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Abstract— This paper presents a frame-level hybrid framework
for modeling H.264 and MPEG-4 multi-layer variable bit rate
(VBR) video traffic. In this work, the base layer is modeled
using a combination of wavelet and time-domain methods and
the enhancement layer is linearly predicted from the base layer
using the cross-layer correlation. Unlike previous studies, we
analyze and successfully model both inter-GORnd intra-GOP
correlation in VBR sequences. To accurately capture long-range
dependent (LRD) and short-range dependent (SRD) properties
of VBR traffic, we use wavelets to model the distribution of
I-frame sizes and a simple time-domain model for P/B frame
sizes. Simulation results demonstrate that our model effectively
preserves the temporal burstiness and captures important statisti-
cal features (e.g., the autocorrelation function and the frame-size
distribution) of original traffic. We also show that our model has
better performance than the previous methods in both single and
multi-layer sequences.

Index Terms—Wavelet transform, Multi-layer, Video traffic,
Enhancement layer

I. INTRODUCTION

Video traffic modeling plays an important role in the chatk-)
acterization and analysis of network traffic. Besides providi
an insight into the coding process and structure of vid
sequences, traffic models can be used for many practi
purposes including allocation of network resources, desi

of efficient networks for streaming services, and delivery
certain Quality of Service (QoS) guarantees to end users.

Although many studies have been conducted in this aré%,
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the various characteristics of video traffic, there are two major
interests: (1) the distribution of frame sizes; and (2) the
autocorrelation function (ACF) that captures the dependencies
between frame sizes in VBR traffic. In regard to the first
issue, several models have been proposed for the frame-
size distribution, including the lognormal [8], Gamma [26],
and various hybrid distributions (e.g., Gamma/Pareto [17] or
Gamma/lognormal [24]).
Compared to the task of fitting a model to the frame-size
distribution, capturing the ACF structure of VBR video traffic
is more challenging due to the fact that VBR video exhibits
both long-range dependent (LRD) and short-range dependent
(SRD) properties [10], [18]. The co-existence of SRD and
LRD indicates that the ACF structure of video traffic is similar
to that of SRD processes at small time lags and to that of
LRD processes at large time lags [10]. Thus, using either
a long-range dependent or a short-range dependent model
alonedoes not provide satisfactory results. Many studies have
een conducted to address this problem, but only a few of
em have managed to model the complicated LRD/SRD ACF
ructure of real video traffic (e.g., [17], [18]). Furthermore, the
(relation that most models try to capture is theer-GOP

éroup of Pictures) correlation, which is well characterized
y the ACF of the I-frames. However, another dimension of
video traffic, theintra-GOP correlatiort, is rarely addressed
related work, even though it is an important characteristic
seful in computing precise bounds on network packet loss

most existing traffic models only apply to single-layer VBT&G]

video and often overlook the multi-layer aspects of streami hi devel deling f K that i

video traffic in the current Internet [1], [28]. In addition, traffic Iln this paper, vt\:e eve :)p a mc; eling rameworf t_atlls

modeling research is falling behind the rapid advances in vid Be to capture the complex l.‘RD S.RD structure of single-
er and multi-layer video traffic, while addressing the issues

techniques, which include standards MPEG-4 [21] and H.2 both | d il lati del
[14]. Therefore, the goal of this work is to better understar} oth intra-GOP and multi-layer correlation. We model -

the statistical properties of various video sequences and @€ Sizes in the wavelet domain using estimated wavelet
develop a model that can generate synthetic traffic with tf8€TIcients, which are more mathematically tractable than
properties close to those of original single/multi-layer MPEGACtU@l coefficients. After a thorough analysis of intra-GOP
4 and H.264 video sequences. correlgthn, we generate synthetic F_’-frame traffic using a time-

A good traffic model should capture the characteristics §PMan linear model of the preceding I-frame to preserve the

video sequences and accurately predict network performaﬁr(l,téa'GOP correlation. _We_ use a S|m|lar_model to preserve
e cross-layer correlation in multi-layer video sequences and

e.g., buffer overflow probabilities and packet loss). Among] . .
(e.g., bu v WP m P ) ow that the performance of the resulting model is better than
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0434940. 1The correlation between P/B-frames and the I-frame in the same GOP.



that of prior methods. The second category consists of Markov-modulated models,
The specifics of four one-hour video sequences dighich employ Markov chains to create other processes (e.g.,
cussed in this paper are as following: a single laydéhe Bernoulli process [15]). Rose [25] uses nested Markov
MPEG-4 Star Wars IV [6] (25 frames/s), a single layer chains to model GOP sizes. Since synthetic data is generated at
H.264 Starship Troopers [22] (25 frames/s), a two- the GOP level, this model actually coarsens the time scale and
layer MPEG-4 spatially-scalabl&he Silence of the thus is not suitable for high-speed networks. Cheal. [2] use
Lambs [22] (30 frames/s), and a two-layer MPEG-4 FGSa doubly Markov modulated punctured AR model, in which
codedStar Wars IV [22] (30 frames/s). All four sequencesa nested Markov process describes the transition between the
have GOP structureBBPBBPBBPBB different states and an AR process describes the frame size
This paper is organized as follows. In Section Il, w@t each state. The computation complexity of this method
overview the related work on traffic modeling. In Section Illjs quite high due to the combination of a doubly Markov
we provide the background on wavelet analysis and show howdel and an AR process. Sarker al [26] propose two
to generate synthetic I-frame sizes in the wavelet domain. Miarkov-modulated Gamma-based algorithms. At each state of
Section 1V, we discuss the intra-GOP correlation in varioude Markov chain, the sizes of I, P, and B-frames are generated
sequences and present a linear model for P and B-frame siassGamma-distributed random variables with different sets of
Section V analyzes the cross-correlation between the bgggameters. Although Markov-modulated models can capture
layer and the enhancement layer, and explains how to genethge LRD of video traffic, it is usually difficult to accurately
a synthetic enhancement layer based on this information. dafine and segment video sources into the different states in
Section VI, we evaluate the accuracy of our model usirtje time domain due to the dynamic nature of video traffic
both single-layer and multi-layer video traffic. Section VI[18].
concludes the paper. The third category consists of self-similar processes and
fractal models. Garretit al. [10] propose a fractional ARIMA
[l. RELATED WORK (Autoregressive Integrated Moving Average) model to repli-
B%%‘te the LRD properties of compressed sequences, but do

. Numero.us studies h'ave been conducted in modeling v not provide an explicit model for the SRD structure of video
video traffic and a variety of models have been proposed N efic Using the results of [10], Huanet al [13] present a

the literature. In this section, we briefly overview related Wor‘s<elf—similar fractal traffic model; however, this model does not
on single-layer and multi-layer traffic models.

capture the multi-timescale variations in video traffic [8].
Other approaches include th&//G/co process [9] and
Transform-Expand-Sample (TES) based models [20]. The
According to the dominant stochastic method applied #armer creates SRD traffic [17] and the latter has high compu-
each model, we group existing single-layer models into sevetational complexity and often requires special software (e.g.,
categories and present the main results of each group beloVEStoo) to generate synthetic sequences. Different from the
We first discuss AR models, since they are classical agbove time-domain methods, several wavelet models [18], [23]
proaches in the area of traffic modeling. After the first auteecently emerged due to their ability to accurately capture
regressive (AR) model was applied to video traffic in 198Both LRD and SRD properties of video traffic [18]. We
[19], AR processes and their variations remain highly populprovide more background on wavelets and an initial analysis
in this area of research [17]. For example, Cattel [3] use a of approximation coefficients in section IlI-A.
linear combination of two AR(1) processes to model the ACF )
of the original video traffic, in which one AR(L) process i$- Multi-Layer Models
used for modeling small lags and the other one for large lagsMost traffic modeling studies focus on single-layer video
Since using a single AR process is generally preferred, Krutraffic and rarely model multi-layer sequences. Among several
et al. [8] model the deviation of I-frame sizes from their meamulti-layer studies, Chandet al. [1] use a finite-state Markov
in each scene using an AR(2) process. Building upon Krunzhain to model one- and two-layer video traffic of all activity
work [8], Liu et al. [17] propose anestedAR(2) model, which levels. They assume that only one I-frame exists in the whole
uses a second AR(2) process to model the mean frame-siideo sequence and the I-frame size is simply a Gaussian
of each scene. In both cases, scene changes are detectedambm variable. The model clusters P-frame sizes ikito
scene length is modeled as a geometrically distributed randstates according to the correlation between successive P-frame
variable. sizes and uses a first-order AR process to model the frame size
To model videoconferencing data, Heymanal. propose in each state. The goal of [1] is to model one or two-layer
a discrete autoregressive (DAR) model in [11] and a GBARdeo traffic with a CBR base layer, while many multi-layer
model in [12], the latter of which has Gamma-distributeslideo sequences haweorethan two layers and the base-layer
marginal statistics and a geometric autocorrelation. By cois-VBR.
sidering the group-of-picture (GOP) cyclic structure of video Similarly to the work in [1], Zhacet al. [28] build a K -state
traffic, Freyet al. [7] extend the GBAR model in [12] to the Markov chain based on frame-size clusters. The clustering
GOP-GBAR model. feature in [28] is the cross-correlation between the frame size

A. Single-Layer Models



of the base layer and that of the enhancement layer at ' ——ACF approx.
same frame index. In each state of the Markov chain, the b ~ *°| — ACF detailed 0041
and the enhancement-layer frame sizes follow a multivari
normal distribution. However, the computational cost of tl
hierarchical clustering approach applied in [28] limits i
application only to short video sequences. Furthermore,
both [1] and [28], there is no general method for choosi
the optimal number of states and the necessary parameter

often selected empirically.
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IIl. M ODELING |-FRAME SIZES

. . . ig. 1. (a) The ACF structure of coefficienfsAs} and {Ds} in single-
In this section, we address the problem of modeling [a'lyer Star Wars IV . (b) The histogram of I-frame sizes and that of

frame sizes and show a novel method for estimating tlgproximation coefficient§As}.
coefficients of the wavelet transform. Using the estimated
wavelet coefficients, we later generate synthetic I-frame sizes,
which preserve the LRD and SRD properties of the original

traffic Recalling that I-frame size§A,} follow a Gamma distri-

bution [24], we next examine the relationship betweeh}
A. Wavelet Models and Preliminaries and the approximation coefficientsd;,j > 0} in various

Wavelet analysis is typically based on the decompositigitduences with the help of the following lemma.

of a signal using an orthonormal family of basis functions, Lémma 1:Given that the I-frame sizes follow a Gamma
which includes a high-passaveletfunction and a low-pass distribution, the approximation coefficientd.j > 1 is a
scaling filter. The former generates thietailed coefficients, In€ar combination of several Gamma distributions.
while the latter produces thepproximationcoefficients of the Proof: See [4]. u
original signal. The wavelet transform strongly reduces the Extensive experimental results show that a single Gamma
temporal correlation in the input signal, which means thalistribution is accurate enough to describe the actual histogram
signals with LRD properties produce short-range dependétit{4;}. As a typical example, we illustrate the distribution
wavelet coefficients [18]. of the approximation coefficient§ A5} and that of {Ay}

In order to understand the structure of the wavelet transforfRriginal I-frame sizes) of single-layeBtar Wars IV in
we next examine the relationship between the original sigrfald- 1 (b). The figure shows that the two distributions have
and the detailed and approximation coefficients. Assume tffagimilar Gamma shape, but with different parameters. In the
j = J is the coarsest scale and = 0 is the original Next section, we use this information to efficiently estimate
signal. For discussion convenience, we defiag} to be the the approximation coefficients.
random process modeling approximation coefficieAatsand _ _ _
{D;} to be the process modeling detailed coefficiefits B. Generating Synthetic |-Frame Sizes

at the wavelet decomposition levg wherek is the spatial  since the wavelet transform has a great advantage over
location of A¥ and D}. Notice that{A;} is a random process the time-domain methods in capturing the LRD and SRD
Aj = (A}, A5, A}, ---) and A} is a random variable.  properties of video [18], [23], we model the I-frame sizes in
In the following discussion, we use the Haar wavelghe wavelet domain and thus need to estimate both detailed
transform as a typical example since it is often chosen fghd approximation coefficients, which we already defined as
its simplicity and good performance [18], [23]. Recall that th@)j} and{A,}, respectively.
Haar approximation coefficientd} are obtained via [23]: Even though previous wavelet-based traffic modeling meth-
Aég _ 271/2(14?111 i Anglﬂ). @ ods often mode[D_j}_ as zero-mean.i.d. Gaus§iap va}riables
[18], there is insufficient evidence as to the distribution of the
In Fig. 1 (a), we show the autocorrelation of processés} actual {D;} found in GOP-based video traffic. To provide
and {Ds} computed based on the I-frame sizes in singlsome insight into the structure of detailed coefficients, we
layerStar Wars IV  using Haar wavelets (labeled as “ACFcompare the histogram of thactual coefficients {D;} in
detailed” and “ACF approx”, respectively). As shown in thé&tar Wars IV  with those generated by several alternative
figure, the ACF of {D3}, which is a typical example of modelsin Fig. 2 (note that theaxis is scaled logarithmically).
detailed coefficients, is almost zero at non-zero lags, whi€lig. 2 (a) displays the histogram of the actyd), }, part (b)
means that it ig.i.d. (uncorrelated) noise. This explains whyshows that the Gaussian fit matches neither the shape, nor
previous literature commonly models detailed coefficients #se range of the actual distribution, and part (c) demonstrates
zero-mean.i.d. Gaussian variables [18]. Fig. 1 (a) also showthat the Generalized Gaussian Distribution (GGD) produces
that the approximation coefficients have a slower decayiag overly sharp peak at zero (the number of zeros in GGD
ACF compared to that of the detailed coefficients, whicis almost three times larger than that in the actuaj }) and
implies that theycannotbe modeled asi.d. random variables. also does not model the range of the réal; }.
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Fig. 2. Histograms of (a) the actual detailed coefficients; (b) the Gauss
model; (c) the GGD model; and (d) the mixture-Laplacian model.

Using the estimated approximation and detailed coefficients,

we perform the inverse wavelet transform to generate synthetic

Additional simulations (not shown for bI’EVitY) demOﬂStratq.‘.frame sizes. F|g 3 (a) shows the ACF of the actual I-frame
that a single Laplacian distribution is not able to deSCfitmzes and that of the Synthetic traffic in |0ng range. F|g 3 (b)
the fast decay and large data range of the actual histograsRows the correlation of the synthetic traffic from the GOP-

however, amixtureLaplacian distribution follows the real dataGBAR model [7] and Gamma model [26] in short range. As

very well: observed in both figures, our synthetic I-frame sizes capture
both the LRD and SRD properties of the original traffic better

A0 ala Al e than the previous models.
f@)=pSe ™+ 1 —p el (@) P

where f(z) is the PDF of the mixture-Laplacian model,is
the probability to obtain a sample from a low-variance Lapla-
cian component, andl; and\; are the shape parameters of the
corresponding low- and high-variance Laplacian distributions.
Fig. 2 (d) shows that the histogram of the mixture-Laplacian
synthetic coefficientd D} is much closer to the actual one We next model P-frame sizes in the time domain based
than the other discussed distributions. on intra-GOP correlation. The framework in this section has
We next discuss approximation coefficierfts;}. Recall two contributions: (1) provide a detailed analysis of intra-GOP

that current methods generate the coarsest approximaff@jr€lation for various video sequences, and (2) model intra-
coefficients (i.e.{ A,}) either as independent Gaussian [18] opOP correlation qnd propose a _S|mple model that accurately
Beta random variables [23]. However, as mentioned in Sed€nerates synthetic P/B-frame sizes based on intra-GOP cor-
tion I1I-A, the approximation coefficients are non-negligibly/€l@tion, which is in contrast to much of the previous work
correlated and are nati.d. To preserve the correlation Ofthat re_lled oni.i.d. random variables to model the P/B-frame
approximation coefficients and achieve the expected distrittiz€S In €ach GOP [8], [13], [17], [26].

tion in the synthetic coefficients, we assume that the coarsesBefore further discussion, we define |, P andr8me size
approximation coefficient$ A ;} aredependentandom vari- sequencess follows. Assuming that > 1 represents the
ables with marginal Gamma distributions. We first genera@OP number, we defing!(n) to be the I-frame size of the

N dependent Gaussian variablesusing ak x k correlation n-th GOP,¢f (n) to be the size of thé-th P-frame in GOP
matrix, whereN is the length of{A4;} and the correlation n, and ¢Z(n) to be the size of the-th B-frame in GOPn.
matrix is obtained from the actual coefficienfsi;}. The For examplegl (10) represents the size of the third P-frame
number of preserved correlation lagsis chosen to be a in the 10-th GOP.

IV. MODELING P AND B-FRAME SIZES
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Fig. 7. The mean sizes of P and B-frames of each GOP given the size of
the corresponding I-frame in (a) the single-laygtar Wars IV and (b)
the base layer of the spatially scalaflee Silence of the Lambs

sequences coded & = 4, 10, 14. (b) The correlation betweefyp! (n)} and
{¢P(n)} in MPEG-4 sequences coded @t= 4, 10, 18.

A. Intra-GOP Correlation ) )
We also show the same correlation in H.264 coded

Lombardoet al [15] noticed that there is a strong Corgtarship Troopers [22] and in the base layer of the
relatior’ between the P/B-frame sizes and the I-frame si atially scalabl@he Silence of the Lambs in Fig. 6
belonging to the same GOP, which is also called intra-GQR) and (b), respectively. As observed from Fig. 5 and Fig. 6,
correlation. Motivated by their results, we conduct the analysige intra-GOP correlation decreases as the quantization step
of the intra-GOP correlation betweeip’ (n)} and {¢7(n)} increases.
or {¢pZ(n)} in two situations: (a) the intra-GOP correlation for To better model P and B-frame sizes, we also investigate
differents in a specific video sequence with fixed quantizatiof, o relationship between P/B-frame sizes and the size of I-
step@; and (b) the intra-GOP correlation for the samé  ¢ame from the same GOP. Lombare al [15] modeled
various sequences coded at different st@ps _the sizes of MPEG-1 coded P/B-frames as Gamma distributed

For the f';St part of ourPanaIyS|s, we display the C?”elat'%ndom variables, with mean and variance estimated by a
betweeBn{¢ (n)} and {¢; (n)} and that betweer(¢'(n)} |inear function of{¢!(n)}. However, we find that this linear
and {¢;’(n)} in single-layerStar Wars IV for i =1,2,3  agtimation does not hold for general video traffic. As shown in
in Fig. 4. As shown in the figure, the correlation is almoqfig_ 7. the means of P and B-frames aet linear functions
identical for differenti, which is rather convenient for our ¢ |_frame sizes in MPEG-4 codeStar Wars IV andThe
modeling purposes. For the second part of our analysis, Wfence of the Lambs . Therefore, in the next section,
examine the various video sequences coded at different quagfis hronose an alternative model for generating P and B-frame

zation steps to understand the relationship between intra-Gg}E’eS’ which captures the intra-GOP correlation in general
correlation and quantization steps. We show the correlatigihp_pased VBR video.

between{¢!(n)} and{¢! (n)} and that betweefip’ (n)} and

{¢P(n)} in five MPEG-4 coded video sequences in Fig. 5. , )
B. Modeling P and B-Frame Sizes

2This is a reasonable choice because there is much less correlation amonghe above discussion shows that there is a similar correla-
I-frames of different scenes than among I-frames of the same scene. . P T . .
fion between{¢; (n)} and{¢'(n)} with respect to different

3In traffic modeling literature, the normalized auto-covariance function - ! | ]
often used instead of the autocorrelation function [17]. i. Motivated by this observation, we propose a linear model
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14. various sequences coded at differéht
to estimate the size of theth P-frame in then-th GOP: To understand how to generdtg(n)}, we next examine the
P < _ actual residual process(n) = ¢’ (n) — a¢!(n) for eachi.
5P () = bl (n) + (). @) process(n) = ¢f (n) — ag’ (n)

5 We show the histograms d¢f(n)} for P-frame sequences=
where ¢! (n) = ¢'(n) — E[¢'(n)] and 5(n) is a synthetic 1,2,3 in the single-layerStar Wars IV and Jurassic
process (whose properties we study below) that is independBatk | in Fig. 8. The figures shows that the residual process

of ¢’ (n). {v(n)} does not change much as a function; of
Lemma 2:To capture the intra-GOP correlation, the value In Fig. 9 (a), we show the histograms df(n)} for
of coefficienta in (3) must be equal to: sequences coded at differe@t The figure shows that the
r(0)op histogram bepomgs more Ggussian—like wh@nincreases.
a= o (4) Due to the diversity of the histogram dfv(n)}, we use a

generalized Gamma distributigfamma(vy, «, 5) to estimate
where op is the standard deviation ofs! (n)}, oy is the {v(n)}. Fig. 9 (b) shows that the smaller the quantization step
standard deviation of ¢’(n)}, andr(0) is their normalized @, the larger the value of parametein (4), which is helpful
correlation coefficient at lag zero. for modeling sequences coded from the same video content
_ Proof: Without loss of generality, we assume that botbut at different quantization steps.
#'(n) and ¢F (n) are wide-sense stationary processes. Thus,From Fig. 5 (b), we observe that the correlation between
E[¢F (n)] is constant and: {#Z(n)} and{¢!(n)} could be as small as 0.1 (e.g.,Star
~ ~ Wars IV coded atQ) = 18) or as large as 0.9 (e.g., ithe
El¢'(n — k)] = E[¢" (n)] = 0. ®)  Silence of the Lambs coded atQ = 4). Thus, we
Denote byC(k) the covariance betweep! (n) and P! (n) at can generate the synthetic B-frame traffic simply by:ani.
lag k: lognormal random number generator when the correlation
, R - between{¢? (n)} and {4’ (n)} is small, or by a linear model
C(k) = El(¢; (n) — El¢; ))(¢"(n — k) — E[¢"])].  (6) similar to (3) when the correlation is large. The linear model

Recall that(n) and¢! (n) are independent of each other and@s the following form:

thus E[v(n) - ¢! (n)] = Elv(n)] - B[$!(n)] = 0. Then C(k) 68(n) = ad (n) + T (n), (10)
becomes:
. . wherea = r(0)og /oy, r(0) is the lag-0 correlation between
C(k) = E[(ad"(n)+v(n) — E[F])" (n— k)] {¢!(n)} and{¢B(n)}, o5 ando; are the standard deviation
= aE[¢'(n)d' (n — k)] (7) of {¢Z(n)} and {¢’(n)}, respectively. Processz(n) is

. . o independent ot’ (n).
Next, observe that the normalized correlation coefficieat e jllustrate the difference between our model and a typical

lag zero is: i.i.d. method of prior work (e.g., [17], [26]) in Fig. 10.
C(0)  aE[d'(n)? The figure shows that our model indeed preserves the intra-
r(0) = oror = opor (8) GOP correlation of the original traffic, while the previous
I I

’ methods produce white (uncorrelated) noise. Statistical param-
whereo; is the standard deviation of’ (n). Recalling that eters(r(0),0p, 07,7, a, 3) needed for this model are easily

E[¢!(n)] = 0, we haveE[¢!(n)?] = 02 = o7 and: estimated from the original sequences.
a-or _ r(0) ) V. MODELING THE ENHANCEMENT LAYER
ap In this section, we provide brief background knowledge of

which leads to (4). m multi-layer video, investigate methods to capture cross-layer
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atQ =30, fori =1,2,3.

1 14
BL_I_cov

dependency, and model the enhancement-layer traffic.
Due to its flexibility and high bandwidth utilization, layered os
video coding has become common in video applications. Lays
ered coding is often referred to as “scalable coding,” which ca$
be further classified as coarse-granular (e.g., spatial scalabilit & °*
or fine-granular (e.g., fine granular scalability (FGS)) [27] o2
The major difference between coarse granularity and fin
granularity is that the former provides quality improvement:
only when acompleteenhancement layer has been received,
while the latter continuously improves video quality with

every additionally received codeword of the enhancement lay&y. 12. (a) The ACF of{e’(n)} and that of{¢!(n)} in Star Wars
bitstream. IV. (b) The ACF of{ef’(n)} and that of{¢¥ (n)} in The Silence of

. . e Lambs .
In both coarse granular and fine granular coding methoaqs,

an enhancement layer is coded with the residual between the

original image and the reconstructed image from the base . ]

layer. Therefore, the enhancement layer has a strong depe@ween{e’(n)} and {¢’(n)} in The Silence of the

dency on the base layer. Zhat al. [28] also indicate that Lambs f:oded at different). As observed f_rom the figure, the
there exists a cross-correlation between the base layer andG@gelation bgtweer{gl(p)} and {¢’(n)} is stronger when
enhancement layer; however, this correlation has not been fifj quantization stef) is smaller. However, the difference
addressed in previous studies. In the next subsection, we POng these cross-correlation curves is not as obvious as
vestigate the cross-correlation between the enhancement |49&f in intra-GOP correlation. We also observe that the cross-
and the base layer using spatially scalablee Silence correlation is still strong even at large lags, which indicates
of the Lambs sequence and an FGS-codSthr Wars that {e’(n)} exhibits LRD properties and we should preserve
IV sequence as examples. We only show the analysis of t\,ygese properties in the synthetic enhancement layer I-frame

layer sequences for brevity since similar results hold for videdZes-

BL_P_cov

EL_I_cov 0.8 4

EL_P_cov

correlation

streams with more than two layers. In Fig 11 (b), we show the cross-correlation petween
_ processeg e’ (n)} and {¢F(n)} for i = 1,2,3. The figure
A. Analysis of the Enhancement Lafyer demonstrates that the correlation between the enhancement

For discussion convenience, we define the enhancemkyter and the base layer is quite strong, and the correlation
layer frame sizes as follows. Similar to the definition in thetructures between eadh? (n)} and {¢F (n)} are very sim-
base layer, we defing’ (n) to be the I-frame size of the-th ilar to each other. To avoid repetitive description, we do not
GOP,c!(n) to be the size of the-th P-frame in GO, and  show the correlation betweeft?(n)} and {¢Z(n)}, which
eP(n) to be the size of thé-th B-frame in GOPn. is similar to that betweeie!’ (n)} and {¢f (n)}.

Since each frame in the enhancement layer is predictedAside from cross-correlation, we also examine the auto-
from the corresponding frame in the base layer, we examiperrelation of each frame sequence in the enhancement layer
the cross-correlation between the enhancement layer fragrel that of the corresponding sequence in the base layer. We
sizes and the corresponding base layer frame sizes in \@fow the ACF of{<’(n)} and that of{¢’(n)} (labeled as
ious sequences. In Fig. 11 (a), we display the correlatioBL _|_cov” and “BL_l_cov”, respectively) in Fig. 12 (a); and

4We do not consider temporally scalable coded sequences, in which the bdls lay the. ACF of{ef(n)} and that Of{(bf(n)} in Fig. 12
layer and the enhancement layer are approximately equivalent to extracting- The figure shows that although the ACF structure of
I/P-frames and B-frames out of a single-layer sequence, respectively [22]{c” (n)} has some oscillation, its trend closely follows that
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Fig. 14. The cross-correlation betweda’(n)} and {¢’(n)} in The Fig. 16. Histograms ofwi(n)} and {@1(n)} for {¢F(n)} in (a) Star
Silence of the Lambs and that in the synthetic traffic generated fromwars IV and (b)The Silence of the Lambs (Q = 30).
(a) our model and (b) model [28].

i Zhao's model [28]. The figure shows that our model signifi-
of {¢’(n)}. One also observes from the figures that the ACE,

> P o antly outperforms Zhao's model in preserving the cross-layer
structures of processeg; (n)} and {¢; (n)} are similar t0 . alation.
each other.

. . C. Modeling P and B-Frame Sizes
B. Modeling the Enhancement Layer I-Frame Sizes g

L . . . Recall that the cross-correlation betweén!” and
Although cross-layer correlation is obvious in mulU-Iayeg ¢a; (n)}

#¥(n)} and that betweede?(n)} and {¢Z(n)} are also
trong, as shown in Fig. 11. We use the linear model from

. ) . : ion IV-B im he siz f theh P and B-fram
this section, we first describe how we model the enhancem%eﬁeon_th GéoP?St ate the sizes of tixn P and ames

layer I-frame sizes and then evaluate the performance of our
model in capturing the cross-layer correlation. eP(n) = apl (n) + @1 (n), (11)
Recqlllng that{e’(n)'}.also possesses both SRD and LRD B () = ag? (n) + ws(n), (12)
properties, we model it in the wavelet domain as we modeled
{¢1(n)}. We define{A;(e)} and{A4;(¢)} to be the approx- where a = r(0)o./c,, 7(0) is the lag-O cross-correlation
imation coefficients of{e’(n)} and {¢!(n)} at the wavelet coefficient,o. is the standard deviation of the enhancement-
decomposition levelj, respectively. To better understand théayer sequence, andy is the standard deviation of the cor-
relationship betweefi4;(¢)} and{A;(¢)}, we show the ACF responding base-layer sequence. Procegdegn)}, {w2(n)}
of {A3(e)} and {A3(¢)} using Haar wavelets (labeled asare independent of¢f(n)} and {¢Z(n)}. We examine
“ca_EL_cov” and “caBL _cov”, respectively) in Fig. 13. {w1(n)} and{w2(n)} and find they exhibit similar properties.
As shown in Fig. 13{4;(e)} and{A;(¢)} exhibit similar We show two examples dfw;(n)} in Fig. 15.
ACF structure. Thus, we generafel ;(¢)} by borrowing the  As observed from Fig. 15, the histogram 6fv;(n)} is
ACF structure of{A;(¢)}, which is known from our base- asymmetric and decays fast on both sides. Therefore, we use
layer model. Using the ACF ofA(¢)} in modeling{c’(n)} two exponential distributions to estimate its PDF. We first
not only saves computational cost, but also preserves the crdeft-shift {w;(n)} by an offset§ to make the mode (i.e., the
layer correlation. In Fig. 14, we compare the actual crospeak) appear at zero. We then model the right side using one
correlation betweere! (n)} and{¢!(n)} to that between the exponential distributiorezp();) and the absolute value of
synthetic{e!(n)} and {4’ (n)} generated from our model andthe left side using another exponential distributiorp()\s).

traffic, previous work neither considered it during modelin
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Afterwards, we generate synthetic dafa;(n)} based on
these two exponential distributions and right-shift the resund is simulated as different multiples of the average traffic
by 6. As shown in Fig. 16, the histograms §fi;(n)} are rater.

close to those of the actual data in b&tar Wars IV and In the following two sections, we evaluate the accuracy of
The Silence of the Lambs . We generatdin(n)} in  our model in both single-layer and multi-layer traffic using the
the same way and find its histogram is also close to that @pove three measures. We should note that simulations with
{wa(n)}. additional video sequences have demonstrated results similar

to those shown throughout this paper.
VI. MODEL ACCURACY STUDY 9 pap

As we stated earlier, a good traffic model should captufe Single-layer and the Base layer Traffic
the statistical properties of the original traffic and be able We first show QQ plots of the synthetic single-laygtar
to accurately predict network performance. There are thri#éars IV and the synthetic base layerie Silence of
popular studies to verify the accuracy of a video traffithe Lambs that are generated by our model in Fig. 17 (a)
model [26]: quantile-quantile (QQ) plots, the variance oind (b), respectively. As shown in the figure, the generated
traffic during various time intervals, and buffer overflow losffame sizes and the original traffic are almost identical.
evaluation. While the first two measures visually evaluate howIn Fig. 18, we give a comparison between the variance of the
well the distribution of the synthetic traffic and that of thedriginal traffic and that of the synthetic traffic generated from
original one matches, the overflow loss simulation examindiferen models at various time intervals. The figure shows
the effectiveness of a traffic model to capture the tempoitiiat the second-order moment of our synthetic traffic is in a
burstiness of original traffic. good agreement with that of the original one.

The QQ plot is a graphical technique to verify the distri- We also compare the accuracy of several models using
bution similarity between two test data sets. If the two daga leaky-bucket simulation. To understand the performance
sets have the same distribution, the points should fall alodijferences between various models, we define the relative
the 45 degree reference line. The greater the departure frerror e as the difference between tteetual packet lossp
this reference line, the greater the difference between the talserved in the buffer fed with the original traffic and that

test data sets. observed using the synthetic traffic generated by each of the
Different from the QQ plot, the variance of traffic duringmodels:

various time intervals shows whether the second-order moment e = W. (13)

of the synthetic traffic fits that of the original one. This p

second-order descriptor is used to capture burstiness propertids Table |, we illustrate the values af for various buffer
of arrival processes [1]. This measure operates as folloveapacities and drain rateé. As shown in the table, the
Assume that the length of a video sequencé and there synthetic traffic generated by our model provides a very
arem frames at a given time interval. We segment the onaecurate estimate of the actual data loss probabilitgnd
dimensional data into & x n matrix, wheren = [/m. After significantly outperforms the other methods. In addition, our
summing all the data in each column, we obtain a sequencesghthetic traffic is approximatel§0% more accurate than the
lengthn and then calculate its variance. Thus, we can obtain.d. models of prior work in estimating the loss ratio of P-
a set of variances given a set of time intervals. frames.

Besides the distribution, we also examine how well our In Fig. 19, we show the relative erra of synthetic
approach preserves the temporal information of the originaaffic generated from different models in H.2&arship
traffic. A common test for this is to pass the synthetic traffitroopers coded atQ) = 1,31, givend = 7. Since GOP-
through a generic router buffer with capacitgnd drain ratel GBAR model [7] is specifically developed for MPEG traffic,
[26]. The drain rate is the number of bytes drained per secowg do not apply it to H.264 sequences. The figure shows that
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Fig. 19. Givend = 7, the errore of various synthetic traffic in H.264 Fig. 21.

’ Comparison of variance between the synthetic and original
Starship Troopers coded at (a)Q = 1 and (b)Q = 31.

enhancement layer traffic in (§tar Wars IV and (b) The Silence
of the Lambs .

our model outperforms the other three modelsStarship _ _
Troopers coded with smallQ and performs as good asOf the enhancement layers in bothe Silence of the
model GammaA [26] with large Q (the relative errore of Lambs (54,000 frames) andStar Wars IV (108,000

both models is less than 1% in Fig. 19 (b)). frames) with different drain rates for buffer capacityc = 10
_ ms andc = 30 ms, respectively. The:-axis in the figure
B. Enhancement Layer Traffic represents the ratio of the drain rates to the average traffic

We evaluate the accuracy of the synthetic enhanceméater. The figure shows that the synthetic enhancement layer
layer by using QQ plots and show two examples in Fig. 20reserves the temporal information of the original traffic very
which displays two QQ plots for the synthefibe Silence ~ Well.
of the Lambs and Star Wars IV enhancement-layer
traffic. The figure shows that the synthetic frame sizes in both i )
sequences have the same distribution as those in the origindl" thiS paper, we presented a framework for modeling H.264
traffic. and MPEG-4 multi-layer full-length VBR video traffic. This

We also compare the variance of the original traffic and th4CTK Precisely captured the inter- and intra-GOP correlation in
of the synthetic traffic in Fig. 21. Due to the computationdf®mPressed VBR sequences, by incorporating wavelet-domain

complexity of model [28] in calculating long sequences, wanalysis into time-domain modeling. Whereas many previous
only take the firs6000 frames ofStar Wars IV andThe traffic models are developed at slice-level or even block-level

VIl. CONCLUSION

Silence of the Lambs . As observed from the figure [26], our framework uses frame-size level, which allows us to
our model preserves the second-order moment of the origiff¥pmine the loss ratio for each type of frames and apply other
traffic well. methods to improve the video quality at the receiver. We also

We next examine the data loss ratio predicted by oRFoposed novel methods to model cross-layer correlation in
synthetic traffic passed through a generic buffer as shofplti-layer sequences. In future work, we plan to apply our
in the previous section. Recall that the model in [1] is onlgaﬁ_IC model and optimize network delivery of VBR video to
applicable to sequences with a CBR base layer and the on&lfi$i9n layered peer-to-peer video systems.
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