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Motivation I

Questions about Peer-to-Peer Networks

The recent explosion of Peer-to-Peer networks has sparked
interest in several ancillary fields

routing efficiency, decentralized security, etc.

The decentralized nature of P2P systems has brought their
resilience into question

How many neighbors must a node maintain to remain
connected to the system?
Is it likely that a P2P graph will partition into more than one
subgraph?
How long can we expect the system to maintain desirable
conditions for operation?
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Motivation II

Static and Dynamic Resilience

Peer-to-Peer network resilience has been explored in two
directions

Static failure: analysis of fully-populated networks after
simultaneous node failures with independent probability p
Dynamic failure: analysis of systems in which users join and
leave according to some arrival/departure process

Our Contribution

We show that the problem of graph partitioning under both types
of failure can be reduced to the probability that a P2P network
develops at least one isolated node
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Related Work I

Random Graph Connectivity

Erdös and Rényi in the 1960s demonstrated that almost every
(i.e., with probability 1− o(1) as n →∞) random graph is
connected if and only if it has no isolated vertices.

Define Φ(G) to be the probability that graph G remains
connected under node or edge failure

Φ(G) = P (G has no isolated nodes)

It can be shown after some technical manipulation that this
holds for certain deterministic networks as well

Burtin and then later Bollobas prove that this holds under
independent uniform node failure for the hypercube
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Deterministic Graph Connectivity

Connectivity of generic deterministic graphs is called residual
node connectivity:

Φ(G) =
n∑

i=1

Si(G)pn−i(1− p)i,

where Si(G) is the number of connected induced subgraphs of
G with exactly i nodes

Si(G) is an NP-complete metric, whose expression is unknown
even for the hypercube

Najjar and Gaudiot proposed a combinatorial model for the
probability of disconnection of k-regular graphs, a result we
compare to our model
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Verification of Classical Result I

Node Isolation

Recall that Φ(G) is defined as the probability that G remains
connected under node or edge failure:

Φ(G) = P (G has no isolated nodes)

We verified this by simulating many well-known P2P networks
under different values of p, with one example below

Table: Chord with n = 16384 under p-percent failure

p Φ(G) P (no isolated nodes)

0.5 0.99996 0.99996

0.6 0.99354 0.99354

0.7 0.72619 0.72650

0.8 0.00040 0.00043
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Verification of Classical Result II

Percentage of Disconnections Due to Isolation

To enhance understanding of the classical result, we introduce
metric q(G) that captures the percentage of graph
disconnections that contain at least one isolated node:

q(G) =
P (X > 0)

1− Φ(G)
,

where X is the number of isolated nodes.

We calculated q(G) for all tested graphs and all values of p

Metric q(G) ranged from 0.9966 and 1, further verifying that
almost every disconnection occurs with at least one isolated
node
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Node Isolation Model I

Preliminaries

We now develop a simple closed-form model for the probability
that there are no isolated nodes under static node failure

Assume that each node i has ki neighbors in some graph G

Define Xi to be a Bernoulli indicator variable measuring
whether node i is isolated or not after each node has been
removed from the system with independent probability p:

Xi =

{
1 isolated and alive

0 otherwise
.

Denote by pi = P (Xi = 1) = (1− p)pki the probability that i
is isolated and alive after the failure
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General Model of Isolation

Define X =
∑n

i=1 Xi to be the total number of isolated nodes
in G

Notice that X is a sum of a large number of Bernoulli random
variables

Due to the diminishing dependency between {Xi} as n →∞
we apply the Chen-Stein method to X

Proposition

The number of isolated vertices X tends to a Poisson distribution
with mean λ =

∑
i pi and the probability Φ(G) of having a

connected graph converges to e−λ with probability 1 as n →∞
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Degree-Regular Model

For degree-regular networks, the proposition simplifies to:

Φ(G) = e−n(1−p)pk

Degree-Irregular Model

For degree-irregular networks, the following holds:

Φ(G) = e−(1−p)
P

i pki ≈ e−n(1−p)E[pki ],

where
∑

i p
ki is approximated by nE[pki ] treating ki as a random

variable.
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Najjar and Gaudiot Model

Their model for the probability of a connected graph is as follows:

Φ(G) =
n∑

i=0

Qi

(
n

i

)
pi(1− p)n−i,

where

Qi =
i∏

j=1

[
1− k(n− k − 1)!(j − 1)!(n− j)

(n− 1)!(j − k)!

]
.

Problem

Qi is not a simple calculation
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Table: Simulation results and model for two regular graphs.

p Chord n = 16384, k = 27 de Bruijn n = 20736, k = 24
Φ(G) Model Najjar Φ(G) Model Najjar

.4 .9999 1 .9986 .9999 .9999 .9955

.45 .9999 1 .9984 .9999 .9999 .9948

.5 .9999 .9999 .9982 .9993 .9994 .9940

.55 .9992 .9993 .9976 .9944 .9945 .9892

.6 .9935 .9933 .9916 .9618 .9615 .9550

.65 .9500 .9503 .9463 .7954 .7907 .7750

.7 .7262 .7239 .7055 .3199 .3037 .2737

.75 .1788 .1766 .1501 .0079 .0055 .0033

.8 .0004 .0004 .0002 0 10−9 10−10
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Observations

Note that our model is very accurate for all values of
disconnection probability p

Further note that the significantly more complex result of
Najjar and Gaudiot is less accurate than our model

There have been several other attempts at solving this model,
with none to our knowledge being both simple and accurate
simultaneously

We now show that our model also applies to irregular graphs,
which has not been attempted previously in the literature
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Table: Simulation results and model for three irregular graphs.

p Symphony Gnutella Randomized Chord
Φ(G) Model Φ(G) Model Φ(G) Model

.4 .9999 .9999 .9932 .9934 .9999 .9999

.45 .9998 .9996 .9661 .9666 .9999 .9999

.5 .9977 .9977 .8626 .8646 .9997 .9997

.55 .9875 .9875 .5804 .5829 .9975 .9976

.6 .9391 .9394 .1708 .1700 .9844 .9845

.65 .7552 .7535 .0055 .0053 .9162 .9151

.7 .3115 .3107 0 10−7 .6375 .6372

.75 .0127 .0122 0 10−15 .1299 .1282

.8 0 10−7 0 10−34 .0003 .0002
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Static Resilience Wrap-up

We confirmed through simulations that Φ(G) = P (X = 0) for
most P2P graphs under static node failure

We derived a simple closed-form model for P (X = 0) for both
k-regular and irregular graphs with large n and verified the
model with simulations

The connectivity of P2P and other large networks under
uniform independent node failure has been reduced to a
simple expression

We now consider the case of dynamic node failure
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Overview of Lifetime Model I

Lifetime-based Node Failure

What can be said about node-failure in real-world P2P
systems?

The p-percent model may be useful in some cases; however,
there is no evidence that such failure patterns occur in real
P2P networks
Nodes arrive/depart dynamically instead of remaining static

Model: we assign each user a random lifetime Li from a
distribution F (x) the reflects the behavior of the user and
represents the duration of his/her service (e.g., sharing files)
to the system
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Overview of Lifetime Model II

Model Assumptions

Arrival: nodes arrive randomly according to any process;
however, their arrival times are uncorrelated with lifetimes of
existing nodes

Departure: nodes deterministically die (fail) after spending Li

time units in the system

Neighbor selection: neighbors are picked from among the
existing nodes using any rules that do not involve node
lifetimes or age (e.g., based on random walks, DHT space
assignment, topological locality, content interests, etc.)

Neighbor replacement: once a failed neighbor is detected, a
replacement search is performed
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Overview of Lifetime Model III

Definition

A node becomes isolated when all of the neighbors in its table are
in the failed state

Node Departure

All departures are considered to be abrupt, requiring each
node to search for a replacement upon failure of its neighbor

de
gr
ee

time
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Overview of Lifetime Model IV

Lifetimes of Neighbors

Node v enters at time tv with random lifetime Lv

The k neighbors of v are represented by residual lifetimes

tv R1

R4

Definition

Let Ri be the remaining lifetime of neighbor i when v joined the
system
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Formalizing Search Time

How do nodes replace neighbors?

There is usually some mechanism for detecting that a neighbor
has failed (e.g., periodic probing, etc.)
Systems often repair the failed zone of a DHT or find a
random replacement neighbor in unstructured systems

We allow this process to be arbitrary as the technique
employed has no effect on our results

Definition

Let Si be a random variable describing the total search time for
the i-th replacement in the system
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Verification of Classical Result I

Preliminaries

We now confirm the classical result in the case of dynamic
node failure

Assume a graph G in which nodes join and leave the system
according to the lifetime model

Define Z to be the random time (in terms of user joins) when
G disconnects for the first time

Assign each joining node i a Bernoulli random variable Xi

that determines whether the user is isolated from the network
during its lifetime
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Model

The probability that the graph stays connected for more than
N user joins is almost surely:

P (Z > N) = P

(
N⋂

i=1

[Xi = 0]

)
=

N∏
i=1

(1− E[Xi]).

For k-regular graphs, each user has the same probability of
isolation φ and the above reduces to:

P (Z > N) = (1− φ)N
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Simulations

We verify this using simulations where both E[Xi] and φ are
computed empirically

Table: Simulations for 12-regular CAN with N = 106 and
degree-irregular Chord with k ≈ 13 and N = 50, 000

Search time CAN Model Chord Model

6 .9732 .9728 .6295 .6251
7.5 .8118 .8124 .3284 .3184
8.5 .5669 .5659 .2189 .2206
9 .4065 .4028 .1460 .1483
9.5 .2613 .2645 .1211 .1274
10.5 .0482 .0471 .0493 .0493
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Implications

As with the static case, under dynamic node failure the
probability that the graph stays connected is equal to the
probability of no isolated nodes

Interestingly, in the case where disconnection does occur, the
largest connected component of dynamic systems almost
always contains exactly n− 1 nodes

For reasonably small search delays, network partitioning in
lifetime-based systems almost surely effects only a single node
in the system

We now derive the probability of isolation φ for the lifetime
model
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Preliminaries

What is the probability φ that a node will become isolated
from the network during its lifetime?

Denote by T the time at which a node is isolated when all of
its neighbors are simultaneously in the failed state
Then φ = P (T < Lv) for node v with lifetime Lv

We model the neighbor failure/replacement procedure as an
on/off process Yj(t)

on off

Ri Si

Y1(t)

Yk(t)

...
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Probability of Isolation II

Degree Evolution

The degree of node v at time t is:

W (t) =
k∑

j=1

Yj(t)

W
(t
)

T1 T2

on off on
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Result

By deriving the expected time E[T ] before the first visit to
state 0 by W (t) and using an exponential approximation to
the density of T , we obtain the following as E[Si] → 0:

φ =
ρk

(1 + ρ)k + ρk − 1
,

where ρ = E[Li]/E[Si] is the ratio of the mean user lifetime
to the mean search delay

We verify this result in simulations using four different
distributions of search delay

Derek Leonard On Static and Dynamic Behavior of Large-Scale Networks 35/40



Background
Static Resilience

Dynamic Resilience

Lifetime Model
Verification of Classical Result
Disconnection Model

Probability of Isolation IV

Simulations

We simulated a system with E[Li] = 0.5 and k = 8 using four
search distributions to verify the model
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(c) uniform Si
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(d) Pareto Si with α = 3

Simulations

Note that as E[Si] becomes small the simulations converge to the
model
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Dynamic Disconnection Revisited

We now apply the newly acquired model for φ to the dynamic
graph disconnection model and verify its accuracy in
simulations:

P (Z > N) = (1− φ)N ≥
(

1− ρk

(1 + ρ)k + ρk − 1

)N

,

where Z is the number of user joins before the first
disconnection of the system

We now verify this result with simulations on 12-regular CAN
with exponential lifetimes, E[Li] = 0.5 hours, n = 4096, and
N = 106 user joins
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Table: Comparison of P (Z > N) in CAN

Fixed search Actual Model Metric
time (min) P (Z > N) q(G)

6 .9732 .9728 1
7.5 .8118 .8215 1
8.5 .5669 .5666 1
9 .4065 .4016 1
9.5 .2613 .2419 1
10.5 .0482 .0424 1

Observation

Even with large search times, simulations follow the model well
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Wrap-up

In the static case, we verified that most P2P graphs
disconnect almost surely with at least one isolated node

We then derived a model for graph connectivity using this
property and verified its accuracy in simulations

In the dynamic case, we also confirmed that graphs almost
surely disconnect with exactly one isolated node

We then derived the probability of isolation under
lifetime-based node failure and verified the result via
simulations

In both cases, global resilience has been effectively reduced to
local resilience

Derek Leonard On Static and Dynamic Behavior of Large-Scale Networks 40/40


	Background
	Motivation
	Related Work

	Static Resilience
	Verification of Classical Result
	Node Isolation Model

	Dynamic Resilience
	Lifetime Model
	Verification of Classical Result
	Disconnection Model


