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Abstract— In this paper, we examine the problem of estimating To understand some of the reasons for the lack of stochas-
the capacity of bottleneck links and available bandwidth of end- tjc modeling in this field, this paper studies single-node
to-end paths under non-negligible cross-traffic conditions. We bandwidth measurement problem and derives a closed-form

present a simple stochastic analysis of the problem in the context _ . . . . -
of a single congested node and derive several results that allow theestlmator for both capacity’ and available bandwidtil =

construction of asymptotically-accurate bandwidth estimators. C — 7', wherer is the average rate of cross-traffic at the link.
We first develop a generic queuing model of an Internet router For an arbitrary cross-traffic arrival proces&), we define

and solve the estimation problem assuming renewal cross-traffic 7 gs the asymptotic time-average dft) and assume that it
at the bottleneck link. Noticing that the renewal assumption on exists and is finite:

Internet flows is too strong, we investigate an alternative filtering

solution that asymptotically converges to the desired values of t

the bottleneck capacity and available bandwidth under arbitrary 7= lim 1 r(u)du < co. 1)
(including non-stationary) cross-traffic. This is one of the first t—oo t

methods that simultaneously estimates both types of bandwidth 0

and is provably accurate. We finish the paper by discussing the
impossibility of a similar estimator for paths with two or more
congested routers.

Notice that the existence of (1) does not require stationarity
of cross-traffic, nor does it impose any restrictions on the ar-
rival of individual packets to the router. While other definitions

|. INTRODUCTION of available bandwidthd and the average cross-traffic rate

Bandwidth estimation has recently become an importaate possible, we find that (1) serves our purpose well as it
and mature area of Internet research [1], [2], [4], [5], [6]provides a clean and mathematically tractable metric.

[7], [10], [11], [12], [14], [15], [16], [18], [19], [20], [21], The first half of the paper deals with bandwidth estimation
[22], [23], [24], [25], [26], [27]. A typical goal of these underi.i.d. renewal cross-traffic and the analysis of packet-
studies is to understand the characteristics of Internet pagi@r/train methods. We first show that under certain conditions
and those of cross-traffic through a variety of end-to-ermhd even the simplest.i.d. cross-traffic, histogram-based
and/or router-assisted measurements. The proposed techniguethiods commonly used in prior work (e.qg., [5]) can be misled
usually fall into two categories — those that estimate thsto producing inaccurate estimates ©f We overcome this
bottleneck bandwidth [4], [5], [6], [12], [13] and those thatimitation by developing an asymptotically accurate model for
deal with the available bandwidth [11], [19], [24], [26]. RecallC'; however, since this approach eventually requires ergodicity
that the former bandwidth metric refers to the capacity of thaf cross-traffic, we later build another model that imposes
slowest link of the path, while the latter is generally defineghore restriction on the sampling process (using PASTA prin-
as the smallest average unused bandwidth among the routdpes suggested in [26]), but allows cross-traffic to exhibit
of an end-to-end path. arbitrary characteristics.

The majority of existing bottleneck-bandwidth estimation Unlike previous studies [26], we prove that the correspond-
methods are justified assuming no cross-traffic along the patly PASTA-based estimators converge to the correct values and
and are usually examined in simulations/experiments to sheiow that they can be used to simultaneously measure capacity
that they can work under realistic network conditions [4] and available bandwidtil. To our knowledge, this is the
[5]1, [6], [7], [12]. With available bandwidth estimation, crossfirst estimator that measures bdathand A without congesting
traffic is essential and is usually taken into account in ththe link, assumes non-negligible, non-fluid cross-traffic in the
analysis; however, such analysis predominantly assumes a fldédivations, and applies to non-stationafy). Note that while
model for all flows and implicitly requires that such models bthis estimator can measurk over multiple links,its inherent
accurate in non-fluid cases. Simulations/experiments are agaimpose is not to become another measurement tool or to work
used to verify that the proposed methods are capable of dealawgr multi-node paths, but rather to understand the associated
with bursty conditions of real Internet cross-traffic [11], [19]stochastic models and disseminate the knowledge obtained in
[24], [26]. the process of writing this paper



We conclude the paper by discussing the impossibility Gn-1 n Gt

of building an asymptotically optimal estimator of both T Tyt

and A for a two-node case. While estimation of may

be possible for multi-node paths, our results suggest that

provably-convergent estimators 6fdo not exist in the context ~ arrival  |[n—1 | n | [n+1

of end-to-end measurement. Thus, the problem of deriving a M

provably a_ccuratas.*sumator.for a two-node case with arblt_ra_ry departure 1 EREs

cross-traffic remains open; however, we hope that our initial ]

work in this direction will stimulate additional research and >

prompt others to prove/disprove this conjecture. < » ><y > time
] n n+1 1

dn n+1
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Il. STOCHASTIC QUEUING MODEL d

n—1

In this section, we build a simple model of a router that
introduces random delay noise into the measurements of the Fig. 1. Departure delays introduced by the node.
receiver and use it to study the performance of packet-pair
bandwidth-sampling techniques. Note that we depart from the
common assumption of negligible and/or fluid cross-traffic arl front of packetn. The final metric of interest is inter-
specifically aim to understand the effects of random queuifigParture delay,, = d, — d,—, as the packets leave the
delays on the bandwidth sampling process. First consider ter. The various variables and packet arrival/departure are
unloaded router with no cross-traffic. The packet-pair mechgchematically shown in Figure 1. _ _
nism is based on an observation that if two packets arrive at théeven though the model in (2) appears to be simple, it
bottleneck link with spacing: smaller than the transmission!€@ds to fairly complicated distributions fgy, if we make no
delayA of the second packet over the link, their spacing aft@ior assumptions about cross-traffic. We next examine several
the link will be exactlyA. In practice, however, packets fromsPecial cases and derive important asymptotic results about
other flows often queue between the two probe packets dH@CESn-
increase their spacing on the exit from the bottleneck link to
be larger tham\. I1l. RENEWAL CROSS TRAFFIC

Assume that packets of the probe traffic arrive to the . .
bottleneck router at times, as, . .. and that inter-arrival times A. Packet-Pair Analysis
a, — an—1 are given by a random process determined by  We start our analysis with a rather common assumption in
the server's initial spacing. Further assume that the bottlenegleuing theory that cross-traffic arrives into the bottleneck link
node delays arriving packets by adding a random processigording to some renewal process (i.e., delays between cross-
time w,, to each received packet For the remainder of the traffic packets are.i.d. random variables). In what follows
paper, we use constamacket size; for the probing flow and in the next few subsections, we show that modeling of this
arbitrarily-varying packet sizes for cross-traffic. Furthermorelirection requires stationarity (more specifically, ergodicity) of
there is no strict requirement on the initial spacingas long cross-traffic. However, since neither thé.d. assumption nor
as the modeling assumptions below are satisfied. This meagstionarity holds for regular Internet traffic, we then apply
that both isolated packet pairs or bursty packet trains can &different sampling methodology and a different analytical
used to probe the path. Let the transmission delay of eagifection to derive a provably robust estimator of capacity
application packet through the bottleneck link §&C = A, and average cross-traffic rate
where(' is the transmission capacity of the link. Under these The goal of bottleneck bandwidth sampling techniques is to
assumptions, packet departure timgsare expressed by thequeue probe packets directly behind each other at the bottle-

following recurrencé neck link and ensure that spacigg on the exit from the router
a1 +wi + A n=1 is A. In practice! however, th_is. is rare_ly possible when thg
d, = p A - (2) rate of cross-traffic is non-negligible. This does present certain
max(an, dn—1) +wn + n= difficulties to the estimation process; however, assuming a

In this formula, the dependence df, on departure time Single congested node, the problem is asymptotically tractable
d,_1 is a consequence of FIFO queuing (i.e., packeannot given certain mild conditions on cross-traffic. We present these
depart before packet — 1 is fully transmitted). Furthermore, results below.
packetn cannot start transmission until it has fully arrived To generate measurements of the bottleneck capacity, it is
(i.e., timea,). The value of the noise term, is proportional commonly derived that the server must send its packets with
to the number of packets generated by cross-traffic and quelrtial spacing no more thani (i.e., no slower thaid'). This is

) _ ' _ true forunloadedlinks; however, when cross-traffic is present,

2I\/_Iethods that vary the probing pac_ket size also exist (e.g., [6], [10]). the probes may be sent arbitrarily slower as long as each

Times d,, specify when thelast bit of the packet leaves the router. keti . h bef he d . f
Similarly, timesa,, specify when the last bit of the packet is fully received?dCKeL arrives _tO the _r_OUter erore t_ e departure time 0
and the packet is ready for queuing. packeti — 1. This condition translates inta,, < d,,_; and



(2) expands to:

ar +wi + A n=1 100 mb/s 100 mb/s

d, = { . 3)
, > E
dn—l + wp + A n >2 >E 1.5 mb/s R2
From (3), packgt inter-departure timgs after the bottle- 100 /s 100 mb/s
neck router are given by:

Yn = dp —dpn1=A+ Wp, N 2>2. (4)

Notice that random process, is defined by the arrival
pattern of cross-traffic and also by its packet-size distribution.
Since this process is a key factor that determines the distri-
bution of sampled delayg,,, we next focus on analyzing its
properties. Assume that inter-packet delays of cross-traffic avéere E[z,,] is the mean inter-probe delay of packet-pairs.
given by independent random variablg&;} and the actual Proof: ProcessW,, samples a much larger span of
arrivals occur at timesX;, X; + X,,... Thus, the arrival M (t) and has a limiting distribution as we demonstrate below.
pattern of cross-traffic defines a renewal procksg), which Applying Wald’s equation to (6) [28]:
is the number of_ packet arrivals in the interyal¢]. _Using _ B E[M(ay) — M(a,_1)]E[S,]
common convention, further assume that the mean inter-arrival Elyn] =A+ c : 9)
delay E[X;] is given byl/\, where\ = 7 is the mean arrival

rate of cross-traffic in packets per second. and M(a,) — M(a,_,) is a stopping time for sequence
To all ket si tHat ), j = n) - n—l S s
o allow random packet sizes, assume UaL}, j i }. Equation (9) can be further simplified by noticing that

1,2,... are independent random variables modeling the sizeeglw s th | functi o)-
packets in cross-traffic. We further assume that the bottlen ()] is the renewal functiomr.(t):
(m(an) —m(an—1))E[S;]

link is probed by a sequence of packet-pairs, in which the Ely] = A+

delay between the packetwgithin each pairis small (so as Ynl = C

to keep their rate higher tha@i) and the delaybetween the  Assuming stationary cross-traffic, (10) expands to [28]:

pairs is high (so as not to congest the link). Under these

assumptions, the amount of cross-traffic data received by the Elyn) = A+ M

bottleneck link between probe packéts, — 1 and2m (i.e., ¢

in the interval(a,,,_1, as.m)) is given by a cumulative reward Finally, assuming ergodicity of cross-traffic (which implies

process: that of procesg,,), we can obtain (11) using a large number

of packet pairs as the limit diV’,, in (7) asn — oc. [ ]
Notice that the second term in (8) is strictly positive under

the assumptions of this paper. This leads to an interesting

observation that the filtering problem we are facing is quite

wheren represents the sequence number of the second pa@fﬁillenging since the sampled procags represents signal

in each pair. For now, we assume a general (not necessaﬁlycorrupted by anon-zero-meamoisew,. This is a drastic

Fig. 2. Single-link simulation topology.

The last result holds sinc&/(t) and S; are independent

(10)

11)

M(an)—M(an—1)
Uy = Z Sj, n=2m, (5)
j=1

equilibrium) processV/(t) and re-write (4) as: departure from the classical filter theory, which mostly deals
M (an)—M(an_1) with zero-mean additive noise. It is also interesting that the
S only way to make the noise zero-mean is to either send probe
Yn = A+ U A4 J=1 ., n=2m. (6) trafficwith E[z,]= 0 (i.e., infinitely fast) or to have no cross-
c c traffic at the bottleneck link (i.eA = 7 = 0). The former case

Since classical renewal theory is mostly concerned with impossible since;,, is always positive and the latter case is
limiting distributions,y,, by itself does not lead to any tractabley simplification that we explicitly want to avoid in this work.
results because the observation period of the process captureglie will present our analysis of packet-train probing shortly,
by each ofy,, is very small. but in the mean time, discuss several simulations to provide

Define a time-average process, to be the average dfy;}  an intuitive explanation of the results obtained so far.

up to timen: ) i
B. Simulations

1 n
Wy, = n Z Yi- ) Before we proceed to estimation ©f let us explain several
=1 observations made in previous work and put them in the
Then, we have the following result. context of our model in (6) and (8). For the simulations in this
Claim 1: Assuming ergodic cross-traffic, time-average prasection, we used thes2 network simulator with the topology
cessW,, converges to: shown in Fig. 2. In the figure, the source of probe packets
. \E[z,]E[S]] Sndl sends its data to receiv&®cvl across two routerl;
dm Wy =A+——F7——— =4+ Elwn],  (8)  andR,. The speed of all access links is 100 mb/s (delay 5 ms),
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Fig. 3. The histogram of measured inter-arrival timgsunder CBR cross- Fig. 4. The histogram of measured inter-arrival timgsunder TCP cross-
traffic. traffic.

while the bottleneck linkk; — Rs has capacity” = 1.5 mb/s we run another simulation under 1 mb/s total TCP cross-traffic
and 20 ms delay. Note that there are five cross-traffic sourees plot the evolutions of the absolute erf6rC| and that of
attached tdSnd2. W, in Fig. 5. As Fig. 5(a) shows, the absolute error between
We next discuss simulation results obtained under UD® andC converges to a certain value after 5,000 samples
cross-traffic. In the first case, we initialize all five sourcegroviding a rather poor estimaté ~ 1,010 kb/s. Fig. 5(b)
in Snd2 to be CBR streams, each transmitting at 200 kbiustrates thafiV,, in fact converges ta\ + E[w, ], where the
(7 = 1 mb/s total cross-traffic). Each CBR flow starts withmean of the noise i8/,, — A ~ 11.9 — 8 = 3.9 ms.
a random initial delay to prevent synchronization with other Previous work [1], [4], [5], [15], [22] focused on identifying
flows and uses 500-byte packets. The probe flowSatil the peaks (modes) in the histogram of the collected bandwidth
sends its data at an average rate of 500 kb/s for the probsamples and used these peaks to estimate the bandwidth;
duration, which results in 100% utilization of the bottleneckowever, as Figs. 3 and 4 show, this can be misleading when
link. In the second case, we lower packet size of cross-trafficttee distribution of the noise is not known a-priori. For example,
300 bytes and increase its total rate to 1.3 mb/s to demonstridue tallest peak on the right side of Fig. 3 is located at 13 ms
more challenging scenarios when there is packet loss at {de= 923 kb/s), which is only a slightly better estimate than
bottleneck. 827 kb/s derived from the mean g¢f,. Moreover, the tallest
These simulation results are summarized in Fig. 3, whigieak in Fig. 4(a) is located at 14.5 ms, which leads to a worse
illustrates the distribution of the measured samplesased estimateC = 827 kb/s compared to 983 kb/s computed from
on each pair of packets sent with spacing< A (the results the mean ofy,,.
exclude packet pairs that experienced loss). Given capacityTo combat these problems, existing studies [1], [4], [5], [15],
C = 1.5 mb/s and packet siz¢ = 1,500 bytes, the value of [22] apply numerous empirical methods to find out which
A is 8 ms. Fig. 3 shows that none of the samples are locatedde is more likely to be correct. This may be the only
at the correct value of 8 ms and that the mean of the sampfedsible solution in multi-hop networks; however, one must
signal (i.e.,W,,) has shifted to 11.7 ms for the first case ankeep in mind that it is possible thabneof the modes in the
14.5 ms for the second one. measured histogram correspondsAoas evidenced by both
Next, we employ TCP cross-traffic, which is generatedraphs in Fig. 3.
by five FTP sources attached 8nd2. The TCP flows use
different packet sizes of 540, 640, 840, 1,040, and 1,240 bytés, Packet-Train Analysis

respectively. The hiStOgram @tz for this case is shown in Flg Another topic of debate in prior work was Whethmcket_

4 for two different average cross-traffic rates- 750 kb/s and train methods offer any benefits ovmcket_pair methods.

7 =1 mb/s. As seen in the figure, even though some of thghme studies suggested that packet-train measurements con-

samples are located at 8 ms, the majority of the mass in #i&ge to theavailable bandwidtH for sufficiently long bursts

histogram (including the peak modes) are located at the valugispackets [1], [4]; however, no analytical evidence to this

much higher than 8 ms. , effect has been presented so far. Other studies [5] employed
Recall from (8) thatiV,, of the. measured S|'gnal tends ¢ acket-train estimates to increase the measurement accuracy

A+Elw,]. Under CBR cross-traffic, we can estimate the me bottleneck bandwidth estimation, but it is not clear how

of th_e noiseEw,] to be approxm_atel)ll.? —8=3.7msin these samples benefit asymptotic convergence of the estimation
the first case anti4.5—8 = 6.5 ms in the second one. The twoIorocess

naive estimates of’ based oniV,, are C' = ¢/W,, = 1,025 ; ; . .
~ " LAl ’ W d hypothet ket-train method that transmits
kb/s andC = 827 kb/s, respectively. Likewise, for the TCP © consider a nypotnetic pac

th q e 122 and 133 robe traffic in bursts of packets and averages the inter-
case, Ine measured averages (!.e., -~ an > MS eaclﬁag et arrival delays within each burst to obtain individual
samplesy,, lead to incorrect naive estimat€$ = 983 kb/s

andC = 902 kb/s, respectlvel}’- 3Even though this question appears to have been settled in some of the
In order to understand ho@ and the value ofV,, evolve, recent papers, we provide additional insight into this issue.
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samples{Z%}, wheren is the burst number. For example, ifz, = z, and assumingz[X;] < oo [28]:

k = 10, samplesys, . .., y1o define Zi%, samplesya, . . ., y20 vk A\eVarlS: — AE[S.1X,

define Z1°, and so on. The reason for excluding samples {_11} 2, N(AmE[Sj], [ ;{_ . 193] ”]>.

Y1, Yntl,-- - Ynk+1 IS because they are based on the leading (16)
packets of each burst, which encounter large inter-burst gapsmbining (15) and (16), we get (12). -

in front of them and do not follow the model developed SO First, notice that the mean of this distribution is the same
far. as that of samplegy,} in (11), which, as was intuitively

In what follows in this section, we derive the distributior‘bxpected means that both measurement methods have the
k‘ )
of {Z@} ask — eo- same expectation. Second, it is also easy to notice that the
Claim 2: For sufficiently largek, constantr,, = z, and & yariance ofZ* tends to zero as long dsar[X;] is finite.
regenerative processa$(t), packet-train samples converge to cjaim 3: If Var[X;] is finite, the variance of packet-train

the following Gaussian distribution for large samplesz tends to zero for largé.
Proof: Since ), z, and E[S;] are all finite and do not
A E[S;] AxVar[S; — AE[S;]X; S J .
{7k} 2 N(A + C[ ], ([kj_ 1)02[ i ]), depend onk, using independence of; and X; in (12), we
(12) have:
where 2> denotes convergence in distributial,(u1, o) is a 5 AzVar([S;] + N3z E?[S;]Var[X;] 2
Gaussian distribution with meam and standard deviation, VarZ,] = k—1)C? , (A7)
and X; are inter-packet arrival delays of cross-traffic. .
which tends to 0 fok — oo. ]

Proof: First, define a&-sample version of the cumulative

reward process in (5): As a result of this phenomenon, longer packet trains will

produce narrower distributions centered At Efw,]. The

M (ann) =M (apen_1y41) CBR case already studied in Fig. 3(b) clearly has finite
vk = Z S;, n=1,2.... (13) Var[X;] and therefore sample§Z*1 must exhibit decaying
= variance as: increases. One example of this convergence for

packet trains withk = 5 and k£ = 10 is shown in Fig. 6.
ProcessV* is also a counting process, however, its time[-) Di .
scale is measured in bursts instead of packets. Thifs, Iscusston
determines the amount of cross-traffic data received by theNow we address several observations of previous work.
bottleneck link during an entire burst Equation (13) shows It is noted in [5] that while packet-pair histograms usually
that Z¥ can be asymptotically interpreted as tiesvard rate have many different modes, the histogram of packet-train

of the reward-renewal proce$s’: samples becomes unimodal with increasedThis readily
follows from (12) and the Gaussian shape{df*}. Previous

ZF— A4 |74 (14) papers also noted (e.g., [5]) that as packet-train gizes

" (k—1)C’ increased, the distribution of samplgst*} exhibits lower

variance. This result follows from the above discussion and
. ) (17). Furthermore, [5] found that packet-train histograms for
is regenerative and for large k tend to a single mode whose location is “independent
of burst sizek.” Our derivations provide an insight into how
1% this process happens and shows the location of this “single
Gonc T o(1). (15) mode” to beA + Efw,] in (12).
In summary, packet-train sampl¢g”} represent a limited
Applying the regenerative central limit theorem, constraimeward rate that asymptotically converges to a Gaussian distri-
ing the rest of the derivations in this section to constabution with meanE][y,]. Perhaps it is possible to infer some

wherek — 1 is the number of inter-packet gaps inkgpacket
train of probe packets. Assuming (¢)
sufficiently largek, we have [28]:

Zh=A+



characteristics of X;} by observing the variance ¢2*} and well-defined limit:
applying the result in (12); however, since there are several n

h 1 ()i
unknown parameters in the formula (such %&ar[X;] and lim W, = lim —)_ (A+ 7(63x )
E[S,]), this direction does not lead to any tractable results "™ e
unless we assume a particular procésst). T "L (ty) IF
Since{Z*} asymptotically tend to a very narrow Gaussian = A+ 5 lim Z; =40+ (2D)

distribution centered af\ + E[w,], we find that there is no
evidence thaf Z*} measure the available bandwidth or offer In essence, this resfilts similar to our earlier derivations,
any additional information about the value &fas compared except that (21) requires much weaker restrictions on cross-
to traditional packet-pair sampl€g,, }. traffic and also shows that a single-node model is completely
tractable in the setting of almost arbitrary cross-traffic. We

IV. ARBITRARY CROSSTRAFFIC next show how to extract botth’ and+ from (21).

A. Capacity

In this section, we relax the stationarity and renewal as- ) ) ) .
sumptions about cross-traffic and derive a robust estimator of2PServe that (21) is a linear function of wherer is the

C andf. Assume an arbitrary arrival proces§) for cross- slope andA is the intercept Therefore, by injecting packet-

traffic, wherer(1) is its instantaneous rate at timee impose Pairs with two different spacings, and;, one can compute

only one constraint on this process — it must have a finite tinfa¢ unknown terms in (21) using two sets of measurements

averager shown in (1). The goal of the sampling process¥: } @nd {v/}. To accomplish this, define the corresponding

b.
is to determine botfC' and 7. Sincer > C imply constant 2verage processes to b} and W,

packet loss and zero available bandwidth, we are generally 1 S R
interested in non-trivial cases of < C. Stochastic process Wn=— >yl Wh= - > ool (22)
r(t) may be renewal, regenerative, a superposition of ON/OFF i=1 i=1

sources, self-similar, or otherwise. Furthermore, since packetrhe simplest way to obtain bothe and W? using a
arrival patterns in the current Internet commonly exhibit norsingle measurement is to alternate spacing and z;, while
stgtionarity (due to day-ni_ght cycles, routing changes, ”"Hfreserving the PASTA sampling property. Using a one-bit
failure, etc.), our assumptions orit) allow us to model a peader field, the receiver can unambiguously sort the inter-
wide variety of such non-stationary processes and are mughiya| delays into two setéy®} and {4}, and thus compute
broader than commonly assumed in traffic modeling literaturgejr averages in (22).

Next, notice that if the probing traffic can samplé) using  while samples are being collected, the receiver has two

a Poisson sequence of probes at times,, ..., the average running averages produced by (22). Subtractiriyfrom W¢,
of r(t;) converges to* (applying the PASTA principle [28]): we are able to separat¢C' from A:
t : a b (Ia 7 xb)F
1 lim (W3 —W)) = ————. (23)
i TG et Jim = [ r(u)du =7, nee ¢
n—oo n [ — OO ~
0 (18) Next, denote byA\,, the following estimate ofA at timen:
as long as delays; = t; —t;_; arei.i.d. exponential random A ey Vo= wy (24)
variables. In order to accomplish this type of sampling, the " R

gender must emit packet-pairs at expon_entia!ly distributed-raking the limit of (24), we have the following result.
intervals. Assuming that the-th packet-pair arrives to the  cjaim 4: Assuming a single congested bottleneck for which

router at timet;, it will sample a small segment of(¢) by time-average raté exists,A,, converges ta\:
allowing g; amount of data to be queued between the probes:

lim A, =A. (25)
tit+x; N n—oo
gi = / r(u)du = r(t)z, (19) Proof: Re-writing (25):
t; lim A, = A Tal ) (xq — xp)T N 26
B = A ey — A (O

wherez; is the spacing between the packets intle packet-
pair. Again, assuming thay; is the i-th inter-arrival sample
generated by the receiver, we have:

which is obtained with the help of (21), (23), and (24). m
Our next result shows a more friendly restatement of the
previous claim.
i r(ti)wi 4p simi ived i
Yy =A4+==A4+ ——. (20) A similar formula has been derived in [3], [8], [19] and several other
C C papers under a fluid assumption.

] o ) SFor technical differences between this approach and previous work (such
Finally, fixing the value ofr; = x, notice that\,, has a as TOPP [19)), see [17].
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Notice that knowing an estimate @f in (27) and using (a) spruce (b) 1GI
in (23), it is easy to estimate the mean rate of cross-traffic:

o
3

o
o

Fig. 8. Relative estimation errois 4 produced byspruce and IGI over a
. Wa — Wb é single congested link witl® = 1.5 mb/s and 85% link utilization.
lim (n—n)n =7, (28)
n—oo xa’ — I‘b
which leads to the following result.
Corollary 2: Assuming a single congested bottleneck f
which time-average raté exists, the following converges to
the available bandwidtil = C — 7

0§ince it can utilize the known capacity information. Inter-
estingly, however, IGI's estimates are worse than those of
pathload even though IGI utilizes the true capacify in
. X its estimatioq algorithm. A similar result is opserved in [26]
lim g (xa —xy — Wi+ Wn) — O _F=A. (29) L_Jnder_g re_latlvely small amount of cross-traffic (20% to 40%
z,Wh — W link utilization).
Next, we examine models (27), (29) with a large number of
_ samples to show their asymptotic convergence and estimation
We confirm these results and compare our models Wiffac a0y We plot the evolution of relative estimation errors
several recent methodgruce [26], IGI [8], andpathload Ec and E4 in Fig. 7. As Fig. 7(a) shows(’ converges to a
[12] throughns2 simulations. Since the main theme of thig;,| e that is very close (within 3%) to the true valuefin
paper is bandwidth estimation in heavily-congested routef§y 7(p), the available bandwidth estimates quickly converge

we conduct all simulations over a loaded bottleneck link iﬂ/ithin 10% of A. For the purpose of comparison, we next
Fig. 2 with utilization varying between 82% and 92% (th%lot estimation errorgZ,; produced byspruce and IGI in

exact value changes depending 6hand the interaction of Fig. 8. As Fig. 8(a) shows, even with the exact valueCbf
TCP cross-traffic with probe packets). Delays andx, are  ang after 1,000 samplespruce  exhibits an error of 27%.

set to maintain the desired range of link utilization. Furthermore, IGI’s estimates are much worse thpruce s
Define £, = [A — A[/A and Ec = [C' = C|/C 10 ,qjjystrated in Fig. 8(b), which plots the evolution of errors

be the relative estimation errors of and C, respectively, niil 1GI's internal algorithm terminates.

where A is the true available bandwidth of a path, is 14 petter understand these results, we next study how the

its estimate using one of the measurement techniqlie’s ;¢ racy of capacity information providedgpruce and IGI
the true bottleneck capacity, ard is its estimate. Table | j¢acts their measurement accuracy.

shows relative estimation erros, for spruce , IGl, and

pathload . For pathload , we averaged the low and highD. Further Analysis ofpruce and IGI

values of the produced estimatds In the IGI case, we used Since bottleneck capacities of Internet paths are not gener-

the estimates available at the end of IGI's internal convergenaky known, the use ofpruce and IGI may be limited to a

algorithm. Also note that we fed botspruce and IGI the small number of known paths, unless these methods can obtain

exact bottleneck capacity, while model (29) anghathload capacity measurements from other tools suchetsimer

operated without this information. [15], [16], pathrate  [5], or CapProbe [13]. These estimators
As the table shows,spruce performs better than of C are usually very accurate when the routers along the path

pathload in heavily-congested cases, which is expectete not highly utilized; however, as link utilization increases,

n—oo

C. Simulations
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Fig. 9. (a) Relative capacity estimation eri@¢: measured by CapProbe. (b) Fig. 10. Convergence a#,, to zero-mean additive noise for large, under
Relative estimation error&' 4 of spruce and IGI based on the rati6'/C. CBR and TCP cross-traffic.

their results often become inaccurate. Hence, a natural queetter estimates than IGI with a correct capacity value-

tion is how robust arespruce and IGI to inaccurate values C' = 1.5 mb/s, it exhibits large estimation errors (over 200%)

of C provided to their estimation processWe examine this whenC' exceedsC' by 33%. This means that the accuracy of

issue below, but first discuss simulation results of CapProberuce is also heavily dependent on the performance of the

to illustrate the pitfalls that many estimators ©fexperience underlying bottleneck bandwidth estimation method.

over heavy-loaded bottleneck links. To better understand this observation, we next analyze
For the CapProbe simulation, we use the topology shownsfruce 's estimation processSpruce collects individual

Fig. 2 with a single bottleneck link whose utilization was keggamplesA; [26]:

at 85% using five TCP cross-traffic sources. Fig. 9(a) plots the yi — A

evolution of E produced by CapProbe in this experiment. As A= C<1 — = A ), (32)

the figure shows, CapProbe’s minimum filtering is sensitive to ) , ) )

random queuing delays in front of the first packet of the paffhereyi is thei-th measured packet spacing at the receiver.

and can eventually converge to a completely wrong value (60b8€ @lgorithm averages samplés to obtain a running esti-

error). mate of the available bandwidth:
We next examine how the value & # C supplied to 1 o2
IGI and spruce affects their accuracy. We plot the relative An = > A =2C - P (33)
=1 =1

estimation errors in Fig. 9(b), in which the accuracy of both
methods deteriorates whéryC becomes large. To understandraking the limits of (33) and substituting/,, from (21) into
the exact effect o’ on these methods, we have the following33), we get
simple analysis. _ r

According to [8], IGI first sends packet trait with inter- A= lim A, =C~ AT (34)
packet spacing; (x; < z; for i < j) to determine theurning . . ] . o
point z. Each packet-train consists dfback-to-back packets ~This brief analysis shows that the bandwidth estimation
and the turning point is the-th inter-packet spacing,, at mechanism irspruce  requires that _thg sende_r set its inter-
which the receiving rate of probe traffic starts to match tHECket spacing: to be A = ¢/C'. This is possible wher!

sending rate: is known exactly; however, in cases whéhis not correctly
1 estimated, the initial spacingcannot be set téh andspruce
=z, = P Z Yi. (30) cannot converge td. Also notice that ifr < C, estimation er-
T i=2 rors are generally small; however, as link utilization increases,

Subsequently, IGI computes the average cross-trafficrrat@ny deviation ofz/A from 1 will have a significant impact
as following [8]: on A.

S C(yi—A) V. MULTIPLE LINKS

i A,d . . .
F = p2mex(8.9) (31)  In this section, we extend our single-node model to the

(k—1)2 case of multiple congested routers and conjecture that it is
and estimates available bandwidth by subtracting (31) froimpossible to derive a closed-form solution that filters out the
its a-priori known value ofC: A = C — 7. Notice from noise introduced by cross-traffic at several links of an end-to-
(31) that the average cross-trafficdepends on the capacityend path.
value provided to the estimation algorithm. This dependency
explains the increased estimation inaccuracy whgh’ = 1 A Large Inter-Probe Delays
as illustrated in Fig. 9(b). Consider the original model of a router in (2). This time,

Similarly, estimation accuracy afpruce also changes as assume thatoneof the probe packets queue behind each other
a function ofC'. For example, even thougipruce provides at the bottleneck router. This means that packet 1 leaves
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the router before packet arrives, which is expected if inter-
packet spacing:,, at the source is very large compared to thgnq poth links are utilized by cross-traffic at 85%. Fig. 12

transmission dela}ﬁ. Under these assumption$, 1 < an jjjystrates the convergence process/vf for the single-node
and (2) becomes: and multi-node cases. As Fig. 12(b) shows, estimatgsdo

dy = an +wn, +A, n>1. (35) hot converge to the true value df = 8 ms, regardiess of the
. number of sampleg;.
Hence, inter-departure delays are: Notice that it is possible to recursively extend the original

(36) model in (26) to multiple congested links where the inpyt
of each link is the outpuy,, of the previous link. However,

Notice that the first term,,—a,,_; in (36) is the inter-arrival this model becomes intractable as we show next. Add index
delay z,, of the probe traffic and the second tewn —w,_1 j to each process and each random variable to indicate that
can be modeled as some zero-mean random noise. This it&8 local to router; along the path from the sender to the
be explained intuitively by noticing that under the assumptiaiceiver. Further assume th@éj) is the queuing delay (due
of large z,,, each router delays probe packets (on average) cross-traffic and other probe packets) in front of padket
by the same amount. Then the distance between each pailngfde routerj and ¢\’ is some zero-mean noise process at

subsequent packets fluctuates around the mean,otJsing router j at time i. Then, we define the following recursive
an inductive argument, it is also easy to show the followingmodel:

Claim 5: If the initial spacingz,, is larger (in a statistical {

Yn = 0Qp —Qp_1 + Wy —Wp_1, N =2

A+, 29 <P,

sense) than queuing delays experienced by packets at each yfj) = _ , L
Aj+ o, 2 > QY

router of anN-hop end-to-end path, the mean of the sampled
signaly,, is equal toE[x,,] and the following holds for each .
router j: Whereyf” is the departure spacing of tix¢h packet-pair from
4 router j, A; = ¢/Cj is the transmission delay of the probe
Ewd - 1 =0. (37) packets over linkj, andz’’ is the arrival spacing between the
To confirm that the zero-mean model in (37) holds iF])robes at routeyi. Notice that if the arrival spacing between

- : inh e o ) _ (=1 ;
practice, we rums2 simulations with 85% utilization at the packetsi — 1 ands (which is simplyz; = ;7 ) is less

bottleneck link and varying packet sizes of CBR and Tcpan the time packet — 1 spends in the buffer (i.eq);,),
cross-traffic. The plots ofE[y,] as a function ofz, for the two packets queue behind each other and follow the model

different values ofz, — « are shown in Fig. 10. As the developed earlier in this paper. When the opposite holds, the
two figures showE[;; | converges tar, at 40 and 100 ms packets do not queue behind each other and the router adds
n n L] :

respectively, at which time the noise at the bottleneck routkf-d- Zero-mean noise” to A;.
becomes zero-mean-additive. Note that similar results hold

for multiple congested routers, different traffic patterns, arfd. Conjecture of Impossibility
different packet sizes. Also note that the point at whig]y,,|

: . ; One of the main difficulties of this situation is the stochastic
converges tar is not necessarily the value of the available . L . -~
> LT mixture of the two types of noise in (38). While at this time
bandwidth as was suggested in prior work [8].

we do not offer a complete treatment of this problem, we show
B. Recursive Model for Multi-Node Paths thatevenwhen all links follow the first model (i.e., all packets
Assuming multiple congested routers along a path, the resgiteue behind each other), the problem appears intractable.
in (25) no longer holds. To better understand multi-link effect$/nder these assumptions, (38) leads to:
we use the topology in Fig. 11, where the bottleneck Ik n
has capacity 1.5 mb/s and pre-bottleneck lirjk= 1.8 mb/s. W7<Lj) — A+ % ZTj(ti)CU(-j)
J =1

(38)

, 39
Five FTP sources are attached to eaclsofi2 and snd3 ‘ 39
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wherer;(t) is the cross-traffic process at routerFor a two
congested-router case, (39) becomes:

1 n
w2 Ao+ —— > ra(ti)y"
n 2+ n02 pt 7'2( )yz

"]

1 n
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