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Abstract— Modeling of video traffic has always been an impor-
tant research area for the design, simulation, and performance
analysis of packet video networks and Internet streaming. In this
paper, we present a frame-level hybrid framework for modeling
multi-layer VBR video traffic, in which the base layer is modeled
using a combination of wavelet and time-domain methods and
the enhancement layer is linearly predicted from the based-
layer model. To accurately capture long-range dependent (LRD)
and short-range dependent (SRD) properties of VBR base-layer
traffic, we use wavelets to model the distribution of I-frame
sizes and a simple time-domain model for P/B frame sizes;
however, unlike previous studies, we analyze and successfully
model both inter-GOP and intra-GOP correlation found in many
VBR sequences. Through the use of QQ plots and leaky-bucket
simulations, we demonstrate that our model not only effectively
preserves the temporal burstiness of the original traffic, but also
captures important statistical features of the original video such
as the autocorrelation function and the frame-size distribution.
We also show that our model performs better than the previous
methods in single-layer and multi-layer MPEG-4 sequences and
demonstrate that certain results obtained in prior work for
MPEG-1 video do not hold for general GOP-based coding
schemes.

I. INTRODUCTION

Video traffic modeling is a traditional research area that has
captivated researchers for over 15 years. The main goal of the
studies in this field is to understand the properties (such as
the distribution and correlation) of frame sizes produced by
a variety of video encoders and to develop models that can
generate synthetic traffic with properties close to those of the
actual video sequences. Besides providing an insight into the
coding process and structure of video traffic, these models can
later be used for many practical purposes including allocation
of network resources, design of efficient streaming networks,
and delivery of certain Quality of Service (QoS) guarantees to
the end users.

A good traffic model should capture the characteristics of
video sequences and accurately predict network performance
(e.g., buffer overflow probabilities and packet loss). Among
the various characteristics of video traffic, there are two
major interests: (1) the distribution of frame sizes; and (2)
the autocorrelation function (ACF) that captures common
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dependencies between frame sizes in VBR traffic. In regard
to the first issue, several models have been proposed for the
frame-size distribution, including the lognormal [7], Gamma
[25], and various hybrid distributions (e.g., Gamma/Pareto [15]
or Gamma/lognormal [23]). Compared to the task of fitting
a model to the frame-size distribution, capturing the ACF
structure of VBR video traffic is more challenging due to the
fact that VBR video exhibits both LRD and SRD properties
[9], [16]. The co-existence of SRD and LRD indicates that
the ACF structure of video traffic is similar to that of SRD
processes at small time lags and to that of LRD processes at
large time lags [9]. Since both LRD and SRD are embedded in
the signal, using either a long-range dependent or a short-range
dependent modelalone does not provide satisfactory results.
Thus, many studies are conducted to address this problem,
but only a few of them manage to model the complicated
LRD/SRD ACF structure of real video traffic (e.g., [15], [16]).

The correlation that most models try to capture is theinter-
GOP correlation, which is well characterized by the ACF
of the I-frames; however, another dimension to video traffic
includes the intra-GOP correlation1. This is an important
characteristic useful in computing precise bounds on network
packet loss [14], which is rarely addressed in related work.
Additionally, most existing traffic models only apply to single-
layer VBR video and often overlook the multi-layer aspects
of common streaming video traffic in the current Internet [1],
[27].

In this paper, we develop a modeling framework that is able
to capture the complex LRD/SRD structure of single-layer and
multi-layer video traffic, while addressing the issues of both
intra-GOP and multi-layer correlation. We model I-frame sizes
in the wavelet domain and replace the wavelet coefficients
with more tractable approximations, which are later used to
construct synthetic I-frame sizes. To preserve the intra-GOP
correlation, we generate synthetic P-frame traffic using a linear
model of the preceding I-frame in the time domain. We use a
similar model to maintain the cross-layer correlation in multi-
layer video sequences and show that the complexity (in terms
of parameters or computational cost) of the resulting model is
no worse than that of prior methods.

1The correlation between P/B-frames and the I-frame in the same GOP.



Although we use MPEG-4 sequences in this paper, our
framework applies to general GOP-based multi-layer video
traffic. The specifics of the three test sequences discussed in
this paper are as following: a single layerStar Wars [5]
(25 frames/s), a two-layer spatially-scalableThe Silence
of the Lambs [21] (30 frames/s), and a two-layer FGS-
codedStar Wars [21] (30 frames/s). All three sequences
have GOP structureIBBPBBPBBPBB.

This paper is organized as follows. In Section II, we
overview the related work on traffic modeling and provide the
background on wavelet analysis. In Section III, we discuss
the intra-GOP correlation and show how to model I, P, and
B-frame sizes of general video traffic. Section IV explains
how to generate a synthetic enhancement layer, given certain
base-layer information. Section V concludes the paper.

II. RELATED WORK AND PRELIMINARIES

In this section, we provide a brief overview of related work
and discuss the basics of wavelet analysis.

A. Single-Layer Models

Numerous studies have been conducted in modeling VBR
video traffic. According to the dominant stochastic method
applied in each model, we group them into five categories:
autoregressive (AR) models [6], [7], [10], [15], Markov-
modulated models [13], [25], self-similar (fractal) models [9],
[11], wavelet-based methods [16], [22], and other approaches
[19].

In the first category, we discuss AR models, which are
considered a classical approach in the area of traffic modeling.
After the first auto-regressive (AR) model was applied to video
traffic in 1988 [17], AR processes and their variations remain
highly popular in this area of research [15]. For example, Corte
et al. [3] use a linear combination of two AR(1) processes to
model the ACF of the original video traffic, in which one
AR(1) model is used for modeling small lags and the other
one for large lags. Since using a single AR process is generally
preferred, Krunzet al. [7] model the deviation of I-frame sizes
from their mean in each scene using an AR(2) process. Build-
ing upon Krunz’ work [7], Liu et al. [15] propose anested
AR(2) model, which uses a second AR(2) process to model
the mean frame-size of each scene. Heyman [10] propose an
AR model called GBAR with Gamma-distributed marginal
statistics and a geometric autocorrelation. By considering the
group-of-picture (GOP) cyclic structure of video traffic, Frey
et al. [6] extend the GBAR model in [10] to the GOP-GBAR
model.

The second category consists of Markov-modulated models,
which employ Markov chains to create other processes (e.g.,
the Bernoulli process [13]). Rose [24] uses nested Markov
chains to model GOP sizes. Since synthetic data is generated at
the GOP level, this model actually coarsens the time scale and
thus is not suitable for high-speed networks. Chenet al. [2] use
a doubly Markov modulated punctured AR model, in which
a nested Markov process describes the transition between the
different states and an AR process describes the frame size at

each state. The computation complexity of this method is quite
high due to the combination of a doubly Markov model and an
AR process. Sarkaret al. [25] propose two Markov-modulated
Gamma-based algorithms. At each state of the Markov chain,
the sizes of I, P, and B-frames are generated as Gamma-
distributed random variables with different sets of parameters.
Although Markov-modulated models can capture the LRD of
video traffic, it is difficult to accurately define and segment
video sources into the different states in the time domain due
to the dynamic nature of video traffic [16].

We group models based on a self-similar process into
the third category. Garrettet al. [9] propose a fractional
ARIMA (Autoregressive Integrated Moving Average) model
to replicate the LRD properties of compressed sequences, but
do not provide an explicit model for the SRD structure of
video traffic. Using the results of [9], Huanget al. [11] present
a self-similar fractal traffic model; however, this model does
not capture the multi-timescale variations in video traffic [7].
This problem can be overcome using the Transform-Expand-
Sample (TES) method [19]. Although this method is accurate
in matching the ACF at both small and large lags, it has high
computational complexity and often must be used in special
software (e.g.,TEStool) that generates synthetic sequences.

Different from the above time-domain methods, several
wavelet models [16], [22] recently emerged due to their ability
to accurately capture both LRD and SRD properties of video
traffic [16]. We provide more background on wavelets and an
initial analysis of approximation coefficients in section II-C.

B. Multi-Layer Models

All models discussed above focus on single-layer video
traffic and only a handful of studies analyze multi-layer
sequences. For example, Chandraet al. [1] use a finite-state
Markov chain to model one- and two-layer video traffic of all
activity levels. They assume that only one I-frame exists in the
whole video sequence and the I-frame size is simply ani.i.d.
Gaussian random variable. The model clusters P-frame sizes
into K states according to the correlation between successive
P-frame sizes and uses a first-order AR process to model the
frame size in each state. The goal of [1] is to model one or
two-layer video traffic with a CBR base layer, while many
multi-layer video sequences havemore than two layers and
the base-layer is VBR.

Similarly to the work in [1], Zhaoet al. [27] build aK-state
Markov chain based on frame-size clusters. The clustering
feature in [27] is the cross-correlation between the frame
size of the base layer and that of the enhancement layer at
the same frame index. In each state of the Markov chain,
the base and the enhancement-layer frame sizes follow a
multivariate normal distribution. However, the computational
cost of the hierarchical clustering approach applied in [27]
limits its application to short video sequences. Furthermore, in
both [1] and [27], there is no general method for choosing the
optimal number of states and the parameters are often chosen
empirically.
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C. Wavelet Models and Preliminaries

Wavelet analysis is typically based on the decomposition
of a signal using an orthonormal family of basis functions,
which includes a high-passwavelet function and a low-pass
scaling filter. The former generates thedetailed coefficients,
while the latter produces theapproximationcoefficients of the
original signal. The wavelet transform strongly reduces the
temporal correlation in the input signal, which means that
signals with LRD properties produce short-range dependent
wavelet coefficients [16].

In order to understand the structure of the wavelet transform,
we next examine the relationship between the original signal
and the detailed and approximation coefficients. We use the
Haar wavelet transform as a typical example since it is
often chosen for its simplicity and good performance [16],
[22]. Recall that the Haar scaling and wavelet functions are,
respectively:

ϕ(t) =
{

1 0 ≤ t < 1
0 otherwise

, (1)

ψ(t) =





1 0 ≤ t < 1/2
−1 1/2 ≤ t < 1

0 otherwise
. (2)

In the following discussion, we define{Aj} to be the
random process modeling approximation coefficientsAk

j and
{Dj} to be the process modeling detailed coefficientsDk

j

at the wavelet decomposition levelj, wherek is the spatial
location of Ak

j and Dk
j . We also assume thatj = J is the

coarsest scale andj = 0 is the original signal. Recall that the
Haar approximation coefficientsAk

j are obtained via [22]:

Ak
j = 2−1/2(A2k

j−1 + A2k+1
j−1 ). (3)

In Fig. 1 (a), we show the autocorrelation of processes{A3}
and{D3} computed based on the I-frame sizes in single-layer
Star Wars using Haar wavelets (labeled as “ACF detailed”
and “ACF approx”, respectively). As shown in the figure,
the ACF of {D3}, which is a typical example of detailed
coefficients, is almost zero at non-zero lags, which means that
it is an i.i.d. (uncorrelated) noise. This explains why previous
literature commonly models detailed coefficients as zero-mean
i.i.d. Gaussian variables [16]. Fig. 1 (a) also shows that
the approximation coefficients have a slower decaying ACF
compared to that of the detailed coefficients, which implies
that theycannotbe modeled asi.i.d. random variables.

Recalling that I-frame sizes{A0} follow a Gamma distri-
bution [23], we next examine the relationship between{A0}
and the approximation coefficients{Aj , j > 0} in various
sequences with the help of the following lemma. Notice that
{Aj} is a random processAj =

(
A1

j , A
2
j , · · · , Ak

j , · · · ) and
Ak

j is a random variable.
Lemma 1:Given that the I-frame sizes follow a Gamma

distribution, the approximation coefficientsAk
j , j ≥ 1 is a

linear combination of several Gamma distributions.
Proof: For brevity, we only derive the distribution ofAk

1

and note that the derivations forAk
j , j ≥ 2 are very similar.
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Fig. 1. (a) The ACF structure of coefficients{A3} and{D3} in single-layer
Star Wars . (b) The histogram of I-frame sizes and that of coefficientsA3.

According to (3), each value ofAk
1 is a linear summation of

the sizes of two neighboring I-frames, which we denote by
Xk

1 and Xk
2 , respectively. Notice thatXk

1 and Xk
2 are two

correlated Gamma distributed random variables. Then,

Ak
1 = 2−1/2(Xk

1 + Xk
2 ), (4)

whereXk
i ∼ Gamma(αi, λi), i = 1, 2, andλ1 = λ2. We can

rewrite Xk
i in the form of the standard Gamma distribution:

Xk
1 = λ1Y1, (5)

Xk
2 = λ2Y2, (6)

whereYi ∼ Gamma(αi, 1) are two standard Gamma random
variables.

To catch the correlation betweenXk
1 and Xk

2 , we further
decomposeY1 andY2 into a sum of twoindependentstandard
Gamma random variables using the decomposition properties
of standard Gamma distributions [6]:

Y1 = Y11 + Y12, (7)

Y2 = Y12 + Y22, (8)

whereY11, Y12, and Y22 are independent of each other and
follow the standard Gamma distribution with parametersα11,
α12, andα22, respectively. Then the correlation betweenXk

1

andXk
2 becomes:

cov(Xk
1 , Xk

2 ) = λ1λ2var(Y12) = λ1λ2α12. (9)

Combining (4) and (9), re-writeAk
1 as:

Ak
1 = 2−1/2 (λ1Y11 + (λ1 + λ2)Y12 + λ2Y22) . (10)

As observed from (10),Ak
1 is a linear combination of in-

dependent standard Gamma distributions, which leads to the
statement of the lemma after detailed statistical analysis.

As a typical example, we illustrate the distribution of the
approximation coefficients{A3} and that of{A0} (original
I-frame sizes) of single-layerStar Wars in Fig. 1 (b). The
figure shows that the two distributions have a similar shape,
but with different parameters. During extensive experiments,
we find a single Gamma distribution is accurate enough to
describe the actual histogram of{Aj}. In the next section, we
use this information to efficiently estimate the approximation
coefficients.

3



III. M ODELING GENERAL V IDEO TRAFFIC

In this section, we model I-frame sizes in the wavelet
domain and P-frame sizes based on the intra-GOP correlation.
We address the enhancement layer in the next section. There
are two contributions to our framework discussed below: (1)
we show a novel method for estimating the coefficients of the
wavelet transform, which is both efficient and accurate; and
(2) we model the intra-GOP correlation and propose a simple
model that accurately generates synthetic P-frame sizes, which
is in contrast to much of the previous work that relied oni.i.d.
random variables to model the sizes of P/B-frame sizes in each
GOP [7], [11], [15], [25].

A. Generating Synthetic I-Frame Sizes

Since the wavelet transform has a great advantage over
the time-domain methods in capturing the LRD and SRD
properties of video [16], [22], we model the I-frame sizes in
the wavelet domain and thus need to estimate both detailed
and approximation coefficients, which we already defined as
{Dj} and{Aj}, respectively.

Even though previous wavelet-based traffic modeling meth-
ods often model{Dj} as zero-meani.i.d. Gaussian variables
[16], there is insufficient evidence as to the distribution of
the actual{Dj} found in GOP-based video traffic. To pro-
vide some insight into the structure of detailed coefficients,
we compare the histogram of theactual coefficients{D1}
in Star Wars with those generated by several alternative
models in Fig. 2 (note that they-axis is scaled logarithmically).
Fig. 2 (a) displays the histogram of the actual{D1}, part (b)
shows that the Gaussian fit matches neither the shape, nor the
the range of the actual distribution, and part (c) demonstrates
that the Generalized Gaussian Distribution (GGD) produces
an overly sharp peak at zero (the number of zeros in GGD
is almost three times larger than that in the actual{D1}) and
also does not model the range of the real{D1}.

Additional simulations (not shown for brevity) demonstrate
that a low-variance Laplacian distribution can describe the
high peak of the actual histogram and a high-variance one
can cover the large range of the actual data, but none of them
can achieve both goals at the same time. However, amixture-
Laplacian distribution describes the real data very well:

f(x) = p
λ0

2
e−λ0|x| + (1− p)

λ1

2
e−λ1|x|, (11)

wheref(x) is the PDF of the mixture-Laplacian model,p is
the probability to obtain a sample from a low-variance Lapla-
cian component, andλ0 andλ1 are the shape parameters of the
corresponding low- and high-variance Laplacian distributions.
Fig. 2 (d) shows that the histogram of the mixture-Laplacian
synthetic coefficients{D1} is much closer to the actual one
than the other discussed distributions.

We next discuss approximation coefficients{Aj}. Recall
that current methods generate the coarsest approximation
coefficients (i.e.,{AJ}) either as independent Gaussian [16]
or Beta random variables [22]. However, as mentioned in
Section II-C, the approximation coefficients are non-negligibly
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Fig. 2. Histograms of (a) the actual detailed coefficients; (b) the Gaussian
model; (c) the GGD model; and (d) the mixture-Laplacian model.

correlated and are noti.i.d. To preserve the correlation of
approximation coefficients and achieve the expected distribu-
tion in the synthetic coefficients, we assume that the coarsest
approximation coefficients{AJ} are dependentrandom vari-
ables with marginal Gamma distributions. We first generate
N dependent Gaussian variablesxi using ak × k correlation
matrix, whereN is the length of{AJ} and the correlation
matrix is obtained from the actual coefficients{AJ}. The
number of preserved correlation lagsk is chosen to be a
reasonable value (e.g., the average scene length2). By applying
the Gaussian CDFFG(x) directly toxi, we convert them into a
uniformly distributed set of variablesFG(xi). It is well known
that if F is a continuous distribution with inverseF−1 andu
is a uniform random number, thenF−1(u) has the distribution
F . Based on this insight, we pass the result from the last step
through the inverse Gamma CDF to generate (still dependent)
Gamma random variables [4].

Using the estimated approximation and detailed coefficients,
we perform the inverse wavelet transform to generate synthetic
I-frame sizes. Fig. 3 (a) shows the ACF of the actual I-frame
sizes and that of the synthetic traffic. Fig. 3 (b) shows the
correlation of the synthetic traffic from the GOP-GBAR model
[6] and GammaA model [25] in short range. As observed
in both figures, our synthetic I-frame sizes capture both the
LRD and SRD properties of the original traffic better than the
previous models.

2This is a reasonable choice because there is much less correlation among
I-frames of different scenes than among I-frames of the same scene.
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Fig. 3. The ACF of the actual I-frame sizes and that of the synthetic traffic in (a) long range and (b) short range.

B. Intra-GOP Correlation

Lombardo et al. [13] noticed that there is a strong cor-
relation between the P/B-frames and the I-frame belonging
to the same GOP. Motivated by their results, we investigate
the correlation3 between P/B-frames and the I-frame from the
same GOP.

Before further discussion, we define I, P and B-frame size
sequencesas follows. Assuming thatn ≥ 1 represents the
GOP number, we defineφI(n) to be the I-frame size of the
n-th GOP,φP

i (n) to be the size of thei-th P-frame in GOP
n, and φB

i (n) to be the size of thei-th B-frame in GOPn.
For example,φP

3 (10) represents the size of the third P-frame
in the 10-th GOP.

We display the correlation between processes{φI(n)} and
{φP

i (n)} in Fig. 4. As shown in the figure, the correlation
is almost identical between the different P-frame sequences
and the I-frame sequence, which is rather convenient for our
modeling purposes. The correlation between{φB

i (n)} and the
I-frame sequence{φI(n)} also does not change as a function
of i, which we show in the following subsection.

Lombardoet al. [13] further modeled the sizes of P and B-
frames as Gamma distributed random variables, with mean and
variance estimated by a linear function of I-frame sizes. The
sample video sequences in [13] are MPEG-1 coded; however,
we find that this linear estimation does not hold for general
video traffic. As shown in Fig. 5 (a), the means of P and
B-frames arenot linear functions of I-frame sizes in MPEG-
4 codedStar Wars . Therefore, we propose an alternative
model for generating P and B-frame sizes, which captures the
intra-GOP correlation in general GOP-based VBR video.

3In traffic modeling literature, the normalized auto-covariance function is
often used instead of the autocorrelation function [15].
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Fig. 4. The correlation between{φP

i (n)} and{φI(n)}, for i = 1, 2, 3.

C. Modeling P and B-Frame Sizes

The above discussion shows that there is a similar correla-
tion between{φP

i (n)} and{φI(n)} with respect to different
i. Motivated by this observation, we propose a linear model
to estimate the size of thei-th P-frame in then-th GOP:

φP
i (n) = aφ̃I(n) + ṽ(n), (12)

where φ̃I(n) = φI(n) − E[φI(n)] and ṽ(n) is a synthetic
process (whose properties we study below) that is independent
of φ̃I(n).

Lemma 2:To capture the intra-GOP correlation, the value
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Fig. 6. Histograms of (a) the actual noise{v(n)} for {φP
1 (n)} in Star

Wars; and (b) synthetic noise{ṽ(n)}.

of coefficienta in (12) must be equal to:

a =
r(0)σP

σI
, (13)

where σP is the standard deviation of{φP
i (n)}, σI is the

standard deviation of{φI(n)}, and r(0) is their normalized
correlation coefficient at lag zero.

Proof: Without loss of generality, we assume that both
φ̃I(n) and φP

i (n) are wide-sense stationary processes. Thus,
E[φP

i (n)] is constant and:

E[φ̃I(n− k)] = E[φ̃I(n)] = 0. (14)

Denote byC(k) the covariance betweenφP
i (n) and φ̃I(n) at

lag k:

C(k) = E[(φP
i (n)− E[φP

i ])(φ̃I(n− k)− E[φ̃I ])]. (15)

Recall thatv(n) andφ̃I(n) are independent of each other and
thus E[v(n) · φ̃I(n)] = E[v(n)] · E[φ̃I(n)] = 0. Then C(k)
becomes:

C(k) = E[(aφ̃I(n) + v(n)− E[φP
i ])φ̃I(n− k)]

= aE[φ̃I(n)φ̃I(n− k)] (16)

Next, observe that the normalized correlation coefficientr at
lag zero is:

r(0) =
C(0)
σP σĨ

=
aE[φ̃I(n)2]

σP σĨ

, (17)
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Fig. 7. Histograms of (a) the actual noise{v(n)} for {φP
2 (n)} in the base

layer of The Silence of the Lambs ; and (b) synthetic noise{ṽ(n)}.

where σĨ is the standard deviation of̃φI(n). Recalling that
E[φ̃I(n)] = 0, we haveE[φ̃I(n)2] = σ2

Ĩ
= σ2

I and:

a · σI

σP
= r(0), (18)

which leads to (13).
To understand how to generate{ṽ(n)}, we next examine

the actual residual processv(n) = φP
i (n)− aφ̃I(n) for each

i. We show the histograms of{v(n)} for P-frame sequences
i = 1, 2, 3 in the single-layerStar Wars in Fig. 5 (b). The
figure shows that the residual process{v(n)} does not change
much as a function ofi. We also observe that the histogram of
{v(n)} is asymmetric and decays fast on both sides. Although
a generalized Gamma distribution (including scale parameter,
location parameter, and shape parameter) might be able to
describe this type of distribution, its parameter estimation is
quite complicated [12].

To model the asymmetry and quickly decaying trend of
v(n), we use two exponential distributions to estimate its PDF.
We first left-shift {v(n)} by an offsetδ to make the mode
(i.e., the peak) appear at zero. We then model the right side
using one exponential distribution1 − eλ1 and the absolute
value of the left side using another exponential distribution
1− eλ2 . Afterwards, we generate synthetic data{ṽ(n)} based
on these two exponential distributions and right-shift the result
by δ. As shown in Fig. 6 and Fig. 7, the histograms of{ṽ(n)}
are close to those of{v(n)} in both Star Wars and the
base layer ofThe Silence of the Lambs . Statistical
parameters(r(0), σP , σI , λ1, λ2) needed for this model are
easily estimated from the original sequences.

We illustrate the difference between our model and a typical
i.i.d method of prior work (e.g., [15], [25]) in Fig. 8 (a). The
figure shows that our model indeed preserves the intra-GOP
correlation of the original traffic, while the previous methods
produce white (uncorrelated) noise.

As we shown earlier in Fig. 5 (a), the sizes of B-frames
are relatively small compared to those of P-frames. From
Fig. 8 (b), we observe that the correlation between{φB

i (n)}
and the I-frame sequence{φI(n)} are much smaller than that
between P-frame sequences and the I-frame sequence. Thus,
we can generate the synthetic B-frame traffic simply by an
i.i.d. lognormal random number generator.
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Fig. 8. (a) The correlation between{φP
1 (n)} and{φI(n)} in Star Wars .

(b) The correlation between{φB
i (n)} and{φI(n)}, for i = 1, 2, 7.
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(b) The Silence of the Lambs

Fig. 9. QQ plots of (a) the synthetic single-layerStar Wars traffic and
(b) the syntheticThe Silence of the Lambs base-layer traffic.

D. Model Accuracy Study

There are two popular studies to verify the accuracy of
a video traffic model [25]: quantile-quantile (QQ) plots and
packet-loss evaluation. The QQ plot is a graphical technique
to verify distribution similarity between two test data sets. If
the two sets have the same distribution, the points should fall
along the 45 degree reference line. The greater the departure
from this reference line, the greater the difference between
the two test data sets. Fig. 9 shows QQ plots of the synthetic
single-layerStar Wars traffic and the synthetic base layer
traffic of The Silence of the Lambs , both of which
are generated by our model. As shown in the figure, the
generated frame sizes and the original traffic are almost
identical.

Besides the distribution, we also examine how well our
approach preserves the temporal information of the original
traffic. A common test for this is to pass the synthetic traffic
through a generic router buffer with capacityc and drain rated
[25]. The drain rate is the number of bytes drained per second
and is simulated as different multiples of the average traffic
rate r̄. To understand the performance difference between the
various models, we define the relative errore as the difference
between theactual packet lossp observed in the buffer fed
with the original traffic and that observed using the synthetic
traffic generated by each of the models:

e =
|p− pmodel|

p
. (19)

TABLE I

RELATIVE DATA LOSS ERRORe IN Star Wars

Buffer Traffic type Drain rate
capacity 2r̄ 4r̄ 5r̄
10ms Our Model 1.80% 0.93% 0.50%

GOP-GBAR [6] 2.44% 2.51% 4.01%
Nested AR [15] 4.02% 2.05% 5.63%
GammaA [25] 5.54% 1.04% 0.99%
GammaB [25] 5.76% 1.81% 1.15%

20ms Our Model 0.93% 0.61% 1.13%
GOP-GBAR [6] 3.84% 2.16% 3.77%
Nested AR [15] 5.81% 2.77% 8.46%
GammaA [25] 5.20% 0.61% 2.57%
GammaB [25] 4.89% 1.93% 2.05%

30ms Our Model 0.25% 0.33% 0.95%
GOP-GBAR [6] 4.94% 3.33% 5.68%
Nested AR [15] 6.94% 4.14% 9.92%
GammaA [25] 4.88% 1.10% 4.48%
GammaB [25] 4.67% 2.17% 4.03%

In Table I, we illustrate the values ofe for various buffer
capacitiesc and drain ratesd. As shown in the table, the syn-
thetic traffic generated by our model provides a very accurate
estimate of the actual data loss probabilityp and significantly
outperforms the other methods. In addition, our synthetic
traffic is approximately30% more accurate than thei.i.d.
models of prior work in estimating the loss ratio of P-frames.
We should finally note that the complexity of our method
is no worse than that of prior work (and sometimes, even
lower) and that simulations with additional video sequences
have demonstrated results similar to those shown throughout
this paper.

IV. M ODELING MULTI -LAYER V IDEO TRAFFIC

We next investigate methods to capture cross-layer de-
pendency and model enhancement-layer traffic. Due to its
flexibility and high bandwidth utilization, layered video coding
is common in video applications. Layered coding is often
referred to as “scalable coding,” which can be further classified
as coarse-granular (e.g., spatial scalability) or fine-granular
(e.g., fine granular scalability (FGS)) [26]. The major dif-
ference between coarse granularity and fine granularity is
that the former provides quality improvements only when a
completeenhancement layer has been received, while the latter
continuously improves video quality with every additionally
received codeword of the enhancement bitstream.

In both coarse granular and fine granular coding methods, an
enhancement layer is coded with the residual between the orig-
inal image and the reconstructed image from the base layer.
Therefore, the enhancement layer has a strong dependency on
the base layer. Zhaoet al. [27] also indicate that there exists a
cross-correlation between the base layer and the enhancement
layer; however, this correlation has not been fully addressed
in previous studies. In the next subsection, we investigate
the cross-correlation between the enhancement layer and the
base layer using spatially-scalableThe Silence of the
Lambs sequence and an FGS-codedStar Wars sequence
as examples. For brevity, we only show the analysis of two-
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Fig. 10. (a) The correlation between{εI(n)} and {φI(n)}, {εP
1 (n)}

and {φP
1 (n)} in Star Wars . (b) The correlation between{εP

i (n)} and
{φP

i (n)} in The Silence of the Lambs for i = 1, 2, 3.

layer sequences and note that similar results hold for video
streams with more than two layers.

A. Analysis of the Enhancement Layer

For discussion convenience, we define the enhancement
layer frame sizes as follows. Similar to the definition in the
base layer, we defineεI(n) to be the I-frame size of then-th
GOP,εP

i (n) to be the size of thei-th P-frame in GOPn, and
εB
i (n) to be the size of thei-th B-frame in GOPn.
Since each frame in the enhancement layer is predicted

from the corresponding frame in the base layer, we examine
the cross-correlation between the enhancement layer frame
sizes and the corresponding base layer frame sizes in various
sequences. In Fig. 10 (a), we display the correlation between
{εI(n)} and{φI(n)} and that between{εP

1 (n)} and{φP
1 (n)},

which are labeled as cov(IBL, I EL) and cov(P1BL, P1 EL),
respectively. As shown in the figure, the correlation between
{εI(n)} and {φI(n)} is stronger than that between{εP

1 (n)}
and {φP

1 (n)}, especially at large lags. This observation in-
dicates that{εI(n)} exhibits LRD properties and we should
preserve these properties in the synthetic enhancement layer
I-frame sizes.

In Fig. 10 (b), we show the cross-correlation between
processes{εP

i (n)} and {φP
i (n)} for i = 1, 2, 3. The figure

demonstrates that the correlation between the enhancement
layer and the base layer is quite strong, and the correlation
structures between each{εP

i (n)} and{φP
i (n)} are very sim-

ilar to each other. To avoid repetitive description, we do not
show the correlation between{εB

i (n)} and {φB
i (n)}, which

is similar to that between{εP
i (n)} and{φP

i (n)}.
Aside from cross-correlation, we also examine the auto-

correlation of each frame sequence in the enhancement layer
and that of the corresponding sequence in the base layer. We
show the ACF of{εI(n)} and that of{φI(n)} (labeled as
“EL I cov” and “BL I cov”, respectively) in Fig. 11 (a). The
figure shows that although the ACF structure of{εI(n)} has
some oscillation, its trend closely follows that of{φI(n)}. In
addition, we display the ACF of{εP

1 (n)} and that of{φP
1 (n)}

in Fig. 11 (b). From this figure and other experimental
results, one also observes that the ACF structures of processes
{εP

i (n)} and{φP
i (n)} are similar to each other.
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Fig. 11. (a) The ACF of{εI(n)} and that of{φI(n)} in Star Wars .
(b) The ACF of{εP

1 (n)} and that of{φP
1 (n)} in The Silence of the

Lambs.
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(b)

Fig. 12. (a) The ACF of{A3(ε)} and {A3(φ)} in The Silence of
the Lambs . (b) QQ plot of{A3(ε)} and{A3(φ)} in Silence of the
Lambs.

B. Modeling Frame Sizes

Although cross-layer correlation is obvious in multi-layer
traffic, previous work neither considered it during modeling
[1], nor explicitly addressed the issue of preserving it in the
synthetic traffic [27]. In this section, we first describe how we
model the enhancement layer frame sizes and then evaluate
the performance of our model in capturing the cross-layer
correlation.

Recalling that{εI(n)} also possesses both SRD and LRD
properties, we model it in the wavelet domain as we modeled
{φI(n)}. We define{Aj(ε)} and{Aj(φ)} to be the approx-
imation coefficients of{εI(n)} and {φI(n)} at the wavelet
decomposition levelj, respectively. To better understand the
relationship between{Aj(ε)} and{Aj(φ)}, we show the ACF
of {A3(ε)} and{A3(φ)} using Haar wavelets in Fig. 12 (a).
The figure shows that{A3(ε)} and {A3(φ)} have a similar
ACF structure. We also display a QQ plot of{A3(φ)} (the
x-axis) and{A3(ε)} (the y-axis) in Fig. 12 (b). The straight
(but not diagonal) line in the figure shows that the two sets of
coefficients come from the same distribution but with different
parameters [18].

As shown in Fig. 12,{Aj(ε)} and{Aj(φ)} exhibit similar
ACF structure and come from the same distribution. Thus,
we generate{AJ(ε)} by borrowing the ACF structure of
{AJ(φ)}, which is known from our base-layer model. Using
the ACF of{AJ(φ)} in modeling{εI(n)} not only saves com-
putational cost, but also preserves the cross-layer correlation.

8



-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

0 100 200 300 400

lag

cr
o

ss
 c

o
rr

el
at

io
n

actual

our model

 (a) our model

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

0 100 200 300 400

lag

cr
o

ss
 c

o
rr

el
at

io
n

actual

Zhao et al.

 (b) model [27]

Fig. 13. The cross-correlation between{εI(n)} and{φI(n)} in The Silence of the Lambs and that in the synthetic traffic generated from (a) our
model and (b) model [27].
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Fig. 14. (a) The histogram of{w1(n)} and (b) that of{w̃1(n)} when
modeling{εP

1 (n)} in The Silence of the Lambs .

In Fig. 13, we compare the actual cross-correlation between
{εI(n)} and {φI(n)} to that between the synthetic{εI(n)}
and{φI(n)} generated from our model and Zhao’s model [27].
The figure shows that our model significantly outperforms
Zhao’s model in preserving the cross-layer correlation.

Furthermore, recall that the cross-correlation between
{εP

i (n)} and {φP
i (n)} and that between{εB

i (n)} and
{φB

i (n)} are also strong, as shown in Fig. 10. We use the
linear model from Section III-C to estimate the sizes of the
i-th P and B-frames in then-th GOP:

εP
i (n) = aφP

i (n) + w̃1(n), (20)

εB
i (n) = aφB

i (n) + w̃2(n), (21)

where a = r(0)σε/σφ, r(0) is the lag-0 cross-correlation
coefficient,σε is the standard deviation of the enhancement-
layer sequence, andσφ is the standard deviation of the cor-
responding base-layer sequence. Processes{w̃1(n)}, {w̃2(n)}
are independent of{φP

i (n)} and {φB
i (n)}. As described in

Section III-C, we also examine{w1(n)} and {w2(n)}, and
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(b) Star Wars

Fig. 15. QQ plots of the synthetic enhancement-layer traffic: (a)The
Silence of the Lambs and (b)Star Wars .

find that they can be modeled in the same way that we model
{v(n)}, as shown in Fig. 14.

We evaluate the accuracy of the synthetic enhancement layer
by using QQ plots and show two examples in Fig. 15, which
displays two QQ plots of the syntheticThe Silence of
the Lambs andStar Wars enhancement-layer traffic. The
figure shows that the synthetic frame sizes in both sequences
have the same distribution as those in the original traffic.

We next examine the data loss ratio predicted by our
synthetic traffic passed through a generic buffer as shown in
Section III-D. We are not able to show simulation results for
the other multi-layer models given our sample sequences since
the model in [27] is suitable only for short sequences and the
one in [1] is only applicable to sequences with a CBR base
layer. In Fig. 16 and Fig. 17, we show the overflow data loss
ratio of the enhancement layers in bothThe Silence of
the Lambs andStar Wars with different drain ratesd for
buffer capacityc = 10 ms andc = 30 ms, respectively. The
x-axis in the figure represents the ratio of the drain rates to
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(b) Star Wars

Fig. 16. Overflow data loss ratio of the original and synthetic enhancement
layer traffic forc = 10 ms for (a)The Silence of the Lambs and (b)
Star Wars .
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Fig. 17. Overflow data loss ratio of the original and synthetic enhancement
layer traffic forc = 30 ms for (a)The Silence of the Lambs and (b)
Star Wars .

the average traffic ratēr. The figure shows that the synthetic
enhancement layer preserves the temporal information of the
original traffic very well.

V. CONCLUSION

In this paper, we presented a framework for modeling
multi-layer full-length VBR video traffic. This framework
incorporated wavelet-domain analysis into time-domain mod-
eling. This work precisely captured the LRD as well as SRD
properties of video traffic, accurately described the intra-
GOP correlation in compressed VBR sequences, and proposed
novel methods to model cross-layer correlation in multi-layer
sequences. Since our framework is developed at frame-size
level (whereas much of the previous work uses slice-level or
even block-level [25]), we can examine the loss ratio for each
type of frames and apply other methods (e.g., guaranteeing the
transmission of certain frames) to improve the video quality
at the receiver.

Furthermore, we derived the sizes of P/B-frames based on
their dependency on the I-frame belonging to thesameGOP,
which makes our framework also applicable to the case that
I-frames are unexpectedly inserted and GOP structure are
changed. In future work, our traffic model will also be helpful
in designing a layered peer-to-peer video system.
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