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What doesQORA do?
The task we are concerned with is learning environmental dynamics from obser-
vation. Our goal is to efficiently learn accurate, interpretable rules, that generalize
to unseen scenarios, without relying on domain-specific information.

(a) example state transition (training) (b) unseen state (testing)

We operate in an object-oriented framework where each environment consists of
a tuple (M, C, S, B, A, T ):

M is the set of member attributes, e.g.: 2D position, 3D rgb color
C is the set of classes, e.g.: player, wall, door
S is the set of all possible states, each of which consists of a set of objects
B is the distribution over initial game states, which may be parameterized
A is the set of actions, e.g.: up, down, left, right, stay
T is the transition probability distribution, which defines the domain’s dynamics

To measure prediction error, we calculate the Earth Mover’s Distance (EMD) be-
tween the learner’s predicted distribution and the environment’s true distribution
over future states.

Benchmark Environments
These domains allow us to test specific aspects of a learner’s operation.

walls: This domain contains walls and a player object. The singular player entity
is controlled by directional actions; movement is blocked by walls. This tests a
learner’s ability to discover simple relational rules.
lights: This non-gridworld domain contains lights and a re-assignable switch
that can toggle the state of the light it refers to.
doors: This domain adds colored doors and a new action to the walls domain.
The action allows the player to toggle its color; the player can only pass through
doors that are the same color as it.
fish: This stochastic domain contains walls and one or more fish. On each
iteration, each fish independently chooses a movement direction and attempts
to move (fish are blocked by walls). Tominimize error, the learner must estimate
the entire probability distribution over future states (i.e., every possible set of
destination positions).

More domains are discussed in the paper.

(a) a level from the lights domain (b) a level from the fish domain (c) a level from the complex(4) domain

QORA learns over 1, 000× faster than neural-network baselines
In a relational domain, QORA reliably converges to zero error within one thousand steps, while both neural-
network baselines fail to converge within twomillion steps.
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(a) neural-network baselines

200 400 600 800 1000
observations

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r (
EM

D)

n=1000
n=50
n=20
n=1

(b) QORA

QORA consistently demonstrates zero-shot transfer
In deterministic environments, QORA is able to train in simple situations and perfectly predict outcomes
in more-complex scenarios. In stochastic environments, prediction error scales optimally in the number of
objects (i.e., linearly). When observing new interactions, QORA retains previously-learned partial rules, al-
lowing for rapid adaptation.
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(a) walls, transfer at 1k observations (deterministic)
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(b) fish, transfer at 150k observations (stochastic)
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(c) doors, transfer at 30k observations (deterministic)

QORA’s learnedmodels are easily interpretable
In this domain, the player character can only move if not blocked by a wall or a different-colored door.

r(o1, s) =

{
(0, 0) P1(o1) ∨ P2(o1)
(1, 0) otherwise,

where

P1(o1) ≡ ∃o2 ∈ s.walls : o2[pos] − o1[pos] = (1, 0)
P2(o1) ≡ ∃o2 ∈ s.doors : o2[pos] − o1[pos] = (1, 0)

∧ ¬(o2[color] − o1[color] = 0),
(a) one of QORA’s learned rules in the doors domain (b) a level from the doors domain; doors are denoted by the red and blue squares

HowdoesQORAwork?

Key insights

Compositional framework: our object-based representation is an effective way
to semantically decompose states
Occam’s razor: we construct hypotheses iteratively to automatically scale the
model’s complexity to match the domain
Explicit modeling: QORA learns explicit probability distributions by directly
counting frequencies
Confidence levels: we use predictive power and statistical significancemeasures
to score and compare hypotheses
Simplicity: QORA’s single hyperparameter is easy to tune

We introduce the following confidence-based scoremetric to evaluate hypotheses:
S(r) =

∑
(x,y)

P̂ (y|x)P̂ (x, y).

Additional Experiments
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(a) neural networks fail to transfer even in relatively
simple domains
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(b) QORA can be pre-trained in simpler scenarios to
accelerate learning prior to transfer to
more-complex tasks
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(c) QORA is robust to significant changes to its
hyperparameter α
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(d) once QORA’s model converges, updates are
nearly instantaneous

0 100 200 300 400
observations

0.0

0.5

1.0

1.5

2.0

tim
e 

(m
s)

QORA
NPE

(e) QORA is several times faster than optimized
neural networks, even when the networks use
batching
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(f) QORA is over an order of magnitude faster than
neural networks if they don’t use batching
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