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IntroductionIntroductionIntroduction

• Triangle listing: given a simple undirected graph 
G=(V,E), identify all 3-node cycles xyz

• Numerous applications 
━

 

Network analysis: clustering coefficient, transitivity 
━

 

Web/social networks: spam/community detection 
━

 

Bioinformatics, graphics, databases, theory of computing 

• Many open problems
━

 

Impact of degree distribution on CPU cost, deciding which 
neighbor traversal order is best, finding the optimal acyclic 
orientation for a given method, comparing different strategies 
under their optimal node permutations

━

 

We study these issues in random graphs
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BackgroundBackgroundBackground

• Triangle listing visits each node and 
verifies edge existence between 
each pair of neighbors
━

 

A star graph with 40M nodes requires at least 800T checks
━

 

This is the CPU cost we are interested in studying

• Acyclic orientation: choose a direction along each edge 
such that the resulting graph has no cycles
━

 

Triangle listing now involves checks among 
only out-neighbors, only in-neighbors, 
or some combination thereof

━

 

Orienting edges towards the center and 
using only out-neighbors reduces 
verification cost to zero!



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

6

BackgroundBackgroundBackground
• Given a graph with n

 
nodes, each acyclic orientation 

can be viewed as some permutation θn
━

 

Shuffle the nodes and assign sequential labels 1, …,

 
n

━

 

Direct edges from larger labels to smaller
━

 

List only triangles xyz
 

such that x < y < z

• Suppose the node with a new ID i
 

has out-degree 
Xi

 

(θn

 

), in-degree Yi
 

(θn

 

), and total degree di
 

(θn

 

)

• Then, the CPU cost of all known methods M is can be 
expressed by one formula

━

 

where f
 

is some non-linear function that depends on M



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

7

BackgroundBackgroundBackground
• Assuming m

 
edges, prior work has shown there exist 

neighbor search orders where cn
 

(M, θn

 

)

 
is O(m1.5/n)

━

 

This bound is loose in sparse graphs and has seen no 
improvement in ~40 years

━

 

Still unclear how to select the best permutation and neighbor 
traversal pattern so as to minimize the runtime

━

 

Main obstacle: for a given graph G, finding θn
 

that optimizes 
cost is likely an NP-hard problem

• Instead, we seek insight from random graphs
━

 

Suppose Fn
 

(x)

 
is a CDF on integers that represents the 

degree distribution of the graph
━

 

Assume Fn
 

(x) → F(x)

 
as n

 
→∞

━

 

Concerned with expected cost over all graph realizations
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BackgroundBackgroundBackground

• Berry 2015 obtained the limiting cost for a method we 
call T1 under descending-degree permutation θD

━

 

where Dn

 

is the random degree sequence and Z1

 

, Z2

 

, 
Z3

 

, D
 

are iid with distribution F(x)

━

 

Given Pareto degree with F(x) = 1—(1+x/βα, the limit 
is finite iff α

 
>

 
4/3

• Open issues: which permutations/methods are 
fundamentally better for a given F(x), under what 
conditions, and does θn

 

and neighbor search order 
change the asymptotics or just constants inside O(.)?
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Unifying FrameworkUnifying FrameworkUnifying Framework

• We consider three families of algorithms and propose 
a generalized framework subsumes all previous efforts
━

 

Vertex Iterator (VI): methods T1 -T6 that check neighbor pairs 
against a hash table 

━

 

Scanning Edge Iterator (SEI): methods E1 -E6 that run 
intersection of neighbor lists using sequential scans

━

 

Lookup Edge Iterator (LEI): methods L1 -L6 that offers no 
CPU-cost benefits over VI, but have higher I/O

• It may seem that the order in which neighbors are 
visited (along in/out edges) is unimportant
━

 

However, this makes a noticeable difference!
━

 

Furthermore, improvement in cost is not limited to just 
constants, but asymptotics as well
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Unifying FrameworkUnifying FrameworkUnifying Framework

• A total of 18 distinct methods, but many have identical 
cost; need to prune the result 
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Unifying FrameworkUnifying FrameworkUnifying Framework

• Four competing algorithms

• To minimize the runtime, need 
to consider the ratio of cost to speed

• The speed can be easily benchmarked, what remains 
is to decide the optimal cost for each method
━

 

Note that E1 /E2 have strictly more operations that T1 /T2
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Main ResultsMain ResultsMain Results

• Many assumptions and details omitted (see the paper)

• Theorem: the cost of all 18 methods can be 
summarized by a sum of functions of order statistics

━

 

where g(x) =
 

x2

 

—

 
x, h(x)

 
is given by the table above, and 

qi

 

(θn
 

)

 
depends only on the permuted degree sequence 

• Since the degree di
 

(θn

 

)

 
is sorted (e.g., d1

 

(θD

 

)

 
is the 

largest), this sum has some peculiar properties
━

 

Asymptotic behavior of averages in the above form is studied 
in a field of L-estimators
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Main ResultsMain ResultsMain Results

• We leverage Glivenko-Cantelli results for functions of 
order statistics [Wellner 1978, van Zwet 1980]

• Theorem: 

━

 

where J(x)
 

is the spread distribution of F(x)

• In particular,
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Main ResultsMain ResultsMain Results

• However, non-monotonic permutations require a 
different approach and new theory

• Suppose θn
 

converges to a random map (u)
━

 

Random variable (u)
 

specifies the new (permuted) location 
of nodes i

 
that originate in the vicinity of u

 
= i/n

• Theorem: the limiting cost under any convergent 
sequence of permutations is given by

• Both the model and derivations are much simpler than 
in prior work, even though we can handle a much 
wider class of methods/permutations
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Main ResultsMain ResultsMain Results

• This allows us to establish optimal permutations for 
certain families of functions h(x)

• Theorem: T1 and E1 are both optimized by θD
 

, T2 by 
round-robin θRR

 

, and E4 by complementary RR θCRR
━

 

RR is a new permutation that places large degree towards the 
outside of the range [1, n]

━

 

CRR is another new permutation that does the opposite (large 
degree in the center)

• We can finally compare these methods under their 
respectively optimal θn
━

 

Theorem: cn
 

(T1

 

, θD

 

)

 
< cn

 

(T2

 

, θRR

 

)

 
for all F(x)

━

 

Theorem: cn
 

(E1

 

, θD

 

)

 
< cn

 

(E4

 

, θCRR

 

)

 
for all F(x)



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

18

Main ResultsMain ResultsMain Results

• When is VI better than SEI?
━

 

Cost of T1 is finite iff α
 

>

 
4/3; that of E1 iff α

 
>

 
1.5

━

 

Consequently, there are graphs where T1 is always faster in 
the limit no matter what hardware is used

━

 

In real-world graphs, E1 has 2-3x more cost, but 100x faster 
execution using SIMD intersection (see our ICDM 2016 paper)

• Derived limits are exact for all cases
━

 

Numerically accurate for small n
 

in graphs with constrained 
degree; for large n, whenever the asymptotic cost is finite

━

 

Open issue: accurate models for small n, infinite limiting cost, 
and unconstrained degree

• In summary, both permutation and neighbor visit order 
change the asymptotics of cost!
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Evaluation: Constrained GraphsEvaluation: Constrained GraphsEvaluation: Constrained Graphs
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Evaluation: Unconstrained GraphsEvaluation: Unconstrained GraphsEvaluation: Unconstrained Graphs
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Evaluation: Real GraphsEvaluation: Real GraphsEvaluation: Real Graphs

• Model predictions
━

 

Descending degree is optimal for T1 , E1

━

 

RR is optimal for T2 , CRR for E4

━

 

The best cost of E1 is double that of T2

• Degenerate 
permutation 
minimizes the 
largest out-degree
━

 

This improves T1 
by ~10%, but 
increases cost of the other methods 2-3x
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Thank you!

Questions?
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