
Analysis and Modeling of MPEG-4 and H.264 Multi-Layer Video Traffic

Min Dai and Dmitri Loguinov

Department of Computer Science Texas A&M University College Station, TX 77843

23rd March 2005

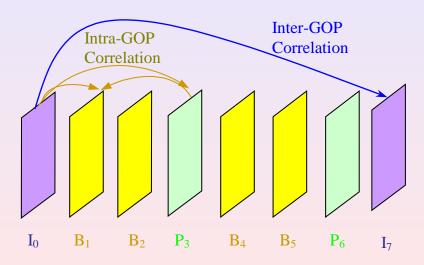
- Background
 - Motivation
 - Preliminaries
 - Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
 - Model accuracy study

- Background
 - Motivation
 - Preliminaries
 - Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
 - Model accuracy study

Importance of Traffic Modeling

Importance

- Properly allocate network resources
- Evaluate protocols and effectively design networks
- Use as traffic descriptor to achieve certain Quality of Service (QoS) requirements
- Analyze and characterize a queue or a network


Goals of Traffic Modeling

Goals

- Capture the characteristics of video frame size sequences
 - The marginal probability density function (PDF) of frame sizes
 - The autocorrelation function (ACF) of video traffic
- Accurately predict network performance
 - Buffer overflow probabilities
 - Temporal burstiness

- Background
 - Motivation
 - Preliminaries
 - Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
 - Model accuracy study

Group of Pictures

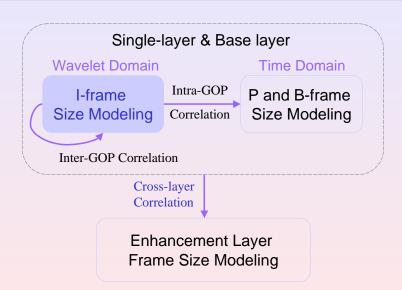
Inter- and Intra-GOP Correlation

Definition

- Inter-GOP correlation is the correlation among various GOPs, which is well characterized by the ACF of the I-frames.
- 2 Intra-GOP correlation is the correlation between P/B-frames and the I-frame in the same GOP.

- Background
 - Motivation
 - Preliminaries
 - Challenges & Current Status
- 2 Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
 - Model accuracy study

Motivation


Challenges & Current Status

Challenges

- Coexistence of long range dependency (LRD) and short range dependency (SRD)
- Coexistence of inter- and intra-GOP correlation
- Strong cross-layer correlation in multi-layer video traffic
- Various PDF among I, P, and B-frame sizes distributions

Current Status

- Difficult to capture both LRD and SRD properties
- Little work has considered both inter- and intra-GOP correlation
- Most existing models only apply to single-layer video traffic
- Current multi-layer traffic models do not capture the cross-layer correlation

- Background
 - Motivation
 - Preliminaries
 - Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
 - Model accuracy study

Wavelet Decomposition

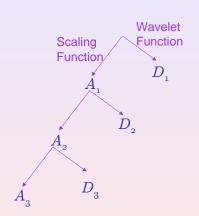


Figure: A typical wavelet decomposition

Wavelet Decomposition

- Wavelet decomposition can be simply considered as passing the original signal to a high-pass filter (wavelet function) and a low-pass filter (scaling function).
- Wavelet function generates the detailed coefficients $\{D_j\}$ and scaling function generates the approximation coefficients $\{A_j\}$, where j is the decomposition level.

Definition of Frame Sizes

Definition

Assuming that n is the GOP number,

- $\phi^I(n)$ is the I-frame size of the n-th GOP.
- **2** $\phi_i^P(n)$ is the size of the *i*-th P-frame in the *n*-th GOP.
- **3** $\phi_i^B(n)$ is the size of the *i*-th B-frame in the *n*-th GOP.

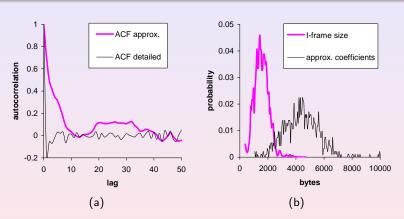
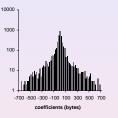
For example, $\phi_3^P(10)$ represents the size of the third P-frame in the 10-th GOP.

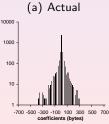
Modeling I-Frame Sizes

Algorithm

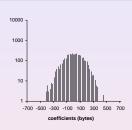
- Perform wavelet decomposition to I-frame sizes $\phi^I(n)$ till decomposition level J
- 2 Estimate the coarsest approximation coefficients $\{A_J\}$
- 3 Estimate the detailed coefficients at each level
- Perform inverse wavelet transform to obtain the synthetic l-frame sizes

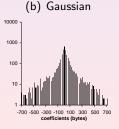
Modeling I-Frame Sizes Analysis of Wavelet Coefficients


Figure: (a) The ACF structure of coefficients $\{A_3\}$ and $\{D_3\}$ in single-layer Star Wars IV. (b) The histogram of I-frame sizes and that of approximation coefficients $\{A_3\}$ in the same sequence.

Modeling I-Frame Sizes Estimation of Wavelet Coefficients


- ullet Estimate the coarsest approximation coefficients $\{A_J\}$:
 - Prior work uses independent random Gaussian or Beta variables
 - Our model uses dependent random variables with marginal Gamma distribution
- Estimate detailed coefficients $\{D_j\}$ at each level:
 - Prior work uses i.i.d. Gaussian random variables
 - Our model uses i.i.d. mixture Laplacian random variables


Modeling I-Frame Sizes Detailed Coefficients Estimates

(c) GGD

(d) Mix-Laplacian A B A B A B A B

Modeling I-Frame Sizes Performance Comparison

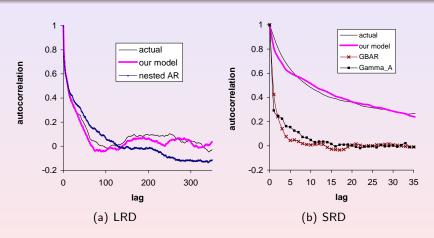
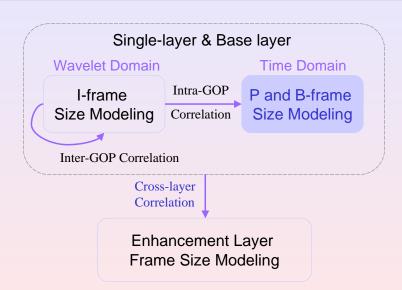



Figure: The ACF of the actual I-frame sizes and that of the synthetic traffic in (a) long range and (b) short range.

Modeling P/B-Frame Sizes Intra-GOP Correlation

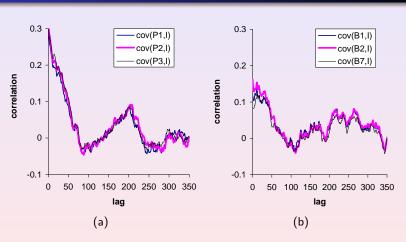


Figure: (a) The correlation between $\{\phi^I(n)\}$ and $\{\phi^P_i(n)\}$, i=1,2,3, and (b) that between $\{\phi^I(n)\}$ and $\{\phi^B_i(n)\}$, i=1,2,7 in Star Wars.

Modeling P/B-Frame Sizes Model Comparison

Previous Work

Previous work does not consider the intra-GOP correlation and estimates P/B-frame sizes as i.i.d. random variables.

Our Model

The size of the i-th P-frame in the n-th GOP is:

$$\phi_i^P(n) = a\tilde{\phi}^I(n) + \tilde{v}(n), \quad \text{where} \quad a = \frac{r(0)\sigma_P}{\sigma_I}.$$

- Process $\tilde{\phi}^I(n) = \phi^I(n) E[\phi^I(n)]$ and process $\tilde{v}(n)$ is independent of $\tilde{\phi}^I(n)$.
- Parameter σ_P is the standard deviation of $\{\phi_i^P(n)\}$, σ_I is the standard deviation of $\{\phi^I(n)\}$.

Modeling P/B-Frame Sizes

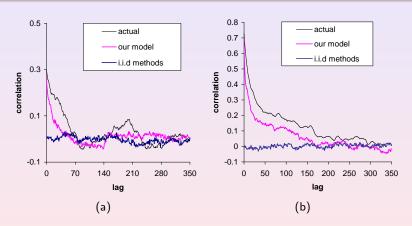


Figure: (a) The correlation between $\{\phi_1^P(n)\}$ and $\{\phi^I(n)\}$ in Star Wars and (b) that between $\{\phi_1^B(n)\}$ and $\{\phi^I(n)\}$ in Jurassic Park.

- Background
 - Motivation
 - Preliminaries
 - Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
 - Model accuracy study

Brief Description

Layered Video Coding

- Generates one base layer (BL) and one or more enhancement layers(EL)
- BL provides a low but guaranteed level of quality and EL provides quality improvement
- The input to an EL is the residual between the original image and the reconstructed image from the BL.

Cross-Layer Correlation

The enhancement layer has a strong dependency on the base layer, which is referred to as cross-layer correlation.

Brief Description (cont.)

Definition

Assuming that $n \ge 1$ represents the GOP number in an enhancement layer,

- \bullet $\varepsilon^{I}(n)$ is the I-frame size in this GOP.
- ${\mathfrak Q}$ $\varepsilon_i^P(n)$ is the size of the *i*-th P-frame in this GOP.
- **3** $\varepsilon_i^B(n)$ is the size of the *i*-th B-frame in this GOP.

Modeling Enhancement Layer

Algorithm

- 1 We estimate I-frame sizes in wavelet domain
- 2 Estimate P and B-frame sizes using the cross-layer correlation:

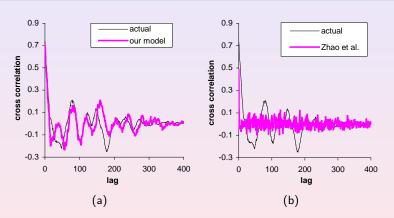
$$\varepsilon_i^P(n) = a\phi_i^P(n) + \tilde{w}_1(n),$$

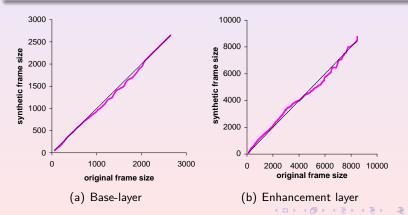
$$\varepsilon_i^B(n) = a\phi_i^B(n) + \tilde{w}_2(n),$$

where $a = r(0)\sigma_{\varepsilon}/\sigma_{\phi}$.

- Parameter r(0) is the lag-0 cross-correlation coefficient, σ_{ε} and σ_{ϕ} are the standard deviation of the EL and the corresponding BL.
- Processes $\{\tilde{w}_1(n)\}, \{\tilde{w}_2(n)\}$ are independent of $\{\phi_i^P(n)\}$ and $\{\phi_i^B(n)\}.$

Modeling Enhancement Layer Cross-correlation Comparison

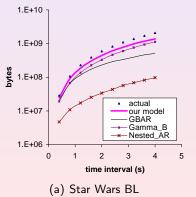


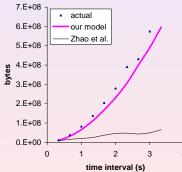

Figure: The cross-correlation between $\{\varepsilon^I(n)\}$ and $\{\phi^I(n)\}$ in The Silence of the Lambs and that in the synthetic traffic generated from (a) our model and (b) a popular model in related work.

- Background
 - Motivation
 - Preliminaries
 - Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
 - Model accuracy study

Performance Evaluation Methods

QQ Plots


 To verify the distribution similarity between the original traffic and the synthetic one.



Performance Evaluation Methods (cont.)

Variance of traffic during various time intervals

• To check whether the second-order moment of the synthetic traffic fits that of the original one.

Performance Evaluation Methods (cont.)

Leaky-bucket simulation

- To examine how well the traffic model preserves the temporal information of the original traffic
- Implementation: Pass the original and synthetic traffic through a generic buffer with capacity c and drain rate d.
- Evaluation metric:

$$e = \frac{|p - p_{model}|}{p},$$

where p is the actual data loss ratio and p_{model} is the synthetic one.

Performance Evaluation Methods (cont.)

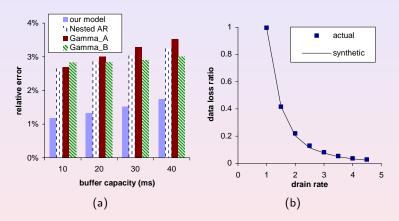


Figure: (a) Comparison of several models in H.264 coded Starship Troopers. (b) The loss ratio p of the original and synthetic enhancement layer traffic for The Silence of the Lambs.

Conclusion

- This paper proposed a traffic model applicable to both single-layer and multi-layer VBR video traffic.
- The presented traffic modeling framework captures both LRD and SRD properties of video traffic.
- This framework accurately describes both inter-/intra-GOP correlation and the cross-layer correlation.
- Future Work
 - Develop a unified model for multi-layer video traffic
 - More applications in overlay networks

Thank you!

Any questions?