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What does QORA do? QORA learns over 1, 000 x faster than neural-network baselines How does QORA work?

The task we are concerned with is learning environmental dynamics from obser-
vation. Our goal is to efficiently learn accurate, interpretable rules, that generalize
to unseen scenarios, without relying on domain-specific information.

In a relational domain, QORA reliably converges to zero error within one thousand steps, while both neural- Key insights

network baselines fail to converge within two million steps. « Compositional framework: our object-based representation is an effective way
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(a) one of QORA'’s learned rules in the doors domain (b) a level from the doors domain; doors are denoted by the red and blue squares
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