IRLbot: Scaling to 6 Billion Pages
and Beyond

Presented by Xiaoming Wang

Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov

Internet Research Lab
Computer Science Department
Texas A&M University

April 25, 2008

>
2
.
)
2>
c
-
=
oJ
<
(V]
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Agenda

*_ Introduction and challen@e}‘ﬁ%

e Background

— we are here
 Overcoming the challenges

- Scalability

- Spam and reputation

- Politeness

 EXxperiments

e Conclusion

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Introduction

« WWW has evolved from a handful of pages to billions
of diverse objects

- In January 2008, Google reported indexing 30 billion
documents and Yahoo 37 billion (see paper for details)

e Search engines consist of two fundamental parts
-@3 crawlers - Data miners

— —

. Challenges

~__ourfocusin
- Scalability this paper
- Spam avoidance
- Politeness

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Challenges — Scalability

* |Inherent tradeoff between scalability, performance, and
resource usage
- Scalability: number of pages N the crawler can handle

- Performance: speed S at which the crawler discovers the web
as a function of N

- Resource usage: CPU and RAM requirements X needed to
download N pages at average speed S

* Previous research can satisfy any two objectives (i.e.,
large slow crawls, fast small crawls, or fast large crawls
with unlimited resources)

 QOur goal: achieve large N (trillions of pages) with fixed
S (1000+ pages/sec) and modest X (single server)

>
2
.
)
2>
c
-
=
oJ
<
(V]
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

4

Challenges — Spam Avoidance

 EXxperience shows that BFS eventually becomes
trapped in useless content

- The gueue of pending URLSs is filled with spam links and
Infinite auto-generated webs

- The DNS resolver is overloaded with new hostnames that are
dynamically created within a single domain

- Crawler is “bogged down” in synchronized delay attacks of
certain spammers

e Prior research has not attempted to avoid spam or
even document its effect on the collected data

e Qur goal: prevent low-ranked (spam) domains from
Impacting crawler performance

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Challenges — Politeness

Web crawlers often get in trouble with webmasters for
slowing down their servers

- Sometimes even reading the robots.txt file generates a
complaint

Per-website and per-IP hit limits are simple

- However, even with spam avoidance, the entire RAM
eventually gets filled with URLs from a small set of hosts
(e.g., ebay, blogspot) and the crawler simply chokes on its
politeness

Previous algorithms do not address this issue

Our goal: crawl large legitimate sites without stalling

Agenda

e |ntroduction and challenges

 Overcoming the challenges
- Scalability
- Spam and reputation
- Politeness

 EXxperiments

e Conclusion

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

we are here

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Background — Crawler Objectives

ldeal task Is to start from a set of seed URLs (2, and
eventually crawl the set of all pages (2_

Crawler may reorder URLSs to achieve some “good”
coverage of useful pages (2, C {2__ in some finite

amount of time

We call an algorithm non-scalable if it

1) imposes hard limits on any of the following metrics

« Max. # pages per host, #hosts per domain, #domains in the
Internet, #pages in the crawl

2) Is unable to maintain crawling speed when these metrics
become arbitrarily large

Scalability is an important objective

Backdround — Crawler Operation

 For each URL u in the queue @ of pending pages, the
crawler downloads v’s HTML page and extracts new
URLS u,, u,, ..., u,

e For each u,, the crawler verifies its uniqueness using
URLseen and checks compliance with robots.txt using
RobotsCache

* |t then adds the passing URLs to () and URLseen
o Last, it updates RobotsCache If necessary

 The crawler may also maintain a DNScache structure
to reduce the load on the local DNS server

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Related Work

; Crawler Year Crawl size
)y ° Largest crawl with a (HTML pages)
2 disclosed implementation: WebCrawler [25] | 1994 50K
Internet Archive [6 1997 —

= 473M HTML pages MerrorA 14 | 1090 | 41
- Mercator-B [23] 2001 473M
>3 e+ [astest: 816 pag es/sec Polybot [27] 2001 120M
g WebBase [7] 2001 125M
n UbiCrawler [2] 2002 45M
]
x
2

- Crawler URLseen RobotsCache DNScache
5 RAM Disk | RAM Disk
GC) WebCrawler [25] database — —
[T Internet Archive [6] | site-based — site-based - site-based
(2 Mercator-A [14] LRU seek LRU — —
% Mercator-B [23] LRU batch | LRU _ _
Q Polybot [27] tree batch database database
& WebBase [7] site-based — site-based — site-based
8 UbiCrawler [2] site-based — site-based — site-based .

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Agenda

e |ntroduction and challenges

Background

Overcoming the challenges

- (Scalabilit
Scalabiy
- Spam and reputation
- Politeness

Experiments

Conclusion

we are here

11

Scalability

 One of the bottlenecks in web crawling is the disk 1/O
In checking URLseen

A 6B page crawl requires verification of 394B URLs
- Disk structures must be optimized to support the crawling rate

e QOur solution iIs called Disk Repository with Update
Management (DRUM)

 The purpose of DRUM is to allow for efficient storage
of large collections of <key, value> pairs
- Key Is a unique identifier of some data (e.g., URL hash)
- Value is arbitrary information attached to keys (e.g., URL text)

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

12

Scalability 2

 Three operations are supported
- Check: verifies uniqueness of a key

- Update: overrides the value if the key exists and otherwise
adds a new entry

- Check + update: performs both check and update in one pass
through the disk cache

« Unlike prior methods, DRUM is based on disk bucket
sort rather than variations of merge/insertion sort

- For certain values of RAM size, DRUM achieves a linear
number of disk reads rather than quadratic as in prior work

- See paper for details

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

13

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Scalability 3

Overhead metric w: # of bytes written to/read from disk
during uniqueness checks of [N URLs

- [IS the average # of links per downloaded page
- N s the # of crawled pages

Assume that the average URL length is b bytes and R
Is the size of RAM allocated to URL checks

Then w can be split into a product two terms: « x blN
- bIN is the number of bytes in all parsed URLS
- « IS the number of times they are written to/read from disk

Various methods differ in the first term only

- Metric « may be a constant or a linear function of N y

Scalability 4

« Theorem 1: The overhead of URLseen batch disk
check is w = ablN bytes, where for Mercator:

2(2UH + pHIN)(H + P
o +p@)(tP) oy

Both have
o~ N/R

- and for Polybot:
2(2Ubq + pbglN)(b+ 4P)

o = @ +p
e Theorem 2: DRUM’s URLseen overhead 1S w = ablN
bytes, where:

Notice that

8M(H + P)(2UH + pHIN) 2 H o ~ N/RQ
O = 72 \\ 19 —I—p 4 22
bR2) »

>
2
.
)
2>
c
-
=
oJ
<
(V]
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

15

>
2
.
)
2>
c
-
=
oJ
<
(V]
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Scalability 5

e For certain values of R, DRUM achieves N/R?* ~ 0 and
thus a remains almost constant as N Increases

e Overhead o for dynamically scaling disk size:

N R =4 GB R =8 GB
Mercator-B | DRUM | Mercator-B | DRUM
S00M 4.48 2.30 3.29 2.30
8B 25 2.7 13.5 2.7
0B 231 3.3 116 3.3
8008 2,290 3.3 1,146 3.3
8T 22, 887 8.1 11,444 3.7

16

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Scalability 6

Theorem 3: Maximum download rate (in pages/s)
supported by the disk portion of URL uniqueness
checks is

WJ average disk I/O speed

g
abl

For IRLbot, we set disk speed W = 101.25 MB/s and
RAM size R = 8 GB

Assuming N = 8 trillion pages, DRUM yields a
sustained download rate of S = 4,192 pages/s

- 10 DRUM servers and 10-gb/s link could give 100 billion
pages per month

For N = 8T, Mercator achieves an average rate of only
1.4 pages/s and Polybot 0.2 pages/s

17

|RLbot Organization

cawing unique URLs
threads DRUM g
check + URLseen
update
STAR budget
' check
Dl\rlcébtok:[S &d robots download unique
eaes queue Q, hostnames

unable to
check robots request | hosthames DRUM

queue Qp | RobotsRequested
check +
update

pass RobotsCache | check

robots ¥
| l URLs BEAST budget
fail enforcement

robots
X | robots-check |l
ueue
ready queue @ I d @ pass budget

>
2

.

)

2>

c

-

=

oJ

<

(V]

]

>

Qo

I_

G
@)

c
Q

@)

(7))

0

s

S

Q
=

@)
@)

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Agenda

e |ntroduction and challenges

Background

Overcoming the challenges
- Scalability

- @ and reputation

- Politeness
Experiments

Conclusion

we are here

19

Spam and Reputation

* |n our experience, BFS is a poor technigue in the
presence of spam farms and infinite webs

e Quickly branching sites (1000+ links per page) are
potential traps

- Dominate the queue after 3 levels of BFS with 10° pages
(exact impact depends on the seed URLs and crawls size)

o Simply restricting the branching factor or the maximum
number of pages/hosts per domain is not a viable
solution

- A number of legitimate sites contain over 100 million pages
and over 10 million virtual hosts

- Yahoo reports 1.2B objects withintts own domain

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

20

Spam and Reputation 2

« Computing traditional PageRank for each page could
be prohibitively expensive in large crawls
- In our case, over 41B pages in the webgraph

 However, the goal here is not to classify each page,
but rather to understand which domains should be
allowed to massively branch

e Spam can be effectively deterred by budgeting the
number of allowed pages per pay-level domain (PLD)
- PLDs are domains that one must pay for at some registrar

 PLD reputation is determined by its in-degree from
resources that spammers must pay for, which in our
case are other PLDs

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

21

Spam and Reputation 3

e This solution we call Spam Tracking and Avoidance
through Reputation (STAR)

« Each PLD z has budget B_ that represents the number
of pages that are allowed to pass from z (including all
subdomains) to crawling threads every T'time units

« Each PLD z starts with a default budget B,, which Is
then dynamically adjusted as its in-degree d_ changes
over time

- Diverse strategies can be achieved by varying the adjustment
function (e.g., more preference for popular/unpopular
domains, equal preference, linear/non-linear scaling of B,)

« DRUM is used to store PLD budgets and aggregate
PLD-PLD link information 22

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Operation of STAR

| ek [|

crawling A :

threads check ¥ DRUM ' DRUM :

update IRLSEER unique : | PLDindegree |

URLs l

E PLD links update i
URLs & budgets

pass budget

robots-check
queue Qg BEAST budget
enforcement

>
2
.
)
2>
c
-
=
oJ
<
(V]
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

23

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Agenda

e |ntroduction and challenges

Background

Overcoming the challenges
- Scalability

- S “and reputation

Experiments

Conclusion

we are here

24

Politeness

Prior work has only enforced a certain per-host access
delay 7, seconds

- Easy to crash servers that co-locate 1000s of virtual hosts
- Thus, a per-IP limit 7, is needed as well

Low-ranked PLDs (B, = B,)
- Keep 7,= 40 seconds and 7, = 1 second

High-ranked domains (B, > B,)

- Both 7, and 7, are scaled proportional to B to crawl URLS no
slower than the rate at which they are admitted into RAM

By controlling the coupling between PLD budgets and
their crawl rate, we can avoid memory backlog

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

25

Politeness 2

e To admit URLs into RAM we have a method called
Budget Enforcement with Anti-Spam Tactics (BEAST)

« BEAST does not discard URLSs, but rather delays their
download until it knows more about the PLD they
belong to

* A naive implementation is to maintain two gqueues
- () contains URLSs that passed the budget check
- () contains those that failed

« After Q Is emptied, @) Is read and again split into two
queues — Q and Q.

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

26

Politeness 3

e Theorem 4: Lowest disk I/O speed (in bytes/s) that
allows the naive budget-enforcement approach to
download N pages at fixed rate S'Is:

A= 2Sb(L — 1)ay

- where " N
QN = max ’E[Bm]V

» This theorem shows that A ~ a, = O(N)

e For IRLbot, A = 3.8 MB/s for N = 100 million, A = 83
MB/s for N = 8 billion, and A = 826 MB/s for NV = 80
billion

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

27

Politeness 4

e The correct implementation of BEAST rechecks @ . at
exponentially increasing intervals

* Suppose the crawler works with j queues @, ..., Q,

- Old URLs are read from @), and sent to robots check and later
to the crawling threads

- New URLs are written to Q,, ..., ; based on their remaining

budget (B.. URLS per queue
get (B, P) wrap—aroundgj

 After Q, Is emptied, the crawler moves to reading @,
and spreads new URLSs between Q., ..., Qj,@;;

* After it finally empties @, the crawler re-scans (). and
splits it into j additional queues @, ..., @,
= URLSs violating the budget of @), ; are placed into new @ *°

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Politeness 5

e Theorem 5: Lowest disk I/O speed (in bytes/s) that
allows BEAST to download N pages at fixed rate S Is:

2
N (L—1)+1| <2Sb2L —1)
+ QN

A=25b

 For N — oo, disk speed A — 25b(2L — 1) = constant

- It is roughly four times the speed needed to write all unigue
URLSs to disk as they are discovered during the crawl

e For the example used in Theorem 4, BEAST requires
A < 8.2 MB/s regardless of crawl size N

29

Operation of BEAST

—

DRUM
URLseen

new URLSs

STAR budget
check

crawling
threads

unique
URLs

check + update

Queue shuffler

robots-check : i |
ueue (: |
qu o o] [o] [e ;

pass budget

>
2
.
)
2>
c
-
=
oJ
<
(V]
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

30

Agenda

e |ntroduction and challenges
e Background

 Overcoming the challenges
- Scalability
- Spam and reputation

- Politeness

- Experiments

e Conclusion

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

we are here

31

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Experiments — Summary

 One quad-CPU AMD
GB RAM, 24-disk RAI

e Active crawling period

Opteron 2.6 GHz sever with 16
D-5, and 1-gb/s link

of 41 days in summer 2007

* |IRLbot attempted 7.6
7.4 billion valid HTTP

pillion connections and received
replies

- 6.3 billion responses with status code 200 and content-type
text/html (964M errors and redirects, 92M non-HTML)

* Average download rate 319 mb/s (1,789 pages/s)
 Crawler received 143 TB of data (254 GB of robots.txt

files) and sent 1.8 TB

of HTTP requests

- After decompression, 161 TB of HTML code went through the

parser

32

Experiments — Summary 2

2

.% 3500 - 500

= 000 45091 ’ l

=T w
@ 2500 - ®

< Ly JH U mh*

sl = 2000 - b h u u“ 5 300 JJ

8 T % “ f T 250 A

EI<) s 1500 * 8 200 ‘

— P \ | = i“ N

i O 1000 ‘l‘wi é 150

Q 100

GC) 500 5

Q 0 0

g 0 7 14 21 28 35 42 0 7 14 21 28 35 42

"5‘ Crawl duration (days) Crawl duration (days)

o

g Crawl rate (pages/s) Receiving rate (mb/s)

@) 33

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Experiments — Summary 3

 |IRLbot parsed out 394 billion links
- Removing invalid URLS, this translates to 59 links/page

 URLseen contained 41 billion unique URLs
- On average, 6.5 unique links per crawled page
- Pages hosted by 641 million websites

e Discovered 89 million PLDs
- PLD-PLD graph contained 1.8B edges

* Received responses from 117 million sites
- Belonged to 33M PLDs
- Were hosted on 4.2 million IPs

34

Experiments — Uniqueness Probability

. : = led (bill
- The fraction of them with ages crawled (billion)

useful content and the
number of additional pages
not seen by the crawler are a
mystery at this stage

)y ° The probability of 0.25
2 uniqueness p stabilized >
. = 024
= around 0.11 after the first 3
; billion pages were 2 015 |
3 downloaded O S
< - p was bounded away from0 3 \
% even at NV = 6.3 billion £ 0051
|_
o ¢ We certainly know there ot
% are > 41 billion pages 0 08162432 4 4856 64
3
0p)
g
>
Q
S
@
O

35

Experiments — Effectiveness of STAR

 Top 10K ranked domains
were given budget B_ linearly

Interpolated between 10 and .

2

3

>

= 10K

p= - 1E4 - /
o3 - All other PLDs received the 2

< default budget 10 S

G o -

Bl - Figure shows that IRLbot & =

3 succeeded at correlating 2

= PLD bandwidth allocation -~ |

O : o

3 with their in-degree 1E0 | l l
o 1E0 1E2 1E4 1E6
=4 . Manual examination reveals PLD in-degree

3 only 14 spam sites in the top

g 1000 PLDs

36

Experiments — Top Ranked PLDs

? Rank Domain In-degree | PageRank Pages
D 1 microsoft.com | 2,948, 085 9 37,755
g 2 google.com 2,224,297 10 18,878
= IIE yahoo.com | 1,998, 266 9 70,143
< 4 adobe.com | 1,287,798 10 13,160
% 5 blogspot.com | 1,195,991 9 347,613
S 7 wikipedia.org | 1,032,881 8 76,322
% 6 w3.0rg 933, 720 10 9,817
9 8 geocities.com 932, 987 8 26,673
@ 9 msn.com 804, 494 8 10, 802
a2 10 amazon.com 745,763 9 13,157
3

37

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

Agenda

e |ntroduction and challenges
e Background

 Overcoming the challenges
- Scalability
- Spam and reputation

- Politeness

 EXxperiments

—
n_

- Conclusio

almost done

38

Conclusion

* This paper tackled the issue of scaling web crawlers to
billions and even trillions of pages
- Single server with constant CPU, disk, and memory speed

 We identified several bottlenecks in building an
efficient large-scale crawler and presented our solution
to these problems
- Low-overhead disk-based data structures
- Non-BFS crawling order
- Real-time reputation to guide the crawling rate

e Future work
- Refining reputation algorithms, accessing their performance
- Mining the collected data 39

>
2
.
)
2>
c
-
=
oJ
<
)
]
>
Qo
I_
G
@)
c
Q
@)
(7))
0
s
S
Q
=
@)
@)

	IRLbot: Scaling to 6 Billion Pages and Beyond
	Agenda
	Introduction
	Challenges – Scalability
	Challenges – Spam Avoidance
	Challenges – Politeness
	Agenda
	Background – Crawler Objectives
	Background – Crawler Operation
	Related Work
	Agenda
	Scalability
	Scalability 2
	Scalability 3
	Scalability 4
	Scalability 5
	Scalability 6
	IRLbot Organization
	Agenda
	Spam and Reputation
	Spam and Reputation 2
	Spam and Reputation 3
	Operation of STAR
	Agenda
	Politeness
	Politeness 2
	Politeness 3
	Politeness 4
	Politeness 5
	Operation of BEAST
	Agenda
	Experiments – Summary
	Experiments – Summary 2
	Experiments – Summary 3
	Experiments – Uniqueness Probability
	Experiments – Effectiveness of STAR
	Experiments – Top Ranked PLDs
	Agenda
	Conclusion

