason is that the estimated value Ãt may
be on the first line segment due to measurement error (e.g.,
Ã < At), in which case can result in high errors in capacity
estimation.

Recall that to produce accurate capacity estimates C̃t, the
second point should be on the second line segment. Since

R1 R2 R3
C1 C2

R4 R5
C3 C4

PRPS

S2 D2 S3 D3

S4 D4 D

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

S1

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

100 Mb/s

10 ms

Fig. 5. Evaluation topology.

PRC-MT picks the first point (xi, yi) whose sending rate xi

is closest to WH among recorded points, we may consider the
point that is close to the first one as the best candidate for the
second point since it has higher chance to be on the second
line segment. However, if two points are close to each other,
then computing the linear slope of the two points is more
susceptible to measurement noise. Hence, it is better to have
the second point as far away as possible from the first one as
long as they are on the second line segment. Thus, we select
the farthest two points among the recorded points to extract
Ct. Based on the above discussion, PRC-MT uses (xj , yj) as
the second point, where xj is the largest among the recorded
points.

Having two points (xi, yi) and (xj , yj) selected, PRC-MT
computes the tight-link capacity estimate C̃t:

C̃t =
yiyj(xi − xj)
xiyj − xjyi

, (4)

which is inverse of the slope of the linear line segment between
(xi, xi/yi) and (xj , xj/yj).

Before concluding this section, we should note that if the
number of recorded points m is less than 2, PRC-MT requires
to send additional packets with rates rI that is larger than Ãt to
obtain (rI , rO) pairs. Even though this case will rarely happen
(only when a very large threshold ω is used to terminate the
algorithm), we include this for the sake of completeness.

III. PERFORMANCE OF PRC-MT

To evaluate the performance of PRC-MT, we conduct ex-
periments in Emulab2 [4]. We examine estimation accuracy of
PRC-MT and its convergence behavior and then compare these
results with those in existing methods. For experiments in this
section, we do not use interrupt moderation (i.e., interrupt
delay δ = 0) at the receiver and defer discussion of these tools
under interrupt delay to Section IV. We start by describing the
experimental setup.

A. Experimental Setup

For all experiments, we use a topology shown in Fig. 5,
in which source PS sends probe data to the destination PR
through five routers R1, . . . , R5. Nodes Si (i = 1, 2, 3, 4) send

2In Emulab, users can change configuration of network interface cards.

6

TABLE I
EVALUATION SETUP

Different link bandwidths (Mb/s)
C1 A1 C2 A2 C3 A3 C4 A4

Case-I 75 31.8 90 51.6 90 42.1 [60] 40.7

Case-II 75 41.3 90 70.7 90 46.7 [60] 26.4

Case-III [60] 35.8 90 70.7 90 23.4 75 18.1

Case-IV [60] 21.6 90 65.9 90 42.1 75 36.7

Case-V [60] 50.2 90 61.1 90 41.9 75 50.8

Case-VI 75 28.9 90 37.8 90 13.8 [60] 31.2

cross-traffic packets to destination nodes Di (i = 1, 2, 3, 4) at
an average rate λi. The speed of all access links is 100 Mb/s
(delay 10 ms) and the remaining links Li (i = 1, 2, 3, 4) be-
tween routers Ri and Ri+1 have capacities Ci and propagation
delay 40 ms.

To examine the estimation accuracy of PRC-MT, we use
six different network settings shown in Table I, which lists
the capacity and available bandwidth of each link for different
experimental scenarios. Note that the table shows a fair amount
of cross-traffic at each node, which is needed to ensure that
each case represents some non-degenerate scenario. Without
cross-traffic, most studied techniques are accurate and their
comparison is not very insightful. The shaded values in
each row represent the tight-link capacity Ct and available
bandwidth At of the path for each case. The values in
square brackets are the capacities Cn of the narrow link (i.e.,
bottleneck bandwidth) for each case. Notice from the table
that the experimental settings cover all possible relationships
between the location of the tight link and narrow link. For
instance, in cases II and IV, the narrow link coincides with
the tight link; in cases I and VI, the narrow link follows the
tight link; while in cases III and V, the narrow link precedes
the tight link.

In all experiments, we use TCP cross-traffic generated by
the Iperf traffic generator [8] to load network paths. Although
Iperf traffic does not exactly resemble Internet traffic, it is
adequate for our purposes in this paper. We run 100 threads
in each cross-traffic source Si to generate TCP flows that are
injected into routers R1, R2, and R3 and keep the utilization
of each router Ri according to the values shown in Table I.
To maintain a fixed average utilization at each link in the
experiment, we place an additional router (not shown in the
figure) between node S1 and router R1, S2 and R1, S3 and
R3, and S4 and R2 to limit the aggregate sending rate of TCP
flows to the capacity of the additional router. The utilization of
R1, R2, and R3 is controlled by properly setting the capacity
of the auxiliary router.

B. Estimation Accuracy of PRC-MT

We next investigate estimation accuracy and convergence
behavior of PRC-MT. Experimental results of PRC-MT are
summarized in Table II, which shows relative estimation
errors eA and eC and convergence time of PRC-MT’s internal
algorithm. Note that like many other existing methods (e..g,
Pathload [26], IGI/PTR [6]), PRC-MT’s running time depends
on round-trip delay (that includes propagation delay of each

TABLE II
PERFORMANCE OF PRC-MT (δ = 0 µS)

Evaluation Relative estimation error
scenario eA eC time
Case-I 3.49% 6.04% 89 sec
Case-II 2.35% 2.52% 115 sec
Case-III 0.88% 1.31% 96 sec
Case-IV 5.05% 3.51% 138 sec
Case-V 5.51% 6.38% 102 sec
Case-VI 9.74% 3.51% 125 sec

link and queuing delay of each intermediate routers) of the
path under investigation.

As Table II shows, PRC-MT estimates available bandwidth
of the tight link with over 90% accuracy for all cases studied
in this paper. Its estimation accuracy of the tight-link capacity
is as good as that of available bandwidth for all studied cases.
In all experimentations, PRC-MT’s algorithm converges within
140 seconds.

C. Performance Comparison

In this subsection, we compare PRC-MT with several exist-
ing available bandwidth estimators (Pathload [26], Pathchirp
[27], and IGI/PTR [6]) and recent capacity estimation tools
(Pathrate [2] and CapProbe [16]) with respect to estimation
accuracy using the setup shown in Table I. For existing
methods, we use user-level implementations3 (which do not
require super-user privilege to run the program) that are
publicly available or obtained from the authors.

1) Available Bandwidth Comparison: We first compare
PRC-MT with Pathload, Pathchirp, and IGI/PTR. We also
have studied Spruce [29], but do not include its result here
since it performs significantly worse than the other tools in all
cases studied in this paper (see [18], [20] for details of Spruce
and possible causes of its estimation inaccuracy in multi-hop
paths).

Table III shows relative estimation errors eA for different
cases. For Pathload, we average the low and high values of the
produced estimates after its internal algorithm terminates. For
Pathchirp, we use “jumbo” option J that increases accuracy
by sending more packets in each probe train (called chirp)
than the default. We manually set this option J = 6 to send 6
times more packets than the default to produce accurate and
reliable available bandwidth estimates. Selection of the value
J is purely based on trial and error since Pathchirp does not
offer any automatic selection mechanism for it. Different from
other tools studied in this subsection, Pathchirp is an open
loop system, which does not have an automatic convergence
mechanism. It runs for a specified time t and stops when
the running time reaches t, without knowing convergence of
its estimate. We use t = 200 seconds to obtain results in
this paper even though its default execution time is t = 600
seconds since its estimation accuracy has not been improved

3Note that kernel-level implementation can improve packet time-tamping
at the measurement hosts, which in turn can lead to improved performance.
However, we do not use this for fair comparison of existing estimation tools.

7

TABLE III
AVAILABLE BANDWIDTH ESTIMATION METHODS (δ = 0 µS)

Evaluation Relative estimation error eA

scenario PRC-MT Pathload Pathchirp IGI / PTR
eA time eA time eA time eA time

Case-I 3.49% 89 sec 9.45% 69 sec 10.84% 200 sec 10.58/16.02% 3 sec
Case-II 2.35% 115 sec 8% 69 sec 8.53% 200 sec 4.21/9.93% 4 sec
Case-III 0.88% 96 sec 7.57% 70 sec 0.39% 200 sec 72.76/30.28% 5 sec
Case-IV 5.05% 138 sec 6.48% 69 sec 1.62% 200 sec 19.72/24.63% 6 sec
Case-V 5.51% 102 sec 16.58% 108 sec 19.81% 200 sec 13.38/5.31% 3 sec
Case-VI 9.74% 125 sec 15.01% 99 sec 18.04% 200 sec 98.56/59.24% 5 sec

TABLE IV
CAPACITY ESTIMATION METHODS (δ = 0 µS)

Methods Relative estimation error eC

Case-II Case-IV
eC time eC time

PRC-MT 2.52% 115 (sec) 3.51% 138 (sec)
Pathrate 28.33% 2191 (sec) 21.67% 2191 (sec)

CapProbe 47.32% 500 (sec) 63.38% 500 (sec)

even we run it more than 200 seconds in our experimental
setup. In IGI/PTR case, we use the estimates available at the
end of its internal convergence algorithm. Note that we feed
IGI/PTR the exact tight-link capacity Ct, while all other tools
operate without this information.

As the table shows, Pathchirp produces estimates with less
than 20% of error for all cases. Note that IGI/PTR produces
estimates very quickly (40 times faster than Pathchirp), but its
estimation error is significantly higher than that of Pathchirp
(see [13] for details of possible causes of IGI’s estimation inac-
curacy even with more probe samples and longer measurement
time in multi-hop paths). Pathload measures the paths with
accuracy that is similar to Pathchirp. Notice in the table that
PRC-MT produces bandwidth estimates with accuracy that is
comparable to or better than those of Pathload and Pathchirp.

2) Bottleneck Bandwidth Comparison: Note that only in
cases II and IV, the narrow link coincides with the tight link
of the path. Hence, we compare PRC-MT only in these path
configurations with recent bottleneck bandwidth estimators
CapProbe and Pathrate. For CapProbe, we use 1800 packet-
pairs for estimation since it often does not produce good
estimates (on the studied paths) with 100 pairs recommended
in the paper [16]. In Pathrate, the internal algorithm executes
for over 2000 seconds (around 36 minutes) to get an estimate
of the bottleneck capacity of the end-to-end path (note that
Pathrate has quick termination mode that takes about 100
seconds, but we do not use this since its estimate is not
accurate in the cases studied in this paper).

Table IV illustrates relative capacity estimation errors eC of
the different methods. As the table shows, PRC-MT produces
capacity estimates C̃t of the tight link within 5% of its true
values Ct in the studied cases, which is significantly better
than those of Pathrate and CapProbe (see [13] for details
of possible causes of CapProbe’s random convergence and
estimation inaccuracy in heavily congested paths).

IV. IMPACT OF INTERRUPT DELAY ON BANDWIDTH
MEASUREMENT

As use of interrupt moderation (that delays generation of
new interrupts) has become a common practice in modern
network settings, host machines in real networks employ
interrupt delays that vary widely in order to reduce CPU
utilization and to increase network throughput. It is reported in
[7] that Microsoft Windows-based operating systems perform
best when Intel Gigabit NIC (GbE) controller interrupts with
delays between 83 and 250 µs, while Linux-based systems
perform best with interrupt delays between 125 and 1000 µs.
Jin et al. [12] also report that a variety of systems equipped
with Gigabit NICs require to delay generation of interrupts
over 470 µs to achieve good throughput in receiving high-
speed TCP streams and to substantially reduce CPU utilization.

To assess robustness of bandwidth estimation tools under
the influence of interrupt moderation, we investigate how non-
trivial interrupt delay affects the tools by comparing their
estimation accuracy using the same setup in Table I. Among
tools evaluated with no interrupt delay (δ = 0) in Section III,
use of interrupt moderation affects Pathload the most, while
others exhibit estimation accuracy that is similar to that in the
cases without using interrupt moderation. Recently, Kang et al.
[15] proposed a measurement tool called IMR-Pathload that is
resilient to various interrupt delays and significantly improves
Pathload’s estimation reliability under such conditions (see
[15] for detailed behavior of Pathload and IMR-Pathload under
a wide range of interrupt delays). We include this method in
comparison of estimation tools under interrupt moderation in
the following subsections.

A. Performance Comparison under Interrupt Moderation

We compare PRC-MT with IMR-Pathload as well as the
same existing available bandwidth estimators and capacity
estimation tools studied in Section III with non-trivial interrupt
delay to understand their robustness to end-host interrupt mod-
eration. For this purpose, we use the same path configurations
discussed in Section III.

1) Available Bandwidth Estimation: Table V illustrates rel-
ative estimation errors eA of all available bandwidth estimators
studied in this paper for different cases under an interrupt delay
δ = 500 µs.

As the table shows, PRC-MT produces very accurate band-
width estimates (less than 6% of error) and outperforms all

8

TABLE V
AVAILABLE BANDWIDTH ESTIMATION METHODS (δ = 500 µS)

Evaluation Relative estimation error eA

scenario PRC-MT IMR-Pathload Pathload Pathchirp IGI / PTR
eA time eA time eA time eA time eA time

Case-I 3.71% 90 sec 5.12% 88 sec −− −− 7.22% 200 sec 62.34/22.8% 4 sec
Case-II 3.83% 89 sec 2.17% 89 sec −− −− 13.57% 200 sec 62.37/13.83% 4 sec
Case-III 1.55% 133 sec 6.78% 95 sec −− −− 5.14% 200 sec 44.14/44.81% 4 sec
Case-IV 0.19% 89 sec 3.24% 99 sec −− −− 13.01% 200 sec 59.03/21.25% 5 sec
Case-V 5.81% 92 sec 7.23% 79 sec −− −− 11.26% 200 sec 69.21/1.64% 3 sec
Case-VI 5.56% 96 sec 5.56% 80 sec −− −− 3.54% 200 sec 29.15/67.68% 5 sec

TABLE VI
CAPACITY ESTIMATION METHODS (δ = 500 µS)

Methods Relative estimation error eC

Case-II Case-IV
eC time eC time

PRC-MT 1.72% 89 (sec) 7.65% 86 (sec)
Pathrate 17.5% 2191 (sec) 18.33% 2191 (sec)

CapProbe 57.65% 500 (sec) 81.77% 500 (sec)

other existing methods studied. Notice that IMR-Pathload’s
estimation accuracy is as good as PRC-MT, but Pathload is un-
able to produce estimates for any of the cases as shown in the
table as empty cells. This suggests that Pathload’s algorithm is
susceptible to non-trivial interrupt delays (see [15] for details).
Observe that Pathchirp exhibits estimation accuracy that is
slightly worse than PRC-MT and IMR-Pathload in some cases
(e.g., cases II, IV, and V), but comparable to them in other
cases. Note that Pathchirp’s estimation accuracy is similar to
that observed without the influence of interrupt moderation
(i.e., δ = 0) (see Table III), which implies that its “jumbo”
option (if selected properly) that sends substantially more
probe packets makes it resilient to interrupt delays. Estimation
accuracy of IGI/PTR is not much different from those cases
with no interrupt delay shown in Table III, but is a lot worse
than those of PRC-MT, IMR-Pathload, and Pathchirp.

2) Capacity Estimation: We compare PRC-MT with Cap-
Probe and Pathrate in cases II and IV, in which tight link and
narrow link coincide. We show relative estimation errors eC of
the above methods in Table VI. As the table shows, PRC-MT
produces capacity estimates with over 90% accuracy, which
significantly outperforms Pathrate and CapProbe in the studied
cases.

B. Measurement Overhead

We next briefly discuss the amount of probe data used in
bandwidth sampling for different methods. To allow Pathload’s
algorithm to terminate normally and produce some bandwidth
estimate, we use a small interrupt delay δ = 100 µs (other
values of δ produce similar results and are omitted for brevity).
For the existing methods, we use the same packet size and
number of trains or packet pairs recommended in the original
paper.

Table VII shows the number of packet samples and cor-
responding total amount of data used to get bandwidth esti-
mates for cases II and IV. When tools use varying sizes of

packets during probing, we show their average in the table.
As the table shows, IGI/PTR and CapProbe do not use many
samples while PRC-MT, IMR-Pathload, Pathload, Pachchirp,
and Pathrate require significantly more probe packets for their
measurement. Note that PRC-MT requires even more samples
in case II than Pathrate to examine the path. However, since
it uses smaller packet size on average, the amount of data
used is significantly less than that of Pathrate. For instance,
Pathrate sends 26000 samples in both cases, which amounts
to 37 MB of data, while PRC-MT uses 4 − 8 MB of probe
packets. Also note that both IMR-Pathload and Pathload incur
almost 4 times less overhead than Pathchirp.

Recall that in this paper we use “jumbo” option to in-
crease Pathchirp’s estimation accuracy since without using
that option, its accuracy is significantly worse than that of
Pathload. This result is somewhat different from that reported
in [28], which conducted simulations using ns2 with low
link utilization (at most 53%). In our experimental setup
used in this work where link utilization reaches up to 80%,
Pathchirp were not able to produce accurate estimates without
using the jumbo option due to higher cross-traffic interference,
timestamping inaccuracy, and interrupt moderation. Higher
measurement overhead of Pathchirp in this paper (different
from that in [28]) accounts for the use of the jumbo option.

V. RELATED WORK

Bandwidth estimation has been extensively studied in the
past 10 to 15 years and many techniques have been proposed
in the literature. One direction of this prior work is to measure
capacity of the tight link, which utilizes inter-packet spacings
sampled at the receiver to identify the capacity mode presented
in their histogram (bprobe [1], PBM [25], Nettimer [17],
and Pathrate [2]) or uses minimally delayed packet pairs to
produce its estimate (CapProbe [16]). Another dimension of
related work focuses on measuring available bandwidth of the
tight link (Pathload [11], IMR-Pathload [15], IGI/PTR [6], and
TOPP [23]). These techniques adjust sending rates of probe
packets to infer the available bandwidth using relationship
between the sending rate and corresponding receiving rate.
Note that unlike PRC-MT introduced in this paper, none of
these methods can measure both bandwidth metrics in real
network environments with arbitrary cross-traffic and routing
patterns.

Recently, there have been a growing demand to evaluate
existing tools under real network settings, where timestamping

9

TABLE VII
BANDWIDTH SAMPLING OVERHEAD (δ = 100 µS)

Methods Case-II Case-IV
Number of Packet size Total probe data Number of Packet size Total probe data

packets (bytes) (MB) packets (bytes) (MB)
PRC-MT 32, 162 262 8.4 14, 086 292 4.1

IMR-Pathload 8, 400 239 2 12, 000 225 2.7

Pathload 10, 800 260 2.8 12, 000 267 3.2

Pathchirp 7, 560 1, 000 7.5 7, 560 1, 000 7.5

IGI/PTR 600 1, 000 0.6 800 1, 000 0.8

Pathrate 26, 000 1, 454 37.8 26, 000 1, 454 37.8

CapProbe 1, 800 1, 000 1.8 1, 800 1, 000 1.8

inaccuracy, interrupt delays, and high link utilization of net-
work paths can significantly affects estimation accuracy and
reliability of existing tools. Although studies (such as [28])
based on ns2 use traffic reproduced from real networks, their
evaluation setup provides perfect timestamping and no inter-
rupt delays and arguably does not capture the real behavior of
these tools in the Internet.

VI. CONCLUSION

This paper implemented a new bandwidth measurement
tool called PRC-MT that can extract both bandwidth metrics
of the tight link over multi-hop paths under arbitrary cross-
traffic and routing patterns. We evaluated PRC-MT in Emulab
and showed that PRC-MT produces available bandwidth and
capacity estimates with very high accuracy even under the
influence of a large interrupt delay. We also evaluated existing
bandwidth estimation tools under various network settings
and found that Pathload is susceptible to timing irregulari-
ties caused by interrupt moderation while IMR-Pathload and
Pathchirp showed resilience to such conditions.

REFERENCES

[1] R. L. Carter and M. E. Crovella, “Measuring Bottleneck Link Speed in
Packet Switched Networks,” Performance Evaluation, vol. 27–28, pp.
297–318, Oct. 1996.

[2] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet-Dispersion Tech-
niques and a Capacity-Estimation Methodology,” IEEE/ACM Trans.
Netw., vol. 12, no. 6, pp. 963–977, Dec. 2004.

[3] C. Dovrolis, P. Ramanathan, and D. Moore, “What Do Packet Dispersion
Techniques Measure?” in Proc. IEEE INFOCOM, Apr. 2001, pp. 905–
914.

[4] Emulab. [Online]. Available: http://www.emulab.net/.
[5] P. Haga, K. Diriczi, G. Vattay, and I. Csabai, “Granular Model of Packet

Pair Separation in Poissonian Traffic,” Computer Networks, vol. 51,
no. 3, pp. 683–698, Feb. 2007.

[6] N. Hu and P. Steenkiste, “Evaluation and Characterization of Available
Bandwidth Probing Techniques,” IEEE J. Sel. Areas Commun., vol. 21,
no. 6, pp. 879–974, Aug. 2003.

[7] Interrupt Moderation Using Intel GbE Controllers. [Online]. Available:
http://download.intel.com/design/network/applnots/ap450.pdf.

[8] Iperf – The TCP/UDP Bandwidth Measurement Tool. [Online]. Avail-
able: http://dast.nlanr.net/Projects/Iperf/.

[9] V. Jacobson, “pathchar – A Tool to Infer Characteristics of Internet
Paths.” [Online]. Available: ftp://ftp.ee.lbl.gov/pathchar/.

[10] M. Jain and C. Dovrolis, “End-to-End Available Bandwidth: Measure-
ment Methodology, Dynamics, and Relation with TCP Throughput,” in
Proc. ACM SIGCOMM, Aug. 2002, pp. 295–308.

[11] M. Jain and C. Dovrolis, “Pathload: A Measurement Tool for End-to-
End Available Bandwidth,” in Proc. Passive and Active Measurement
Workshop, Mar. 2002.

[12] G. Jin and B. L. Tierney, “System Capability Effects on Algorithms for
Network Bandwidth Measurement,” in Proc. ACM IMC, Oct. 2003, pp.
27–38.

[13] S. Kang, X. Liu, A. Bhati, and D. Loguinov, “On Estimating Tight-
Link Bandwidth Characteristics over Multi-Hop Paths,” in Proc. IEEE
ICDCS, Jul. 2006.

[14] S. Kang, X. Liu, M. Dai, and D. Loguinov, “Packet-Pair Bandwidth
Estimation: Stochastic Analysis of a Single Congested Node,” in Proc.
IEEE ICNP, Oct. 2004, pp. 316–325.

[15] S. Kang and D. Loguinov, “IMR-Pathload: Robust Available Bandwidth
Estimation under End-Host Interrupt Delay,” in Proc. PAM, Apr. 2008,
pp. 172–181.

[16] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi, “CapProbe:
A Simple and Accurate Capacity Estimation Technique,” in Proc. ACM
SIGCOMM, Aug. 2004, pp. 67–78.

[17] K. Lai and M. Baker, “Measuring Bandwidth,” in Proc. IEEE INFO-
COM, Mar. 1999, pp. 235–245.

[18] L. Lao, C. Dovrolis, and M. Y. Sanadidi, “The Probe Gap Model
can Underestimate the Available Bandwidth of Multihop Paths,” ACM
SIGCOMM Comput. Commun. Review, vol. 36, no. 5, pp. 29–34, Oct.
2006.

[19] X. Liu, K. Ravindran, B. Liu, and D. Loguinov, “Single-Hop Probing
Asymptotics in Available Bandwidth Estimation: Sample-Path Analy-
sis,” ACM IMC, pp. 300–313, Oct. 2004.

[20] X. Liu, K. Ravindran, and D. Loguinov, “Multi-Hop Probing Asymp-
totics in Available Bandwidth Estimation: Stochastic Analysis,” in Proc.
ACM IMC, Oct. 2005, pp. 173–186.

[21] X. Liu, K. Ravindran, and D. Loguinov, “Measuring Probing Response
Curves over the RON Testbed,” in Proc. Passive and Active Measurement
Workshop, Mar. 2006.

[22] S. Machiraju, D. Veitch, F. Baccelli, and J. Bolot, “Adding Definition to
Active Probing,” ACM SIGCOMM Comp. Comm. Rev., vol. 37, no. 2,
pp. 17–28, Apr. 2007.

[23] B. Melander, M. Björkman, and P. Gunningberg, “A New End-to-End
Probing and Analysis Method for Estimating Bandwidth Bottlenecks,”
in Proc. IEEE GLOBECOM, Nov. 2000, pp. 415–420.

[24] ns2, “Network Simulator.” [Online]. Available: http://www.isi.edu/
nsnam/ns/.

[25] V. Paxson, “Measurements and Analysis of End-to-End Internet Dynam-
ics,” Ph.D. Dissertation, Computer Science Department, University of
California at Berkeley, 1997.

[26] R. Prasad, M. Jain, and C. Dovrolis, “Effects of Interrupt Coalescence
on Network Measurements,” in Proc. Passive and Active Measurement
Workshop, Apr. 2004.

[27] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: Efficient Available Bandwidth Estimation for Network
Paths,” in Proc. Passive and Active Measurement Workshop, Apr. 2003.

[28] A. Shriram and J. Kaur, “Empirical Evaluation of Techniques for
Measuring Available Bandwidth,” in Proc. IEEE INFOCOM, May 2007.

[29] J. Strauss, D. Katabi, and F. Kaashoek, “A Measurement Study of
Available Bandwidth Estimation Tools,” in Proc. ACM IMC, Oct. 2003,
pp. 39–44.

