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Motivation

Motivation I

Previous Techniques

Traditional study of P2P resilience centers around uniform,
independent, simultaneous node failure

Nodes fail with independent probability p

The analysis of Chord is a typical example of this

Using p = 0.5, the paper determines what node degree is
necessary to ensure that each node stays connected (i.e., is not
isolated) with high probability after the failure

For Chord, we have:

P (isolated) = pdegree ≤ 1

n

Example: n = 100 billion, k must be at least 37
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Lifetime-based Node Failure

What can be said about node failure in real-world P2P
systems?

The p-percent model may be useful in some cases; however,
there is no evidence that such failure patterns occur in real
P2P networks
Nodes arrive/depart dynamically instead of remaining static

Model: we assign each user a random lifetime Li from a
distribution F (x) that reflects the behavior of the user and
represents the duration of his/her service (e.g., sharing files)
to the system
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Overview of Lifetime Model I

Model Assumptions

Arrival: nodes arrive randomly according to any process;
however, their arrival times are uncorrelated with lifetimes of
existing nodes

Departure: nodes deterministically die (fail) after spending Li

time units in the system

Neighbor selection: neighbors are picked from among the
existing nodes using any rules that do not involve node
lifetimes or age (e.g., based on random walks, DHT space
assignment, topological locality, content interests, etc.)

Neighbor replacement: once a failed neighbor is detected, a
replacement search is performed
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Overview of Lifetime Model II

Definition

A node becomes isolated when all of the neighbors in its table are
in the failed state

Node Departure

All departures are considered to be abrupt, requiring each
node to search for a replacement upon failure of its neighbor

de
gr
ee

time
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Overview of Lifetime Model III

Lifetimes of Neighbors

Node v enters at time tv with random lifetime Lv

The k neighbors of v are represented by residual lifetimes

tv R1

R4

Definition

Let Ri be the remaining lifetime of neighbor i when v joined the
system
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Overview of Lifetime Model IV

Formalizing Search Time

How do nodes replace neighbors?

There is usually some mechanism for detecting that a neighbor
has failed (e.g. periodic probing, etc.)
Systems often repair the failed zone of a DHT or find a
random replacement neighbor in unstructured systems

We allow this process to be arbitrary as the technique
employed has no effect on our results

Definition

Let Si be a random variable describing the total search time for
the i-th replacement in the system
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Overview of Lifetime Model V

Example

Reconsider the same Chord system given before:

n = 100 billion nodes
E[Li] = 30 minutes
E[Si] = 1 minute

Classical analysis requires k = 37 to ensure that a given node
remains connected with high probability

Using the lifetime model we find that the same bound can be
achieved with k = 9

P2P systems are more resilient than we thought!
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Pertinent Questions

What questions can we now address given this lifetime
node-failure model for P2P networks?

What is the average amount of time a node will spend in the
system before becoming isolated?
What is the probability that a node will become isolated from
the network within its lifetime?
How does varying node degree between users improve/degree
resilience?
How does the absence of isolated vertices affect global
resilience of the network (i.e., its connectivity)?
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Expected Time to Isolation I

Expected Time to Isolation

Let T be a random variable describing the amount of time a
node can spend in the system before becoming isolated

Assuming relatively small search delays, we use renewal
process theory to derive the following:

E[T ] ≈ E[Si]

k

[(
1 +

E[Ri]

E[Si]

)k

− 1

]
Despite the approximation, simulations show that the model is
very accurate and not sensitive to lifetime or search delay
distribution.
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Expected Time to Isolation II

Simulations

Simulations were run with average lifetime 30 minutes and k = 10
for a 1000 node system. Four distributions of Si were used.
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Expected Time to Isolation III
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(c) exponential Si

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

0 0.2 0.4 0.6 0.8 1

mean search time E[S] (hours)

E
[T

] 
(h

o
u

rs
)

pareto simulations
expo simulations
pareto model
expo model

(d) Pareto Si with α = 3
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Expected Time to Isolation IV

Example

Consider an example Chord system

n = 1 million (average distance of 10 hops)
keep-alive timeout δ
Average inter-peer delay d = 200 ms
E[Ri] = 1 hour

We immediately obtain from the main model:

E[T ] =
δ + d log2 n

2k

(
1 +

2E[Ri]

δ + d log2 n

)k
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Expected Time to Isolation V

Timeout δ k = 20 k = 10 k = 5

20 sec 1041 years 1017 years 188, 034 years
2 min 1028 years 1011 years 282 years
45 min 404, 779 years 680 days 49 hours

Table: Expected time E[T ] to isolation

Example Continued

Notice that for small keep-alive delays, even k = 5 provides
longer expected time to isolation than the lifetime of any
human
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Questions to Answer

What is the probability π that a node will become isolated
from the network during its lifetime?

Let π = P (T < Lv)

The exact distribution of T is difficult to develop in
closed-form for non-exponential lifetimes

We model the neighbor failure/replacement procedure as an
on/off process Yi(t)
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Degree Evolution

Then the degree of node v at time t is:

W (t) =
k∑

i=1

Yi(t)

W
(t
)

T1 T2

on off on
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Result

Using Markov Chain arguments based on W (t) for
exponential lifetimes and E[Si]� E[Li], the probability of
isolation π converges to:

π =
E[Li]

E[T ]

Simulations match the model remarkably well and the results
are not sensitive to the distribution of search delay
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Simulations

We simulated a system with E[Li] = 0.5 and k = 10 using four
search distributions to verify the model
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(g) uniform Si
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(h) Pareto Si with α = 3

Simulations

As E[Si] becomes small the simulations converge to the model
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Application to Pareto Lifetimes

We use the exponential result to derive an upper bound for any
lifetime distribution with an exponential or heavier tail:

π ≤ kE[Li]E[Si]
k−1

(E[Li] + E[Si])k − E[Si]k

π Uniform Lifetime Mean search time E[Si]
p = 1/2 P2P 6 min 2 min 20 sec

10−6 20 Bound π 10 7 5
Simulations 9 6 4

10−9 30 Bound π 14 9 6
Simulations 13 8 6
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Varying Node Degree I

Effect of Degree Regularity on Resilience

How does the varying node degree among users
improve/degrade resilience?

In particular, are DHTs more resilient than unstructured
systems?
Recall that average degree is constant and node lifetimes are
independent of degree and are not used in the
neighbor-selection process

Theorem

Under the above assumptions, degree-regular graphs are the most
resilient for a given average degree E[ki]
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Varying Node Degree II

Simulations

We verify finding on four different systems with average degree
E[ki] = 10 and Pareto lifetimes with E[Li] = 0.5 hours
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Implications

When degree is independent of user lifetimes, we find no
evidence to suggest that unstructured P2P systems with a
heavy-tailed (or other irregular) degree can provide better
resilience than k-regular DHTs

Varying node degree from peer to peer can have a positive
impact on resilience only when decisions are correlated with
lifetimes
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Classical Result I

Effect of Isolated Nodes

How does the absence of isolated vertices affect the network’s
connectivity?

This topic has been research extensively in random graph
theory and interconnection networks

Erdös and Rényi in the 1960s demonstrated that almost every
(i.e., with probability 1− o(1) as n→∞) random graph is
connected if and only if it has no isolated vertices.

P (G is connected) = P (G has no isolated nodes)

Almost every disconnection occurs with at least one isolation
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Static Failure I

Deterministic Networks

Burtin (1977) and Bollobás (1983) showed that the same
result applies to certain deterministic graphs such as
hypercubes

This can be extended to any graph with similar or better node
expansion properties (Chord, CAN, Pastry, etc.)

Table: Chord with n = 16384 under p-percent failure

p P (G is connected) P (no isolated nodes)

0.5 0.99996 0.99996

0.6 0.99354 0.99354

0.7 0.72619 0.72650

0.8 0.00040 0.00043
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Static Failure II

Application to P2P graphs

The tested P2P graphs (Chord, Symphony, CAN, Pastry,
Randomized Chord, de Bruijn, and several unstructured
random graphs) remained connected almost surely as long as
they did not have an isolated node

When they did disconnect, an isolated node almost surely
existed

Implication

Local resilience of popular P2P networks implies their global
resilience

D. Leonard, V. Rai, D. Loguinov Lifetime-Based Node Failure and Stochastic Resilience of P2P Networks 33/39



Background
Lifetime-Based Resilience

Global P2P Resilience

Classical Result
Static Failure
Lifetime-Based Extension

Static Failure II

Application to P2P graphs

The tested P2P graphs (Chord, Symphony, CAN, Pastry,
Randomized Chord, de Bruijn, and several unstructured
random graphs) remained connected almost surely as long as
they did not have an isolated node

When they did disconnect, an isolated node almost surely
existed

Implication

Local resilience of popular P2P networks implies their global
resilience

D. Leonard, V. Rai, D. Loguinov Lifetime-Based Node Failure and Stochastic Resilience of P2P Networks 33/39



Background
Lifetime-Based Resilience

Global P2P Resilience

Classical Result
Static Failure
Lifetime-Based Extension

Static Failure II

Application to P2P graphs

The tested P2P graphs (Chord, Symphony, CAN, Pastry,
Randomized Chord, de Bruijn, and several unstructured
random graphs) remained connected almost surely as long as
they did not have an isolated node

When they did disconnect, an isolated node almost surely
existed

Implication

Local resilience of popular P2P networks implies their global
resilience

D. Leonard, V. Rai, D. Loguinov Lifetime-Based Node Failure and Stochastic Resilience of P2P Networks 33/39



Background
Lifetime-Based Resilience

Global P2P Resilience

Classical Result
Static Failure
Lifetime-Based Extension

Outline

1 Background
Motivation

2 Lifetime-Based Resilience
Expected Time to Isolation
Probability of Isolation
Varying Node Degree

3 Global P2P Resilience
Classical Result
Static Failure
Lifetime-Based Extension

D. Leonard, V. Rai, D. Loguinov Lifetime-Based Node Failure and Stochastic Resilience of P2P Networks 34/39



Background
Lifetime-Based Resilience

Global P2P Resilience

Classical Result
Static Failure
Lifetime-Based Extension

Lifetime-Based Extension I

Application to Lifetime Model

We now apply this result to the lifetime-based model for node
failure

Instead of p-percent failure, we use the probability of isolation
π associated with each joining user i

Recall that the probability of isolation π = P (T < Lv) for
node v

Problem

What is the probability that a graph G survives N user joins
without disconnecting?
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Lifetime-Based Extension II

Definition

Let Y be a geometric random variable measuring the number of
user joins before the first disconnection of the network

Model

Then, for almost every sufficiently large graph:

P (Y > N) = (1− π)N

We measured the probability that the graph disconnects with
exactly one isolated node

We found this metric to be 1 for all simulations!
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Lifetime-Based Extension III

Search Actual Model
time P (Y > N)

6 0.9732 0.9728

7.5 0.8118 0.8124

8.5 0.5669 0.5659

9 0.4065 0.4028

9.5 0.2613 0.2645

10.5 0.0482 0.0471

Table: Comparison of P (Y > 106)
in CAN to the model

Simulations

Consider k-regular CAN
with exponential lifetimes of
mean 30 minutes

The graph has d = 6
dimensions and degree
k = 12

In this case we test N = 106

The simulations match the
model very well
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Lifetime-Based Extension IV

Example

Consider the same CAN system with 1-minute search delays
with all 106 users joining and leaving once each day

The probability that the graph will survive for 2, 700 years is
0.9956

Implication

The mean delay to disconnection of the graph is 5.9 million years
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Conclusion

Findings

Under all practical search times, k-regular graphs are much
more resilient than traditionally implied

P2P systems that endure churn will almost surely remain
connected as long as no user suffers isolation from the system

Varying node degree from peer to peer can have a positive
impact on resilience only when decisions are correlated with
lifetimes

Local resilience implies global resilience
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