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IntroductionIntroductionIntroduction

•
 

Similarity matching is a common task in data mining; 
we are often interested in knowing which documents 
of a collection are “similar”

 
to each other

•
 

Usually involves representing documents by d-
 dimensional feature vectors and comparing those, 

but all-to-all comparison is infeasible for large 
collections

•
 

Approximation algorithms such as simhash, trading 
some precision and recall for speed, are a promising 
technique for use on large collections
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IntroductionIntroductionIntroduction

•
 

Simhash replaces a document’s feature vector with a 
fixed-size fingerprint that preserves cosine similarity 
of the original vector space

•
 

Main challenge: quickly find all pairs of fingerprints 
within a certain Hamming distance h of each other
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MotivationMotivationMotivation

•
 

A
 

feature vector represents the subset of features 
present in a given document u of the collection, each 
feature being described by a real-valued weight

•
 

Given typical values for average feature count and 
storage required per feature (e.g., 141 and 8 bytes 
respectively), all-to-all comparisons are completely 
infeasible

•
 

A conversion to a fixed-size fingerprint of the feature 
vector (as done by Simhash) helps with storage and 
computational complexity concerns
━

 

Manku et al. [2007] showed that 64 bits is generally enough 
to capture similarity of much larger feature vectors
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MotivationMotivationMotivation

•
 

Even with the much faster Hamming distance 
calculation on this fingerprint, a sub-quadratic 
technique will be very desirable:
━

 

(Table is across all n pairs of crawled webpages)
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ObjectivesObjectivesObjectives

•
 

We consider two classes of matching problems

•
 

Clustering: given one page, find all of its matches or 
near-duplicates

•
 

Duplicate elimination: determine if there exists at 
least one match in the collection, without finding all 
matching documents
━

 

Can allow us to improve performance significantly by 
skipping the exhaustive search
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SimhashSimhashSimhash

•
 

The simhash algorithm operates as follows:
━

 

Initialize a vector W of weights to 0
━

 

Each feature i (word on a webpage, etc) is hashed with a 
uniformly random function

━

 

For each bit j of hash φi

 

, add or subtract the feature weight 
wi to/from Wj based on whether the bit is 0 or 1

•
 

Example: Feature Hash weight

word1 0101 0.05 -0.05 +0.05 -0.05 +0.05

word2 1101 0.02 +0.02 +0.02 -0.02 +0.02

word3 0001 0.01 -0.01 -0.01 -0.01 +0.01

word4 1110 0.03 +0.03 +0.03 +0.03 -0.03

word5 0100 0.05 -0.05 +0.05 -0.05 -0.05

word6 0011 0.09 -0.09 -0.09 +0.09 +0.09

Σ

 

weight -0.15 +0.05 -0.01 +0.09

simhash 0 1 0 1
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SimhashSimhashSimhash

•
 

Next, we examine the issue of which bits are likely to 
differ between “similar”

 
documents

━

 

Or, put another way, how likely it is for a given bit in the 
simhash to flip given minor changes to a document

━

 

Details of the model can be found in the paper; we just give 
an illustrative example here

•
 

Main observation: examining the simhash weight 
vector, typically discarded, gives us insight into the 
bit-flipping question

•
 

The bit with the smallest absolute weight value is the 
one most likely to be flipped by small changes to the 
document –

 
called a “weak”

 
bit
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SimhashSimhashSimhash

•
 

Consider making changes to the document 
represented in the previous table with simhash value 
0101:

Feature Hash weight
word1 0101 0.05 -0.05 +0.05 -0.05 +0.05
word2 1101 0.02 +0.02 +0.02 -0.02 +0.02
word3 0001 0.01 -0.01 -0.01 -0.01 +0.01
word4 1110 0.03 +0.03 +0.03 +0.03 -0.03
word5 0100 0.05 -0.05 +0.05 -0.05 -0.05
word6 0011 0.09 -0.09 -0.09 +0.09 +0.09
Σ

 

weight -0.15 +0.05 -0.01 +0.09
simhash 0 1 0 1
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SimhashSimhashSimhash

•
 

Removing two unimportant features (e.g., with the 
lowest weights):

Feature Hash weight
word1 0101 0.05 -0.05 +0.05 -0.05 +0.05
word2 1101 0.02 +0.02 +0.02 -0.02 +0.02
word3 0001 0.01 -0.01 -0.01 -0.01 +0.01
word4 1110 0.03 +0.03 +0.03 +0.03 -0.03
word5 0100 0.05 -0.05 +0.05 -0.05 -0.05
word6 0011 0.09 -0.09 -0.09 +0.09 +0.09
Σ

 

weight -0.16 +0.04 +0.02 +0.06
simhash 0 1 1 1

single bit

 
change
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SimhashSimhashSimhash

•
 

Removing two important features (e.g., with higher 
than average weights):
━

 

Note that bit 3 still flips, as last time

Feature Hash weight
word1 0101 0.05 -0.05 +0.05 -0.05 +0.05
word2 1101 0.02 +0.02 +0.02 -0.02 +0.02
word3 0001 0.01 -0.01 -0.01 -0.01 +0.01
word4 1110 0.03 +0.03 +0.03 +0.03 -0.03
word5 0100 0.05 -0.05 +0.05 -0.05 -0.05
word6 0011 0.09 -0.09 -0.09 +0.09 +0.09
Σ

 

weight -0.05 -0.05 +0.09 +0.09
simhash 0 0 1 1

two-bit

 
change
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Bit OrderBit OrderBit Order

•
 

If we only want to search to a Hamming distance h = 
1; the problem is trivial
━

 

Simply generate a table with the simhash entries sorted by 
increasing absolute value of bit weight

•
 

However, in practice we want a larger maximum 
distance –

 
so how do we determine which is the 

optimal second bit to flip?
━

 

E.g., given an initial single bit flip with weight 0.01, do we 
next try the bit with -0.5, or the two-bit combination (-1.9, 
0.01)?



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1717

Bit OrderBit OrderBit Order

•
 

Here we sort the bits of document u’s hash according 
to the absolute value of their weight, and for 
convenience refer to “bit i”

 
as the bit with the i-th 

lowest weight

•
 

We then build a Volatility Ordered Set Heap (VOSH), 
which sorts bit combinations according to flip 
probability
━

 

Height of this heap corresponds to b, the # of hash bits
━

 

Details and algorithm are in the full paper, Section 5.1-5.2
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Bit OrderBit OrderBit Order

•
 

Main properties of this heap:
━

 

A parent node represents a better flip combination than its 
children; i.e., more likely to flip given small changes to u

━

 

Left child increments the last bit of the parent
━

 

Right child, if exists, increments the bit to the left of any gap 
in bit positions of the parent
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Bit OrderBit OrderBit Order

•
 

We must decide at runtime which of the siblings at a 
given level in this heap is optimal, when we know the 
weight vector of the query simhash

•
 

Additional max-heap is used to represent the 
“frontier”

 
of yet-unexplored nodes

━

 

By calculating the expected change in value for flipping the 
bits represented in each node

━

 

At each step, the higher value node (i.e., the sibling that 
“lost”

 
in the comparison) is placed, along with its children, in 

the max-heap
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Bit OrderBit OrderBit Order

•
 

Using b = 64 and h between 1 and 3, we examine the 
VOSH-based approach on 8M simhash pairs and 
compare it to randomly flipping bits
━

 

For h = 1, 30% of matches are found after only one flip; 
80% after 4 flips, and 100% in 17 or fewer (vs. 64)

━

 

h = 2, 100% of matches found in 152 vs. 2016 flips
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Bit OrderBit OrderBit Order

•
 

Similar results for h = 3 (675 flips vs. 41,664)

•
 

This difference increases with h, and as recall 
decreases



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

22

AgendaAgendaAgenda

•
 

Introduction

•
 

Motivation and Objectives

•
 

Simhash

•
 

Bit Order

•
 

Experiments and Results

•
 

Conclusions and Future Work



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2323

Experiments and ResultsExperiments and ResultsExperiments and Results

•
 

Dataset: 70M web pages from IRLbot web crawl 
(April 2008)
━

 

Feature weights calculated by normalized TF-IDF score of 
each word i on page u

━

 

Simhash fingerprint calculated with 64-bit MurmurHash 
function

•
 

We compare our approach (PSM) to Block Permuted 
Hamming Search (BPHS), using the parameters 
suggested in the Manku paper
━

 

We normalize our RAM usage to BPHS’
 

number of tables 
metric, see section 8.4 in the paper
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Experiments and ResultsExperiments and ResultsExperiments and Results
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Experiments and ResultsExperiments and ResultsExperiments and Results

•
 

Scalability as dataset increases in size:
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Experiments and ResultsExperiments and ResultsExperiments and Results

•
 

Batch mode throughput
━

 

RAM usage is less important, but still smaller than BPHS
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Conclusions and Future WorkConclusions and Future WorkConclusions and Future Work

•
 

By utilizing the weight vector usually discarded during 
simhash calculation, we can generate a model to 
predict which bits will be most likely to be flipped in 
near-duplicates
━

 

Result is a huge decrease in search time vs. exhaustive 
search, and the gap only widens if we’re willing to sacrifice 
a little recall

•
 

Future work involves analysis of feature selection 
techniques to improve clustering results, further 
overhead reduction
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