
C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1

IRLbot: Scaling to 6 Billion Pages 
and Beyond 
IRLbot: Scaling to 6 Billion Pages IRLbot: Scaling to 6 Billion Pages 
and Beyondand Beyond

Presented by Xiaoming WangPresented by Xiaoming Wang
Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov

Internet Research Lab 
Computer Science Department 
Texas A&M University

April 25, 2008



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2

AgendaAgendaAgenda

• Introduction and challenges

• Background

• Overcoming the challenges
━

 

Scalability
━

 

Spam and reputation
━

 

Politeness

• Experiments 

• Conclusion

we are here



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

3

IntroductionIntroductionIntroduction

• WWW has evolved from a handful of pages to billions 
of diverse objects
━

 

In January 2008, Google reported indexing 30

 
billion 

documents and Yahoo 37

 
billion (see paper for details)

• Search engines consist of two fundamental parts
━

 

Web crawlers ━

 

Data miners

• Challenges
━

 

Scalability
━

 

Spam avoidance
━

 

Politeness

our focus in 
this paper



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

4

Challenges – ScalabilityChallenges Challenges –– ScalabilityScalability

• Inherent tradeoff between scalability, performance, and 
resource usage 
━

 

Scalability: number of pages N
 

the crawler can handle 
━

 

Performance: speed S
 

at which the crawler discovers the web 
as a function of N

━

 

Resource usage: CPU and RAM requirements Σ
 

needed to 
download N

 
pages at average speed S

• Previous research can satisfy any two objectives (i.e., 
large slow crawls, fast small crawls, or fast large crawls 
with unlimited resources)

• Our goal: achieve large N
 

(trillions of pages) with fixed 
S

 
(1000+

 
pages/sec) and modest Σ

 
(single server)



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

5

Challenges – Spam AvoidanceChallenges Challenges –– Spam AvoidanceSpam Avoidance
• Experience shows that BFS eventually becomes 

trapped in useless content
━

 

The queue of pending URLs is filled with spam links and 
infinite auto-generated webs

━

 

The DNS resolver is overloaded with new hostnames that are 
dynamically created within a single domain

━

 

Crawler is “bogged down” in synchronized delay attacks of 
certain spammers

• Prior research has not attempted to avoid spam or 
even document its effect on the collected data

• Our goal: prevent low-ranked (spam) domains from 
impacting crawler performance



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

6

Challenges – Politeness Challenges Challenges –– Politeness Politeness 

• Web crawlers often get in trouble with webmasters for 
slowing down their servers
━

 

Sometimes even reading the robots.txt file generates a 
complaint

• Per-website and per-IP hit limits are simple
━

 

However, even with spam avoidance, the entire RAM 
eventually gets filled with URLs from a small set of hosts 
(e.g., ebay, blogspot) and the crawler simply chokes on its 
politeness

• Previous algorithms do not address this issue

• Our goal: crawl large legitimate sites without stalling



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

7

AgendaAgendaAgenda

• Introduction and challenges

• Background

• Overcoming the challenges
━

 

Scalability
━

 

Spam and reputation
━

 

Politeness

• Experiments 

• Conclusion

we are here



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

8

Background – Crawler Objectives Background Background –– Crawler Objectives Crawler Objectives 
• Ideal task is to start from a set of seed URLs Ω0 and 

eventually crawl the set of all pages Ω∞

• Crawler may reorder URLs to achieve some “good” 
coverage of useful pages ΩU

 

⊆

 
Ω∞

 

in some finite 
amount of time

• We call an algorithm non-scalable if it
1) imposes hard limits on any of the following metrics

• Max. # pages per host, #hosts per domain, #domains in the 
Internet, #pages in the crawl

2) is unable to maintain crawling speed when these metrics 
become arbitrarily large

• Scalability is an important objective



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

9

Background – Crawler OperationBackground Background –– Crawler OperationCrawler Operation
• For each URL u

 
in the queue Q

 
of pending pages, the 

crawler downloads u’s HTML page and extracts new 
URLs u1

 

, u2

 

, …, uk
• For each ui

 

, the crawler verifies its uniqueness using 
URLseen and checks compliance with robots.txt using 
RobotsCache

• It then adds the passing URLs to Q
 

and URLseen

• Last, it updates RobotsCache if necessary

• The crawler may also maintain a DNScache structure 
to reduce the load on the local DNS server



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

10

Related WorkRelated WorkRelated Work
• Largest crawl with a 

disclosed implementation: 
473M HTML pages

• Fastest: 816 pages/sec



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

11

AgendaAgendaAgenda

• Introduction and challenges

• Background

• Overcoming the challenges
━

 

Scalability
━

 

Spam and reputation
━

 

Politeness

• Experiments 

• Conclusion

we are here



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

12

ScalabilityScalabilityScalability

• One of the bottlenecks in web crawling is the disk I/O 
in checking URLseen

• A 6B page crawl requires verification of 394B URLs
━

 

Disk structures must be optimized to support the crawling rate

• Our solution is called Disk Repository with Update 
Management (DRUM)

• The purpose of DRUM is to allow for efficient storage 
of large collections of <key, value> pairs
━

 

Key is a unique identifier of some data (e.g., URL hash)
━

 

Value is arbitrary information attached to keys (e.g., URL text)



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

13

Scalability 2Scalability 2Scalability 2

• Three operations are supported
━

 

Check: verifies uniqueness of a key
━

 

Update: overrides the value if the key exists and otherwise 
adds a new entry

━

 

Check + update: performs both check and update in one pass 
through the disk cache

• Unlike prior methods, DRUM is based on disk bucket 
sort rather than variations of merge/insertion sort
━

 

For certain values of RAM size, DRUM achieves a linear 
number of disk reads rather than quadratic as in prior work

━

 

See paper for details



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

14

Scalability 3Scalability 3Scalability 3
• Overhead metric ω: # of bytes written to/read from disk 

during uniqueness checks of lN
 

URLs
━

 

l

 
is the average # of links per downloaded page

━

 

N

 
is the # of crawled pages

• Assume that the average URL length is b
 

bytes and R
 is the size of RAM allocated to URL checks

• Then ω
 

can be split into a product two terms: α
 

×

 
blN

━

 

blN

 
is the number of bytes in all parsed URLs

━

 

α

 
is the number of times they are written to/read from disk

• Various methods differ in the first term only
━

 

Metric α
 

may be a constant or a linear function of N



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

15

Scalability 4Scalability 4Scalability 4

• Theorem 1: The overhead of URLseen batch disk 
check is ω

 
= αblN

 
bytes, where for Mercator:

━

 

and for Polybot:

• Theorem 2: DRUM’s URLseen overhead is ω
 

= αblN

 bytes, where:

Both have 
α

 
∼

 
N/R

Notice that 
α

 
∼

 
N/R2



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

16

Scalability 5Scalability 5Scalability 5
• For certain values of R, DRUM achieves N/R2

 

≈

 
0

 
and 

thus α
 

remains almost constant as N
 

increases

• Overhead α
 

for dynamically scaling disk size:



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

17

Scalability 6Scalability 6Scalability 6
• Theorem 3: Maximum download rate (in pages/s) 

supported by the disk portion of URL uniqueness 
checks is 

• For IRLbot, we set disk speed W
 

= 101.25

 
MB/s and 

RAM size R
 

= 8

 
GB

• Assuming N
 

= 8

 
trillion pages, DRUM yields a 

sustained download rate of S
 

=

 
4,192

 
pages/s

━

 

10 DRUM servers and 10-gb/s link could give 100 billion 
pages per month

• For N
 

= 8T, Mercator achieves an average rate of only 
1.4

 
pages/s and Polybot 0.2

 
pages/s

average disk I/O speed



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

18

IRLbot OrganizationIRLbot OrganizationIRLbot Organization



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

19

AgendaAgendaAgenda

• Introduction and challenges

• Background

• Overcoming the challenges
━

 

Scalability
━

 

Spam and reputation
━

 

Politeness

• Experiments

• Conclusion

we are here



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

20

Spam and ReputationSpam and ReputationSpam and Reputation

• In our experience, BFS is a poor technique in the 
presence of spam farms and infinite webs

• Quickly branching sites (1000+ links per page) are 
potential traps
━

 

Dominate the queue after 3
 

levels of BFS with 109

 

pages 
(exact impact depends on the seed URLs and crawls size)

• Simply restricting the branching factor or the maximum 
number of pages/hosts per domain is not a viable 
solution
━

 

A number of legitimate sites contain over 100

 
million pages 

and over 10

 
million virtual hosts

━

 

Yahoo reports 1.2B objects within its own domain



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

21

Spam and Reputation 2Spam and Reputation 2Spam and Reputation 2
• Computing traditional PageRank for each page could 

be prohibitively expensive in large crawls
━

 

In our case, over 41B pages in the webgraph

• However, the goal here is not to classify each page, 
but rather to understand which domains should be 
allowed to massively branch

• Spam can be effectively deterred by budgeting the 
number of allowed pages per pay-level domain (PLD)
━

 

PLDs are domains that one must pay for at some registrar

• PLD reputation is determined by its in-degree from 
resources that spammers must pay for, which in our 
case are other PLDs



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

22

Spam and Reputation 3Spam and Reputation 3Spam and Reputation 3
• This solution we call Spam Tracking and Avoidance 

through Reputation (STAR)

• Each PLD x
 

has budget Bx

 

that represents the number 
of pages that are allowed to pass from x

 
(including all 

subdomains) to crawling threads every T
 

time units

• Each PLD x
 

starts with a default budget B0

 

, which is 
then dynamically adjusted as its in-degree dx

 

changes 
over time
━

 

Diverse strategies can be achieved by varying the adjustment 
function (e.g., more preference for popular/unpopular 
domains, equal preference, linear/non-linear scaling of Bx

 

) 

• DRUM is used to store PLD budgets and aggregate 
PLD-PLD link information



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

23

Operation of STAROperation of STAROperation of STAR



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

24

AgendaAgendaAgenda

• Introduction and challenges

• Background

• Overcoming the challenges
━

 

Scalability
━

 

Spam and reputation
━

 

Politeness

• Experiments

• Conclusion
we are here



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

25

PolitenessPolitenessPoliteness

• Prior work has only enforced a certain per-host access 
delay τh

 

 seconds
━

 

Easy to crash servers that co-locate 1000s of virtual hosts
━

 

Thus, a per-IP limit τs
 

is needed as well

• Low-ranked PLDs (Bx

 

= B0

 

)
━

 

Keep τh
 

 = 40

 
seconds and τs

 

= 1 second

• High-ranked domains (Bx

 

> B0

 

)
━

 

Both τh
 

and τs
 

are scaled proportional to Bx

 

to crawl URLs no 
slower than the rate at which they are admitted into RAM

• By controlling the coupling between PLD budgets and 
their crawl rate, we can avoid memory backlog



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

26

Politeness 2 Politeness 2 Politeness 2 

• To admit URLs into RAM we have a method called 
Budget Enforcement with Anti-Spam Tactics (BEAST)

• BEAST does not discard URLs, but rather delays their 
download until it knows more about the PLD they 
belong to

• A naïve implementation is to maintain two queues 
━

 

Q

 
contains URLs that passed the budget check

━

 

QF

 

contains those that failed

• After Q
 

is emptied, QF

 

is read and again split into two 
queues – Q

 
and QF



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

27

Politeness 3Politeness 3Politeness 3

• Theorem 4: Lowest disk I/O speed (in bytes/s) that 
allows the naïve budget-enforcement approach to 
download N

 
pages at fixed rate S

 
is:

━

 

where 

• This theorem shows that λ
 

∼

 
αN

 

= Θ(N)

• For IRLbot, λ
 

= 3.8 MB/s for N
 

= 100 million, λ
 

= 83 
MB/s for N

 
= 8 billion, and λ

 
= 826 MB/s for N

 
= 80 

billion



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

28

Politeness 4Politeness 4Politeness 4
• The correct implementation of BEAST rechecks QF

 

at 
exponentially increasing intervals

• Suppose the crawler works with j
 

queues Q1

 

, …, Qj

━

 

Old URLs are read from Q1

 

and sent to robots check and later 
to the crawling threads

━

 

New URLs are written to Q2

 

, …, Qj

 

based on their remaining 
budget (Bx

 

URLs per queue)

• After Q1

 

is emptied, the crawler moves to reading Q2

 
and spreads new URLs between Q3

 

, …, Qj

 

, Q1

• After it finally empties Qj

 

, the crawler re-scans QF

 

and 
splits it into j

 
additional queues Qj+1

 

, …, Q2j

━

 

URLs violating the budget of Q2j

 

are placed into new QF

wrap-around



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

29

Politeness 5Politeness 5Politeness 5

• Theorem 5: Lowest disk I/O speed (in bytes/s) that 
allows BEAST to download N

 
pages at fixed rate S

 
is:

• For N
 

→∞, disk speed λ
 

→ 2Sb(2L

 
— 1) = constant

━

 

It is roughly four times the speed needed to write all unique 
URLs to disk as they are discovered during the crawl

• For the example used in Theorem 4, BEAST requires 
λ

 
·

 
8.2 MB/s regardless of crawl size N



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

30

Operation of BEASTOperation of BEASTOperation of BEAST



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

31

AgendaAgendaAgenda

• Introduction and challenges

• Background

• Overcoming the challenges
━

 

Scalability
━

 

Spam and reputation
━

 

Politeness

• Experiments

• Conclusion

we are here



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

32

Experiments – Summary Experiments Experiments –– Summary Summary 
• One quad-CPU AMD Opteron 2.6

 
GHz sever with 16 

GB RAM, 24-disk RAID-5, and 1-gb/s link

• Active crawling period of 41 days in summer 2007

• IRLbot attempted 7.6

 
billion connections and received 

7.4

 
billion valid HTTP replies

━

 

6.3

 
billion responses with status code 200 and content-type 

text/html (964M errors and redirects, 92M non-HTML)

• Average download rate 319 mb/s (1,789

 
pages/s)

• Crawler received 143 TB of data (254

 
GB of robots.txt 

files) and sent 1.8

 
TB of HTTP requests

━

 

After decompression, 161

 
TB of HTML code went through the 

parser



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

33

Experiments – Summary 2Experiments Experiments –– Summary 2Summary 2

Crawl rate (pages/s) Receiving rate (mb/s)



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

34

Experiments – Summary 3Experiments Experiments –– Summary 3Summary 3
• IRLbot parsed out 394 billion links

━

 

Removing invalid URLs, this translates to 59

 
links/page

• URLseen contained 41 billion unique URLs
━

 

On average, 6.5

 
unique links per crawled page

━

 

Pages hosted by 641 million websites

• Discovered 89

 
million PLDs

━

 

PLD-PLD graph contained 1.8B edges

• Received responses from 117 million sites
━

 

Belonged to 33M PLDs
━

 

Were hosted on 4.2

 
million IPs



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

35

Experiments – Uniqueness ProbabilityExperiments Experiments –– Uniqueness ProbabilityUniqueness Probability
• The probability of 

uniqueness p
 

stabilized 
around 0.11

 
after the first 

billion pages were 
downloaded
━

 

p

 
was bounded away from 0

 even at N
 

= 6.3 billion

• We certainly know there 
are ≥

 
41 billion pages

━

 

The fraction of them with 
useful content and the 
number of additional pages 
not seen by the crawler are a 
mystery at this stage



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

36

Experiments – Effectiveness of STARExperiments Experiments –– Effectiveness of STAREffectiveness of STAR
• Top 10K ranked domains 

were given budget Bx

 

linearly 
interpolated between 10 and 
10K
━

 

All other PLDs received the 
default budget 10

• Figure shows that IRLbot 
succeeded at correlating 
PLD bandwidth allocation 
with their in-degree

• Manual examination reveals 
only 14

 
spam sites in the top 

1000

 
PLDs



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

37

Experiments – Top Ranked PLDsExperiments Experiments –– Top Ranked Top Ranked PLDsPLDs



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

38

AgendaAgendaAgenda

• Introduction and challenges

• Background

• Overcoming the challenges
━

 

Scalability
━

 

Spam and reputation
━

 

Politeness

• Experiments

• Conclusion

almost done



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

39

ConclusionConclusionConclusion

• This paper tackled the issue of scaling web crawlers to 
billions and even trillions of pages
━

 

Single server with constant CPU, disk, and memory speed

• We identified several bottlenecks in building an 
efficient large-scale crawler and presented our solution 
to these problems
━

 

Low-overhead disk-based data structures
━

 

Non-BFS crawling order
━

 

Real-time reputation to guide the crawling rate

• Future work
━

 

Refining reputation algorithms, accessing their performance
━

 

Mining the collected data


	IRLbot: Scaling to 6 Billion Pages and Beyond
	Agenda
	Introduction
	Challenges – Scalability
	Challenges – Spam Avoidance
	Challenges – Politeness 
	Agenda
	Background – Crawler Objectives 
	Background – Crawler Operation
	Related Work
	Agenda
	Scalability
	Scalability 2
	Scalability 3
	Scalability 4
	Scalability 5
	Scalability 6
	IRLbot Organization
	Agenda
	Spam and Reputation
	Spam and Reputation 2
	Spam and Reputation 3
	Operation of STAR
	Agenda
	Politeness
	Politeness 2 
	Politeness 3
	Politeness 4
	Politeness 5
	Operation of BEAST
	Agenda
	Experiments – Summary 
	Experiments – Summary 2
	Experiments – Summary 3
	Experiments – Uniqueness Probability
	Experiments – Effectiveness of STAR
	Experiments – Top Ranked PLDs
	Agenda
	Conclusion

