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Abstract—Modeling of video traffic has always been an impor- dependencies between frame sizes in VBR traffic. In regard
tant research area for the design, simulation, and performance tg the first issue, several models have been proposed for the
analysis of packet video networks and Internet streaming. In this frame-size distribution, including the lognormal [7], Gamma

paper, we present a frame-level hybrid framework for modeling . e
multi-layer VBR video traffic, in which the base layer is modeled [2°]; @nd various hybrid distributions (e.g., Gamma/Pareto [15]

using a combination of wavelet and time-domain methods and Of Gamma/lognormal [23]). Compared to the task of fitting
the enhancement layer is linearly predicted from the based- a model to the frame-size distribution, capturing the ACF
layer model. To accurately capture long-range dependent (LRD) structure of VBR video traffic is more challenging due to the
and short-range dependent (SRD) properties of VBR base-layer act that VBR video exhibits both LRD and SRD properties
traffic, we use wavelets to model the distribution of I-frame . L
sizes and a simple time-domain model for P/B frame sizes; [9], [16]. The Co-eXISte_nce of S_R[_) ar_1d_LRD indicates that
however, unlike previous studies, we analyze and successfullythe ACF structure of video traffic is similar to that of SRD
model both inter-GOP and intra-GOP correlation found in many  processes at small time lags and to that of LRD processes at
VBR sequences. Through the use of QQ plots and leaky-bucket |arge time lags [9]. Since both LRD and SRD are embedded in
simulations, we demonstrate that our model not only effectively the signal, using either a long-range dependent or a short-range
preserves the temporal burstiness of the original traffic, but also ’ . .
captures important statistical features of the original video such dependent moded_lone does not provide Sat'SfaCtorY results.
as the autocorrelation function and the frame-size distribution. Thus, many studies are conducted to address this problem,
We also show that our model performs better than the previous but only a few of them manage to model the complicated
?EthOdSt ir; si?r?lf-lay?r and muliti'|a)t/)¢t?f_MZEG'4 sequenCIfo and | RD/SRD ACF structure of real video traffic (e.g., [15], [16]).
emonstrate that certain results obtained in prior work for . i
MPEG-1 video do not hold for general GOP-based coding The Correlgtlon tha.t mqst models try to gapture Isititer
schemes. GOP correlation, which is well characterized by the ACF
of the I-frames; however, another dimension to video traffic
. INTRODUCTION includes theintra-GOP correlatiort. This is an important

garacteristic useful in computing precise bounds on network

captivated researchers for over 15 years. The main goal of Zi.(t?t |0ﬁs [14]"[ Wh.'cth Ist raf?aly a((jjd:esseld n rIeI?teq wlork.
studies in this field is to understand the properties (such @ tionafly, most existing traflic models only apply 1o singie-

the distribution and correlation) of frame sizes produced 6 yer VBR video and often overlook the multi-layer aspects

a variety of video encoders and to develop models that c f common streaming video traffic in the current Internet [1],
generate synthetic traffic with properties close to those of t ] . . .
actual video sequences. Besides providing an insight into thén this paper, we develop a modeling framew_ork thatis able
coding process and structure of video traffic, these models dg fapture th_e comple_x LRD./SRD structure of s.|ng|e—layer and
later be used for many practical purposes including aIIocc":lti5r|)1U|t"Iayer video “"?‘“'C’ while addressmg the issues of t.)Oth
of network resources, design of efficient streaming neMorRQFra'GOP and mulU-Igyer correlation. We model I-frame's'|zes
and delivery of certain Quality of Service (QoS) guarantees ) the wavelet domain and_ rep_lace the_ wavelet coefficients
the end users. with more tractable approximations, which are later used to

A good traffic model should capture the characteristics 6P nstruct synthetic |-rame sizes. To preserve the inira-GOP

video sequences and accurately predict network performar?@érelat'on’ we generate synthetic P-frame traffic using a linear

(e.g., buffer overflow probabilities and packet loss). Amon o<_je| of the preceQ|ng.I-frame in the time doma!n. We usea
the various characteristics of video traffic. there are t milar model to maintain the cross-layer correlation in multi-

major interests: (1) the distribution of frame sizes; and ( yer video sequences and_ show that the comple)_(ity (in terms
the autocorrelation function (ACF) that captures commd parameters or computational cost) of the resulting model is
no worse than that of prior methods.

*Supported by NSF grants CCR-0306246, ANI-0312461, and CNS-
0434940. 1The correlation between P/B-frames and the I-frame in the same GOP.

Video traffic modeling is a traditional research area that h&



Although we use MPEG-4 sequences in this paper, oeach state. The computation complexity of this method is quite
framework applies to general GOP-based multi-layer viddogh due to the combination of a doubly Markov model and an
traffic. The specifics of the three test sequences discussed\R process. Sarkaet al. [25] propose two Markov-modulated
this paper are as following: a single lay8tar Wars [5] Gamma-based algorithms. At each state of the Markov chain,
(25 frames/s), a two-layer spatially-scalafilee Silence the sizes of I, P, and B-frames are generated as Gamma-
of the Lambs [21] (30 frames/s), and a two-layer FGSddistributed random variables with different sets of parameters.
codedStar Wars [21] (30 frames/s). All three sequencedilthough Markov-modulated models can capture the LRD of
have GOP structurée BBPBBPBBPBB. video traffic, it is difficult to accurately define and segment

This paper is organized as follows. In Section |l, w&ideo sources into the different states in the time domain due
overview the related work on traffic modeling and provide thi® the dynamic nature of video traffic [16].
background on wavelet analysis. In Section Ill, we discussWe group models based on a self-similar process into
the intra-GOP correlation and show how to model |, P, arttle third category. Garretet al. [9] propose a fractional
B-frame sizes of general video traffic. Section IV explainARIMA (Autoregressive Integrated Moving Average) model
how to generate a synthetic enhancement layer, given cert@mneplicate the LRD properties of compressed sequences, but
base-layer information. Section V concludes the paper.  do not provide an explicit model for the SRD structure of
video traffic. Using the results of [9], Huarmg al. [11] present
a self-similar fractal traffic model; however, this model does

In this section, we provide a brief overview of related workot capture the multi-timescale variations in video traffic [7].
and discuss the basics of wavelet analysis. This problem can be overcome using the Transform-Expand-
Sample (TES) method [19]. Although this method is accurate
in matching the ACF at both small and large lags, it has high

Numerous studies have been conducted in modeling VBf8mputational complexity and often must be used in special
video traffic. According to the dominant stochastic methosbftware (e.g..TEStoo) that generates synthetic sequences.
applied in each model, we group them into five categories:pifferent from the above time-domain methods, several
autoregressive (AR) models [6], [7], [10], [15], Markov-wavelet models [16], [22] recently emerged due to their ability
modulated models [13], [25], self-similar (fractal) models [9}o accurately capture both LRD and SRD properties of video
[11], wavelet-based methods [16], [22], and other approachgesfic [16]. We provide more background on wavelets and an

[19]. initial analysis of approximation coefficients in section II-C.
In the first category, we discuss AR models, which are

considereq a classical approach in the area of traffic modglir@g. Multi-Layer Models
After the first auto-regressive (AR) model was applied to video
traffic in 1988 [17], AR processes and their variations remain All models discussed above focus on single-layer video
highly popular in this area of research [15]. For example, Coteaffic and only a handful of studies analyze multi-layer
et al [3] use a linear combination of two AR(1) processes teequences. For example, Chanetaal [1] use a finite-state
model the ACF of the original video traffic, in which oneMarkov chain to model one- and two-layer video traffic of all
AR(1) model is used for modeling small lags and the oth@ctivity levels. They assume that only one I-frame exists in the
one for large lags. Since using a single AR process is generallfiole video sequence and the I-frame size is simply.ad.
preferred, Krunzt al. [7] model the deviation of I-frame sizesGaussian random variable. The model clusters P-frame sizes
from their mean in each scene using an AR(2) process. Buiidto K states according to the correlation between successive
ing upon Krunz' work [7], Liuet al. [15] propose anested P-frame sizes and uses a first-order AR process to model the
AR(2) model, which uses a second AR(2) process to modeime size in each state. The goal of [1] is to model one or
the mean frame-size of each scene. Heyman [10] proposetan-layer video traffic with a CBR base layer, while many
AR model called GBAR with Gamma-distributed marginainulti-layer video sequences haweore than two layers and
statistics and a geometric autocorrelation. By considering ttiee base-layer is VBR.
group-of-picture (GOP) cyclic structure of video traffic, Frey Similarly to the work in [1], Zhacet al. [27] build a K -state
et al. [6] extend the GBAR model in [10] to the GOP-GBARMarkov chain based on frame-size clusters. The clustering
model. feature in [27] is the cross-correlation between the frame
The second category consists of Markov-modulated modetize of the base layer and that of the enhancement layer at
which employ Markov chains to create other processes (efipe same frame index. In each state of the Markov chain,
the Bernoulli process [13]). Rose [24] uses nested Markdive base and the enhancement-layer frame sizes follow a
chains to model GOP sizes. Since synthetic data is generaterhattivariate normal distribution. However, the computational
the GOP level, this model actually coarsens the time scale aust of the hierarchical clustering approach applied in [27]
thus is not suitable for high-speed networks. Cheal. [2] use limits its application to short video sequences. Furthermore, in
a doubly Markov modulated punctured AR model, in whichoth [1] and [27], there is no general method for choosing the
a nested Markov process describes the transition between apémal number of states and the parameters are often chosen
different states and an AR process describes the frame sizerapirically.

Il. RELATED WORK AND PRELIMINARIES

A. Single-Layer Models
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C. Wavelet Models and Preliminaries

Wavelet analysis is typically based on the decompositic
of a signal using an orthonormal family of basis functionszos|
which includes a high-passaveletfunction and a low-pass
scaling filter. The former generates thaetailed coefficients,
while the latter produces thepproximationcoefficients of the o2,
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original signal. The wavelet transform strongly reduces tt ‘ m M ol

temporal correlation in the input signal, which means thi o 1 oW @ W@ 0 2000 4000 600 8000 1000
signals with LRD properties produce short-range dependerit

wavelet coefficients [16]. @) (b)

In order to understand the structure of the wavelet transformg. 1. (a) The ACF structure of coefficienfsis} and{Ds} in single-layer
we next examine the relationship between the original sigriéthr Wars . (b) The histogram of I-frame sizes and that of coefficiefiss
and the detailed and approximation coefficients. We use the
Haar wavelet transform as a typical example since it is
often chosen for its simplicity and good performance [16hccording to (3), each value of¥ is a linear summation of
[22]. Recall that the Haar scaling and wavelet functions ane sizes of two neighboring I-frames, which we denote by
respectively: XF and X%, respectively. Notice thaf} and X5 are two
correlated Gamma distributed random variables. Then,

) - 1 0<t<1 1)
v B 0 otherwise ’ AR = o 12(XF 4 XK, 4)
1 0<t<1/2 where X¥* ~ Gamma(a;, \;),i = 1,2, and\; = Ay. We can
vt) = -1 1/2< E<l . @ rewrite XF in the form of the standard Gamma distribution:
0 otherwise
In the following discussi defingA,;} to be th A=A ©)
n the following discussion, we defing¢A;} to be the
. ) x5 = v, (6)

random process modeling approximation coefficiemfsand
{D;} to be the process modeling detailed coefficieﬁl? whereY; ~ Gamma(a;, 1) are two standard Gamma random
at the wavelet decomposition levgl wherek is the spatial variables.
location of A% and D¥. We also assume that = .J is the  To catch the correlation betweeXif and X% , we further
coarsest scale and= 0 is the original signal. Recall that thedecomposé&’; andY5 into a sum of twandependenstandard
Haar approximation coefficientd’ are obtained via [22]:  Gamma random variables using the decomposition properties
of standard Gamma distributions [6]:
Al = 27124k 4+ AT, ®3) ]

_ _ Yi = Y+ Yo, (7)
In Fig. 1 (a), we show the autocorrelation of processés} Yy — Y4V ®8)
and{Ds} computed based on the I-frame sizes in single-layer 2T T
Star Wars using Haar wavelets (labeled as “ACF detailedivhere Y11, Y12, and Yy, are independent of each other and
and “ACF approx”, respectively). As shown in the figurefollow the standard Gamma distribution with parameters,
the ACF of {Ds}, which is a typical example of detaileda;s, and as., respectively. Then the correlation betwei
coefficients, is almost zero at non-zero lags, which means tlaaid X4 becomes:
it is an:.i.d. (uncorrelated) noise. This explains why previous
literature commonly models detailed coefficients as zero-mean cov(XY, X3) = Mdavar(Yie) = M docrz. ©)
i.i.d. Gaussian variables [16]. Fig. 1 (a) also shows that Combining (4) and (9), re-writel} as:
the approximation coefficients have a slower decaying ACF _
compared to that of the detailed coefficients, which implies AF =272 (0 Y+ (M + Ao)Yia + AaYas) . (10)
that theycannotbe modeled as.i.d. random variables. As observed from (10)A% is a linear combination of in-
Recalling that I-frame size$A,} follow a Gamma distri- dependent standard Gamma distributions, which leads to the
bution [23], we next examine the relationship betwdety} statement of the lemma after detailed statistical analysis.
and the approximation coefficientsd;,j > 0} in various  As a typical example, we illustrate the distribution of the
sequences with the help of the following lemma. Notice thapproximation coefficient§ A3} and that of{A,} (original
{A;} is a random procesd; = (A}, A%,---, A¥,...) and |-frame sizes) of single-layeStar Wars in Fig. 1 (b). The
Af is a random variable. figure shows that the two distributions have a similar shape,
Lemma 1:Given that the I-frame sizes follow a Gammaut with different parameters. During extensive experiments,
distribution, the approximation coeﬁicientﬁ?,j > 1 is a we find a single Gamma distribution is accurate enough to
linear combination of several Gamma distributions. describe the actual histogram pf; }. In the next section, we
Proof: For brevity, we only derive the distribution of¥  use this information to efficiently estimate the approximation
and note that the derivations fo<t§,j > 2 are very similar. coefficients.
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IIl. M ODELING GENERAL VIDEO TRAFFIC

In this section, we model I-frame sizes in the wavele 0w 1000
domain and P-frame sizes based on the intra-GOP correlatic

We address the enhancement layer in the next section. The ] 1001

are two contributions to our framework discussed below: (1 | 0]
we show a novel method for estimating the coefficients of th
wavelet transform, which is both efficient and accurate; an  :A 1

-700 -500 -300 -100 100 300 500 700 -700 -500 -300 -100 100 300 500 700

(2) we model the intra-GOP correlation and propose a simp
model that accurately generates synthetic P-frame sizes, whicn
is in contrast to much of the previous work that reliediar.
random variables to model the sizes of P/B-frame sizes in eaco 10000
GOP [7], [11], [15], [25].

coefficients (bytes) coefficients (bytes)

(a) actual (b) Gaussian

1000 4 1000 4

A. Generating Synthetic I-Frame Sizes
100 A 100 4

Since the wavelet transform has a great advantage ow
the time-domain methods in capturing the LRD and SRC i 10
properties of video [16], [22], we model the I-frame sizes in
the wavelet domain and thus need to estimate both detaile : 1

-700 -500 -300 -100 100 300 500 700 -700 -500 -300 -100 100 300 500 700

and approximation coefficients, which we already defined a coefficients (bytes) coefficients (bytes)
{D;} and{4;}, respectively. (c) GGD (d) mixture-Laplacian
Even though previous wavelet-based traffic modeling meth-
) _ - ; ; Fig. 2. Histograms of (a) the actual detailed coefficients; (b) the Gaussian
ods often m.Od.e{Dj} .as Zero. mea.q.d. GaUSSIan V‘.a”a.bles rFodeI; (c) the GGD model; and (d) the mixture-Laplacian model.
[16], there is insufficient evidence as to the distribution o
the actual{D;} found in GOP-based video traffic. To pro-
vide some insight into the structure of detailed coefficients,
we compare the histogram of thectual coefficients {D .. .
P 9 (D} correlated and are nati.d. To preserve the correlation of

in Star Wars with those generated by several alternativg roximation coefficients and achieve the expected distribu-
models in Fig. 2 (note that theaxis is scaled logarithmically). 2PP P

Fig. 2 (a) displays the histogram of the actg), }, part (b) tion in the synthetic coefficients, we assume that the coarsest

shows that the Gaussian fit matches neither the shape, nora*ﬁgroxmatlon cc_)eff|C|ent$AJ} gre_dep_endentandom varl-
es with marginal Gamma distributions. We first generate

the range of the actual distribution, and part (c) demonstraf? . . . .
that the Generalized Gaussian Distribution (GGD) producé%ssdependem Gaussian variablesusing ak x k correlation

an overly sharp peak at zero (the number of zeros in G atrix, whereN is the length of{A;} and the correlation

is almost three times larger than that in the actual }) and nmuargg(erlsofbt?e'gz?\/g;orgo:rjagg;uall; gcsoiiﬁg%g{i‘] 10 -[:aea
also does not model the range of the réal }. P

reasonable value (e.g., the average scene I&ndai applying

Additional simulations (not shown for brevity) demonstratﬁﬁ|e Gaussian CDF () directly toz;, we convert them into a
K3}

that a low-variance Laplacian distribution can describe the: L 4 .
. . . . uniformly distributed set of variableBg (x;). It is well known
high peak of the actual histogram and a high-variance o%e P . L L _
at if F' is a continuous distribution with inverse—! andu

can cover the large range of the actual data, but none of them

. . . IS a uniform random number, thefi~!(u) has the distribution
can achieve both goals at the same time. Howevarjxaure N
. LS : . F. Based on this insight, we pass the result from the last step
Laplacian distribution describes the real data very well:

through the inverse Gamma CDF to generate (still dependent)
(@) = p&e*wr' +( 7p)ﬁefmr|, a1 Gamma random variables [4].

2 2 Using the estimated approximation and detailed coefficients,
where f(x) is the PDF of the mixture-Laplacian model,is we perform the inverse wavelet transform to generate synthetic
the probability to obtain a sample from a low-variance Lapla-frame sizes. Fig. 3 (a) shows the ACF of the actual I-frame
cian component, andly and\; are the shape parameters of theizes and that of the synthetic traffic. Fig. 3 (b) shows the
corresponding low- and high-variance Laplacian distributionsorrelation of the synthetic traffic from the GOP-GBAR model
Fig. 2 (d) shows that the histogram of the mixture-Laplacigié] and GammaA model [25] in short range. As observed
synthetic coefficientd D} is much closer to the actual onein both figures, our synthetic I-frame sizes capture both the
than the other discussed distributions. LRD and SRD properties of the original traffic better than the

We next discuss approximation coefficiertd;}. Recall previous models.
that current methods generate the coarsest approximation
coefficients (i.e.{A;}) either as independent Gaussian [16]
or Beta random variables [22]. However, as mentioned inzThis is a reasonable choice because there is much less correlation among
Section 1I-C, the approximation coefficients are non-negligiblyframes of different scenes than among I-frames of the same scene.

4
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Fig. 3. The ACF of the actual I-frame sizes and that of the synthetic traffic in (a) long range and (b) short range.

B. Intra-GOP Correlation 037 cov(PL, 1)
Lombardoet al. [13] noticed that there is a strong cor 0.25 Y cov(P2, 1)
relation between the P/B-frames and the I-frame belong cov(P3, )
to the same GOP. Motivated by their results, we investigi 0.2 1
the correlatiod between P/B-frames and the I-frame from tr 5
same GOP. 5 015
Before further discussion, we define I, P andr8me size E
sequencess follows. Assuming that, > 1 represents the § 0.1

GOP number, we defing’(n) to be the I-frame size of the
n-th GOP, ¢ (n) to be the size of the-th P-frame in GOP 0.05 1
n, and ¢Z(n) to be the size of theé-th B-frame in GOPn.

For examplep? (10) represents the size of the third P-fram 01
in the 10-th GOP.
We display the correlation between proces§g§(n)} and 0.05 0

{¢F(n)} in Fig. 4. As shown in the figure, the correlatiol
is almost identical between the different P-frame sequen lag
and the I-frame sequence, which is rather convenient for our , » . '
modeling purposes. The correlation betwdeif (n)} and the ~F19- 4 The correlation betweefy; (n)} and{¢"(n)}, fori =1,2,3.
I-frame sequencés’(n)} also does not change as a function
of i, which we show in the following subsection. _ .
Lombardoet al. [13] further modeled the sizes of P and BC. Modeling P and B-Frame Sizes
frames as Gamma distributed random variables, with mean ang, 4ve discussion shows that there is a similar correla-

variance estimated by a linear function of I-frame sizes. qu%n between{¢” (n)} and {¢/(n)} with respect to different

sample video sequences in [13] are MPEG-1 coded; hoWevzl.erMotivated by this observation, we propose a linear model

we find that this linear estimation does not hold for gener%! estimate the size of thieth P-frame in theu-th GOP:
video traffic. As shown in Fig. 5 (a), the means of P an

B-frames arenot linear functions of I-frame sizes in MPEG-
4 codedStar Wars . Therefore, we propose an alternative
model for generating P and B-frame sizes, which captures th

o1 _ 4T I ~ i i
intra-GOP correlation in general GOP-based VBR video. Where ! (n) = ¢/ (n) — El¢"(n)] and5(n) is a synthetic
process (whose properties we study below) that is independent

¢! (n) = ad’ (n) + 8(n), (12)

i1
3In traffic modeling literature, the normalized auto-covariance function gf ¢ (n). ] )
often used instead of the autocorrelation function [15]. Lemma 2:To capture the intra-GOP correlation, the value
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the corresponding I-frame iBtar Wars . (b) The histogram ofv(n)} for  layer of The Silence of the Lambs ; and (b) synthetic nois¢d(n)}.
{¢F(n)} with ¢ = 1,2,3.

600 4

whereo; is the standard deviation af’ (n). Recalling that
E[¢'(n)] = 0, we haveE[¢' (n)’] = 0% = o7 and:

a-og

=7(0), (18)
op
which leads to (13). [ ]
To understand how to genera{@(n)}, we next examine
the actual residual process(n) = ¢F(n) — a¢’(n) for each
O 20 580 850 1150 1450 O 20 %0 B0 110 1450 i. We show the histograms dfv(n)} for P-frame sequences
(@) v(n) (b) 5(n) i =1,2,3 in the single-layeiStar Wars in Fig. 5 (b). The
figure shows that the residual proc€sgn)} does not change
Fig. 6. Histograms of (a) the actual noige(n)} for {¢©"(n)} in Star ~ Much as a function of. We also observe that the histogram of
Wars; and (b) synthetic nois¢s(n)}. {v(n)} is asymmetric and decays fast on both sides. Although
a generalized Gamma distribution (including scale parameter,
location parameter, and shape parameter) might be able to

of coefficienta in (12) must be equal to: describe this type of distribution, its parameter estimation is
r(0)o quite complicated [12].
o= (13)  To model the asymmetry and quickly decaying trend of
ar

v(n), we use two exponential distributions to estimate its PDF.
where op is the standard deviation of¢! (n)}, o; is the We first left-shift {v(n)} by an offsets to make the mode
standard deviation of¢!(n)}, andr(0) is their normalized (i.e., the peak) appear at zero. We then model the right side
correlation coefficient at lag zero. using one exponential distributioh — e* and the absolute

_ Proof: Without loss of generality, we assume that botkalue of the left side using another exponential distribution
#'(n) and ¢F (n) are wide-sense stationary processes. Thus;- e*2. Afterwards, we generate synthetic d4tgn)} based
E[¢F (n)] is constant and: on these two exponential distributions and right-shift the result
by §. As shown in Fig. 6 and Fig. 7, the histograms{afn)}

i1 _ I _
Elg'(n = k)] = Bl (n)] = 0. . (14) are close to those ofv(n)} in both Star Wars and the
Denote byC(k) the covariance betweest’ (n) and¢’(n) at base layer ofThe Silence of the Lambs . Statistical
lag k: parametersr(0),op, 01, A1, A2) needed for this model are

B P P T -7 easily estimated from the original sequences.
C(k) = El(¢; (n) — Elgi (¢ (n — k) — E[¢']]. (15) We illustrate the difference between our model and a typical

Recall thatv(n) and ¢’ (n) are independent of each other and-i.d method of prior work (e.g., [15], [25]) in Fig. 8 (a). The
thus Efv(n) - le(n)} = Efv(n)] - E[él(n)] = 0. ThenC/(k) figure shows that our model indeed preserves the intra-GOP

becomes: correlation of the original traffic, while the previous methods
- PN T produce white (uncorrelated) noise.

Ck) = E[(afb (n)~+ v(n) = Elg; )¢ (n — k)] As we shown earlier in Fig. 5 (a), the sizes of B-frames

= aE[¢'(n)¢' (n — k)] (16) are relatively small compared to those of P-frames. From

Fig. 8 (b), we observe that the correlation betweer¥ (n)}

and the I-frame sequende’(n)} are much smaller than that

~ between P-frame sequences and the I-frame sequence. Thus,

r(0) = C(0) _ aE[p!(n)?] (17) we can generate the synthetic B-frame traffic simply by an
opo; opoy i.3.d. lognormal random number generator.

Next, observe that the normalized correlation coefficieatt
lag zero is:
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0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 GOP'GBAR [6] 384% 216% 377%

lag lags Nested AR [15] | 5.81% | 2.77% | 8.46%

(@) (b) GammaA [25] | 5.20% | 0.61% | 2.57%

GammaB [25] | 4.89% | 1.93% | 2.05%

Fig. 8. (a) The correlation betwed? (n)} and{¢’(n)} in Star Wars . 30ms | Our Model 0.25% | 0.33% | 0.95%
(b) The correlation betweefiyZ (n)} and {¢ (n)}, for i = 1,2, 7. GOP-GBAR [6] | 4.94% | 3.33% | 5.68%

Nested AR [15] | 6.94% | 4.14% | 9.92%
GammaA [25] | 4.88% | 1.10% | 4.48%
5000 2000 | GammaB [25] | 4.67% | 2.17% | 4.03%

4000 -

2000 4
3000 -

In Table I, we illustrate the values ef for various buffer
10007 capacitiesc and drain rated. As shown in the table, the syn-
thetic traffic generated by our model provides a very accurate

2000 -

synthetic frame size

synthetic frame size

1000 +

0 0 ‘ ‘ ‘ estimate of the actual data loss probabifitand significantly
0 2000 4000 6000 0 1000 2000 3000 . .
original frame size original frame size outperforms the other methods. In addition, our synthetic
(a) Star Wars (b) The Silence of the Lambs  traffic is approximately30% more accurate than thei.d.

models of prior work in estimating the loss ratio of P-frames.
Fig. 9. QQ plots of (a) the synthetic single-laygtar Wars  traffic and  \We should finally note that the complexity of our method
(b) the syntheticThe Silence of the Lambs base-layer traffic. . . .

is no worse than that of prior work (and sometimes, even

lower) and that simulations with additional video sequences

have demonstrated results similar to those shown throughout

D. Model Accuracy Study this paper.
There are two popular studies to verify the accuracy of
a video traffic model [25]: quantile-quantile (QQ) plots and  !V. MODELING MULTI-LAYER VIDEO TRAFFIC

packet-loss evaluation. The QQ plot is a graphical techniqueye next investigate methods to capture cross-layer de-
to verify distribution similarity between two test data sets. | endency and model enhancement-layer traffic. Due to its
the two sets have the same distribution, the points should #llyipility and high bandwidth utilization, layered video coding
along the 45 degree _reference line. The grgater the departdr&.ommon in video applications. Layered coding is often
from this reference line, the greater the difference betwegkyerred to as “scalable coding,” which can be further classified
the two test data sets. Fig. 9 shows QQ plots of the synthefig coarse-granular (e.g., spatial scalability) or fine-granular
single-layerStar Wars traffic and the synthetic base Iayer(e'g_, fine granular scalability (FGS)) [26]. The major dif-
traffic of The Silence of the Lambs , both of which ference between coarse granularity and fine granularity is
are generated by our model. As shown in the figure, thgat the former provides quality improvements only when a
generated frame sizes and the original traffic are almegimpleteenhancement layer has been received, while the latter
identical. continuously improves video quality with every additionally
Besides the distribution, we also examine how well oygceived codeword of the enhancement bitstream.

approach preserves the temporal information of the originalin poth coarse granular and fine granular coding methods, an
traffic. A common test for this is to pass the synthetic traffignnancement layer is coded with the residual between the orig-
through a generic router buffer with capacitgnd drain ratel 5| jmage and the reconstructed image from the base layer.
[25]. The drain rate is the number of bytes drained per seCOfifigrefore, the enhancement layer has a strong dependency on
and is simulated as different multiples of the average traffige pase layer. Zhaet al.[27] also indicate that there exists a

rater. To understand the performance difference between gss-correlation between the base layer and the enhancement
various models, we define the relative ereas the difference |ayer- however, this correlation has not been fully addressed

between theactual packet lossp observed in the buffer fed jn" revious studies. In the next subsection, we investigate
with the original traffic and that observed using the synthetife ¢ross-correlation between the enhancement layer and the
traffic generated by each of the models: base layer using spatially-scalabléae Silence of the

P — Pmodel (19) Lambs sequence and an FGS-cod8thr Wars sequence

¢ p as examples. For brevity, we only show the analysis of two-
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Fig. 11. (a) The ACF of{e/(n)} and that of{¢!(n)} in Star Wars .

(b) The ACF of{e!’(n)} and that of{¢¥"(n)} in The Silence of the
Lambs.

Fig. 10. (a) The correlation betweefe!(n)} and {¢?(n)}, {F'(n)}
and {¢T(n)} in Star Wars . (b) The correlation betweefel (n)} and

{¢F(n)} in The Silence of the Lambs fori=1,2,3. '

base layer
0.8 4 enhancement layer

layer sequences and note that similar results hold for vid 8000 1
streams with more than two layers. 01

0.4 4

autocorrelation

A. Analysis of the Enhancement Layer

0.2 4

For discussion convenience, we define the enhancem 0 2000
layer frame sizes as follows. Similar to the definition in th 02 : : : 0 ‘ ‘ ‘ ‘
base layer, we defing’ (n) to be the I-frame size of the-th 0 0o % paselayer approx. coeft.
GOP,zF(n) to be the size of the-th P-frame in GO, and @) (0)

eB(n) to be the size of thé-th B-frame in GOPn.

Since each frame in the enhancement layer is predictgéh 12. (a) The ACF off A3(c)} and {A3(¢)} in The Silence of
from the corresponding frame in the base layer, we examii:llgntgmbS - () QQ plot of{A3(e)} and{As(¢)} in Silence of the
the cross-correlation between the enhancement layer frame
sizes and the corresponding base layer frame sizes in various
sequences. In Fig. 10 (a), we display the correlation between . .

¢! (n)} and{¢! (n)} and that betweefie? (n)} and{¢F (n)}, B Modeling Frame Sizes
which are labeled as covBL, | _EL) and cov(P1BL, P1EL), Although cross-layer correlation is obvious in multi-layer
respectively. As shown in the figure, the correlation betwedraffic, previous work neither considered it during modeling
{e!(n)} and {¢?(n)} is stronger than that betwedn! (n)} [1], nor explicitly addressed the issue of preserving it in the
and {¢¥(n)}, especially at large lags. This observation insynthetic traffic [27]. In this section, we first describe how we
dicates that{c/(n)} exhibits LRD properties and we shouldmodel the enhancement layer frame sizes and then evaluate
preserve these properties in the synthetic enhancement layer performance of our model in capturing the cross-layer
I-frame sizes. correlation.

In Fig. 10 (b), we show the cross-correlation between Recalling that{z!(n)} also possesses both SRD and LRD
processeg e’ (n)} and {¢f(n)} for i = 1,2,3. The figure properties, we model it in the wavelet domain as we modeled
demonstrates that the correlation between the enhancemferft(n)}. We define{4,(¢)} and {A,(¢)} to be the approx-
layer and the base layer is quite strong, and the correlatiomation coefficients of{c!(n)} and {¢!(n)} at the wavelet
structures between eadh! (n)} and {¢f (n)} are very sim- decomposition levelj, respectively. To better understand the
ilar to each other. To avoid repetitive description, we do neoelationship betweefi4;(¢)} and{A,(¢)}, we show the ACF
show the correlation betweefx?(n)} and {¢Z(n)}, which of {A3(e)} and {A3(4)} using Haar wavelets in Fig. 12 (a).
is similar to that betweedie? (n)} and {¢F (n)}. The figure shows thafA3(c)} and {A3(¢)} have a similar

Aside from cross-correlation, we also examine the autdCF structure. We also display a QQ plot §fi3(¢)} (the
correlation of each frame sequence in the enhancement laysaxis) and{As(¢)} (the y-axis) in Fig. 12 (b). The straight
and that of the corresponding sequence in the base layer. {et not diagonal) line in the figure shows that the two sets of
show the ACF of{c/(n)} and that of{¢!(n)} (labeled as coefficients come from the same distribution but with different
“EL _I_cov” and “BL_l_cov”, respectively) in Fig. 11 (a). The parameters [18].
figure shows that although the ACF structure{ef(n)} has  As shown in Fig. 12{4;(¢)} and{4;(¢)} exhibit similar
some oscillation, its trend closely follows that ff’(n)}. In  ACF structure and come from the same distribution. Thus,
addition, we display the ACF ofz{'(n)} and that of{¢{ (n)} we generate{A;(¢)} by borrowing the ACF structure of
in Fig. 11 (b). From this figure and other experimenta]A;(¢)}, which is known from our base-layer model. Using
results, one also observes that the ACF structures of procesbesACF of{ A ;(¢)} in modeling{e! (n)} not only saves com-
{eP(n)} and {¢F (n)} are similar to each other. putational cost, but also preserves the cross-layer correlation.
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In Fig. 13, we compare the actual cross-correlation betwegfd that they can be modeled in the same way that we model

{e'(n)} and {¢/(n)} to that between the synthetiec’(n)} {v(n)}, as shown in Fig. 14.

and{¢’(n)} generated from our model and Zhao's model [27]. W evaluate the accuracy of the synthetic enhancement layer

The figure shows that our model significantly outperformgy using QQ plots and show two examples in Fig. 15, which

Zhao's model in preserving the cross-layer correlation. displays two QQ plots of the synthetithe Silence of
Furthermore, recall that the cross-correlation betwegRe Lambs andStar Wars enhancement-layer traffic. The

{7 (n)} and {¢f(n)} and that between{c”(n)} and figure shows that the synthetic frame sizes in both sequences

{¢7(n)} are also strong, as shown in Fig. 10. We use thave the same distribution as those in the original traffic.
linear model from Section IlI-C to estimate the sizes of the \ne next examine the data loss ratio predicted by our

i-th P and B-frames in the-th GOP: synthetic traffic passed through a generic buffer as shown in
o =wf0) i, @ S IO, W o ol able b s smieton el or
=P (n) = agP (n) + s (n), (21) 4 2 he el

the model in [27] is suitable only for short sequences and the
where a = r(0)o./04, r(0) is the lag-O cross-correlationone in [1] is only applicable to sequences with a CBR base
coefficient,o. is the standard deviation of the enhancemenfyer. In Fig. 16 and Fig. 17, we show the overflow data loss
layer sequence, andl, is the standard deviation of the corratio of the enhancement layers in bdthe Silence of
responding base-layer sequence. ProceSse&n)}, {w2(n)} the Lambs andStar Wars with different drain rateg for

are independent of¢X (n)} and {¢Z(n)}. As described in buffer capacityc = 10 ms ande = 30 ms, respectively. The
Section IlI-C, we also examin¢w;(n)} and {w2(n)}, and z-axis in the figure represents the ratio of the drain rates to
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Fig. 17. Overflow data loss ratio of the original and synthetic enhancemé?'ltz]
layer traffic forc = 30 ms for (a)The Silence of the Lambs

Star Wars .

and (b)
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the average traffic rateé. The figure shows that the synthetic
enhancement layer preserves the temporal information of the
original traffic very well.

V. CONCLUSION

(15]

(16]

(17]

In this paper, we presented a framework for modeling
multi—layel’ fu”-length VBR video traffic. This framework [18] “Matlab documentsy’ht[p://www_mathworkslcom.
incorporated wavelet-domain analysis into time-domain mot€] B. Melamed and D. E. Pendarakis, “Modeling Full-Length VBR Video

eling. This work precisely captured the LRD as well as SR

D

REFERENCES

K. Chandra and A. R. Reibman, “Modeling One- and Two-Layer
Variable Bit Rate Video,IEEE/ACM Trans. on Networkingol. 7, June
1999.

T. P.-C. Chen and T. Chen, “Markov Modulated Punctured Autore-
gressive Processes for Video Traffic and Wireless Channel Model-ing,”
Packet VidepApril 2002.

A. L. Corte, A. Lombardo, S. Palazzo, and S. Zinna, “Modeling Activity
in VBR Video Sources,Signal Processing: Image Commu-nicati@ol.

3, June 1991.

P. Embrechts, F. Lindskog, and A. McNeil, “Correlation and Dependence
in Risk Management: Properties and Pitfall§ambridge University
Press 2002.

F. H. P. Fitzek and M. Reisslein, “MPEG-4 and H.263 Video Traces
for Network Performance Evaluation (Extended Version),” available at
http://www-tkn.ee.tu-berlin.de

M. Frey and S. Nguyen-Quang, “A Gamma-Based Framework for
Modeling Variable-Rate MPEG Video Sources: the GOP GBAR Model,”
IEEE/ACM Trans. on Networkingol. 8, Dec. 2000.

M. Krunz and S. K. Tripathi, “On the Characterization of VBR MPEG
Streams,”Proc. of ACM SIGMETRICSvol. 25, June 1997.

M. Krunz and A. Makowski, “Modeling Video Traffic Using
M/G/infinity Input Processes: A Compromise Between Markovian and
LRD Models,” IEEE J. Select. Areas Communol. 16, June 1998.

M. W. Garrett and W. Willinger, “Analysis, Modeling and Generation
of Self-Similar VBR Video Traffic,”Proc. of ACM SIGCOMM Aug.
1994.

D. P. Heyman, “The GBAR Source Model for VBR Video Conferences,”
IEEE/ACM Trans. on Networkingol. 5, Aug. 1997.

C. Huang, M. Devetsikiotis, I. Lambadaris, and A. R. Kaye, “Modeling
and Simulation of Self-Similar Variable Bit Rate Compressed Video: A
Unified Approach,’Proc. of ACM SIGCOMMAug. 1995.

T.-Y. Hwang and P.-H. Huang, “On New Moment Estimation of Param-
eters of the Gamma Distribution Using its Characterizatidmhals of

the Institute of Statistical Mathematicgol. 54, Issue 4, 2002.

A. Lombardo, G. Morabito, and G. Schembra, “An Accurate and
Treatable Markov Model of MPEG-Video TrafficProc. of INFOCOM
March 1998.

A. Lombardo, G. Morabito, S. Palazzo, and G. Schembra, “A Markov-
Based Algorithm for the Generation of MPEG Sequences Matching
Intra- and Inter-GoP CorrelationEuropean Trans. on Telecommuni-
cations vol. 12, April 2001.

D. Liu, E. I. Sara, and W. Sun, “Nested Auto-Regressive Processes for
MPEG-Encoded Video Traffic ModelingfEEE Trans. on CSV/Tvol.

11, Feb. 2001.

S. Ma and C. Ji, “Modeling Heterogeneous Network Traffic in Wavelet
Domain,” IEEE/ACM Trans. on Networkingrol. 9, Oct. 2001.

B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. Robbins,
“Performance Models of Statistical Multiplexing in Packet Video Com-
munications,”IEEE Trans. on Commvol. 36, July 1988.

Using Markov-Renewal-Modulated TES Modelf2EE J. Select. Areas
Commun. vol. 16, June 1998.

properties of video traffic, accurately described the intrgpo] MPEG, “Coding of Moving Pictures and Audio” ISO/EC
GOP correlation in compressed VBR sequences, and proposed JTC1/SC29/WG11 N3908, Jan. 2001.

novel methods to model cross-layer correlation in multi-lay
sequences. Since our framework is developed at frame-size
level (whereas much of the previous work uses slice-level B2]

even block-level [25]), we can examine the loss ratio for each

type of frames and apply other methods (e.g., guaranteeing g

transmission of certain frames) to improve the video quality
at the receiver.

Furthermore, we derived the sizes of P/B-frames based on

their dependency on the I-frame belonging to HaeneGOP,

[24]

(25]

which makes our framework also applicable to the case that

I-frames are unexpectedly inserted and GOP structure &
changed. In future work, our traffic model will also be helpfu

in designing a layered peer-to-peer video system.

10

H27]

é%l] M. Reisslein, J. Lassetter, S. Ratnam, O. Lotfallah, F. H. P. Fitzek, and

S. Panchanathan, “Video Traces for Network Performance Evaluation,”
available at http://trace.eas.asu.edu.

V. J. Ribeiro, R. H. Riedi, M. S. Crouse, and R. G. Baraniuk, “Multiscale
Queuing Analysis of Long-Range-Dependent Network Traffedc. of
INFOCOM, March 2000.

O. Rose, “Statistical Properties of MPEG Video Traffic and Their
Impact on Traffic Modeling in ATM SystemsProc. of the 20th Annual
Conference on Local Computer Netwaridct. 1995.

0. Rose, "Simple and Efficient Models for Variable Bit Rate Mpeg Video
Traffic,” Performance Evaluatigrvol. 30, 1997.

U. K. Sarkar, S. Ramakrishnan, and D. Sarkar, “Modeling Full-
Length Video Using Markov-Modulated Gamma-Based Framework,”
IEEE/ACM Trans. on Networkingol. 11, Aug. 2003.

Y. Wang, J. Ostermann, and Y.-Q. Zhandgdeo Processing and Com-
munications Prentice Hall, 2001.

J.-A. Zhao, B. Li, and I. Ahmad, “Traffic Model For Layered Video: An
Approach On Markovian Arrival ProcessPacket VidepApril 2003.



