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Abstract—With the proliferation of web spam and questionable
content with virtually infinite auto-generated structure, large-
scale web crawlers now require low-complexity ranking methods
to effectively budget their limited resources and allocate the
majority of bandwidth to reputable sites. To shed light on
Internet-wide spam avoidance, we study the domain-level graph
from a 6.3B-page web crawl and compare several agnostic
topology-based ranking algorithms on this dataset. We first
propose a new methodology for comparing the various rankings
and then show that in-degree BFS-based techniques decisively
outperform classic PageRank-style methods. However, since BFS
requires several orders of magnitude higher overhead and is
generally infeasible for real-time use, we propose a fast, accurate,
and scalable estimation method that can achieve much better
crawl prioritization in practice, especially in applications with
limited hardware resources.

I. INTRODUCTION

Competition for high placement in search engine results
has recently created a financial incentive for many unethical
Internet practices intended to deceive (i.e., spam) search en-
gines and manipulate their ranking algorithms. In addition to
adversely impacting the quality of commercial search results,
web spam frequently impedes web exploration for various
research purposes in areas of networking, data mining, infor-
mation retrieval, and data-intensive computing. As a result of
this adversarial nature of the web, many large-scale crawlers
are now faced with challenges of detecting and avoiding “un-
desirable” content using real-time algorithms that must possess
not only sufficient accuracy, but also reasonable overhead to
be practical.

In a research setting, these tasks are especially difficult
due to the lack of exorbitant financial resources needed to
build enormous server clusters of commercial search engines
and extreme secrecy surrounding the algorithms and data of
these companies. Our thrust to overcome these challenges has
led to a high-performance crawler called IRLbot [24] that
can perform multi-billion-page web exploration using a single
server, which is accomplished using several novel algorithms
for verification of URL uniqueness, reputation ranking, and
enforcement of budgets. Unlike previous crawlers [4], [5],
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[10], [12], [19], [20], [27], [28], [30], [31], [33] that manage
spam only after the crawl has finished, IRLbot prioritizes
queued URLs using budgets based on domain popularity
estimated using real-time snapshots of the Pay-Level Domain
(PLD) graph.

As the name suggests, PLDs are domains that must be
purchased/acquired at a TLD or cc-TLD registrar (e.g.,
google.com, amazon.co.uk). IRLbot constructs PLD graphs by
condensing all pages contained within a PLD into a single
node and discarding duplicate edges in the resulting graph.
It then uses in-degree (IN) at each node for determining the
corresponding reputation. The number of incoming links can
be viewed as a generic weight of endorsement from other
domains. While this may be a poor technique at the page/site
level, because it is susceptible to trivial inflation using dynamic
scripts, rank manipulation at the PLD level becomes much
more difficult as it requires hijacking links from a large number
of legitimate PLDs and/or non-trivial expense associated with
registering these domains using legal means. In addition, PLD
graphs are dramatically smaller in size than alternative data
structures used in prior work [3], [13], [14], [18], [38], which
enables much more efficient ranking during large crawls.

A. Prioritization

Given the virtually unlimited web space, crawlers need
methods to budget their finite resources so as to spend most of
their time exploring valuable parts of the Internet. Considering
that large sites (e.g., ebay.com with 260M pages or yahoo.com
with 1.5B) can also contain legitimate information, the main
problem examined in this work is how fo differentiate between
domains that should be massively crawled and those that
should not." There are two performance metrics in achieving
this classification — overhead and accuracy — where the former
term refers to the amount of processing needed to compute
reputation and the latter term (discussed in more detail below)
describes the method’s ability to avoid over-allocation of
resources to low-quality domains.

Consider a crawler that uses link structure of the seen web
to dynamically compute domain reputation scores S1, ..., Sy
using some prioritization function P, where n is the total

"Note that this problem is entirely different from search-related ranking of
results, which involves fine-granular decisions about the quality of each page.



number of PLDs known to the crawler. Instead of directly
using these scores, the crawler sorts set {s;} and obtains
reputation ranking ri,...,r,, wWhere r; is the position of
domain 7 in the sorted list. This ranking is then used in
the budgeting algorithm to decide the amount of crawling
resources (e.g., bandwidth, pages downloaded) allocated to
each domain. The budget function provides tiny resources
to all nodes with r; > R, where R is some threshold, and
significantly larger budgets to the remaining domains.

As a result, the goal of the reputation algorithm is not
to identify each spam page or detect malicious content [1],
[2], [3], but rather to prevent domains with poor or unknown
quality from admission into the top list. While [24] has shown
that IRLbot’s ranking function was correlated with the number
of pages pulled from each domain, there is no evidence that
domains with high ranking in the obtained dataset were in
fact overwhelmingly reputable. Thus, our main goal in this
paper is to experimentally study the IRLbot dataset, which
is the largest non-commercial crawl to date, and understand
how well the various ranking mechanism are able to detect
reputable Internet resources, promote them to the top, and
avoid spam, while remaining computationally feasible.

Since the baseline algorithm in IRLbot is completely ag-
nostic (i.e., does not utilize human input or training on known
spam) and relies on just the topological structure of the web,
we compare its ranking technique IN to three other main
methods in the same category — Weighted In-Degree (WIN)
[9], PageRank [5], and level-2 Supporters (SUPP) [2]. While
some of these techniques have been applied to page/host-level
graphs, their usage on a PLD graph is novel.

B. Contributions

We first introduce a new comparison methodology that
examines only the top-R nodes suggested by each algorithm,
as opposed to random nodes drawn from the entire graph [3].
We start with manual spam analysis using R = 1K; however,
since manual comparison is not only a labor-intensive, but
also a rather subjective task, we later augment it with two
automated approaches, neither of which has been attempted at
this scale before. The first method relies on Google’s opinion
of each domain, which can be inferred from the corresponding
Google Toolbar Rank (GTR) [15]. The second technique
utilizes known spam lists to understand how many blacklisted
PLDs are highly ranked by each studied technique.

We find from our manual analysis of IRLbot’s PLD graph
with 89M nodes and 1.8B edges that WIN and PageRank pro-
duce significantly worse rankings than the other two methods,
admitting 39+ spam PLDs into the top-1K list and exhibiting
low-GTR domains throughout the entire ranking range [1, R).
In both cases, the highest ranked spam PLD appears in the
top 10. We also discover that these two techniques have an
almost identically poor ranking, despite the fact that PageRank
requires substantially higher overhead. In contrast, IN allows
only 9 spam PLDs in the top-1K list, with its first spam domain
appearing in position 25. SUPP, being a BFS generalization

of IN to two hops, performs even better, with only one spam
PLD in position 718.

Leveraging the GTR data collected using an automated
process and a popular email spam blocklist [32] with 60, 701
PLDs appearing in IRLbot data, we find that SUPP out-
performs the other algorithms in every comparison and often
admits 10 times fewer undesirable PLDs into its top-10K
list. We also observe that IN again decisively outperforms
PageRank and WIN, with its top-ranked sites not only carrying
a higher GTR, but also containing fewer blacklisted and
low-GTR PLDs. Interestingly enough, this occurs because
PageRank and WIN both penalize nodes with high out-degree
by splitting their support along the outgoing edges and thus
under-represent the true value of extremely popular domains.
This allows spam to rival them in the computed score and
achieve unbelievingly high positions in the list.

Although SUPP is superior in every comparison, it requires
an enormous amount of CPU processing due to elimination
of duplicates in BFS and a huge number of random RAM
accesses (i.e., b trillion in our case). This makes it difficult to
incorporate into a high performance web crawler. To overcome
this problem, we propose a novel technique to approximate
SUPP, which we call Top Supporters Estimation (TSE), and
compare it against the exact SUPP algorithm and the Bit
Vector (BV) estimation method from [2]. On the PLD graph,
we find that TSE achieves less than 1% error while reducing
the running time of SUPP by a factor of 36, 000. It is also 10
times faster than BV with 6 times lower error. We also discuss
an external-memory application of TSE when the graph does
not fit in RAM and show that its disk I/O overhead is 1,000
times less than SUPP’s, with 4,000 times less RAM usage.
TSE additionally reduces BV’s RAM requirement by three
orders of magnitude, all of which makes it highly appealing
for real-time use in research crawlers with limited resources.

II. RELATED WORK

Much academic and corporate effort has gone into designing
web crawlers [4], [5], [10], [12], [21], [22], [27], [28], [29],
[30], [31], [40]; however, reaching the full scale of the web
using a non-commercial setup has turned out to be quite
challenging. Typical university crawls report 100—150M pages
[10], [31], whereas common public datasets contain 10—100M
pages downloaded during the various years in the last decade
[20], [23], [35], [39]. Industry labs report 1 — 5B pages [16],
[28] and commercial search engines were recently observed to
index 30 —40B pages [24] with links to over 1T unique URLSs
[34]; however, not much is known about their implementations
and domain coverage. With the exception of IBM’s analysis
in [13], which obtained 11 porn pages in the top-20 list sorted
by PageRank, no prior literature has attempted to analyze the
top-ranked nodes of any Internet-wide structure. Furthermore,
PLD graphs have not been constructed or analyzed for any of
the previous crawls.

We next briefly describe the ranking algorithms studied
below. Assume an n-node directed graph G = (V, E), where
V' is the set of nodes and F is the set of edges. Denote by



d(i,7) the shortest distance from i to j along the directed
edges in G. Then, the total level-D support of j is defined as:

SUPPp(j) = > Lag.j)=p (1)
i=1

where 14 is an indicator variable of event A. Using D =1,
we obtain IN (already discussed above), which simply counts
the in-degree at each node excluding self-loops [25], [26]. For
D > 2, we call the algorithm Supporters (SUPP) [2] and note
its equivalence to backwards BFS from each node to depth D.
As we show below, this is a computationally expensive task,
especially when G does not fit in RAM or is highly branching.
To our knowledge, no prior paper has computed exact (i.e.,
non-estimated) SUPPp with D > 2 on real web graphs or
attempted to use it for ranking as a standalone method.

Our third technique is the classic PageRank [5], which
models a random walk on GG, where the walker either traverses
one of the outgoing edges with probability a = 0.85 or
teleports to a random node with probability 1 — a. The
PageRank score 7; of page j € V is the stationary probability
for the walker (i.e., the underlying discrete Markov chain) to
be found at 5 and is given by the solution to the following
recurrence:

v + l1—«
)EE dout(i) n
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where d,,+(7) is the out-degree of node . While many mod-
ifications to PageRank exist, a vast majority of them require
oracle input in the form of white/blacklists [6], [18], [37]. As
a result, they are beyond the scope of this paper.

A single iteration of PageRank with = 1 and all
replaced with 1 leads to our last method, which is called
Weighted In-Degree (WIN) in [9]. The rationale of this method
is to assume that each node ¢ in the graph has one unit
of “authority” that it distributes equally between the nodes
to which it links. WIN is often used as a low-overhead
approximation to PageRank.

III. METHODOLOGY

We next outline our objectives in the evaluation and present
our approach for checking the reputation of top domains.

A. Objectives

Controlling the reputation of downloaded content not only
reduces bandwidth waste as discussed in the introduction, but
also curtails the influence of unreputable pages on the collected
dataset. Suppose G is the infinite web graph and Gp C G
is its representation captured by a crawler with prioritization
function P. If G» has a significant bias towards domains with
undesirable content, it is possible that the search engine may
have a hard time discerning good pages from bad in Gp. For
example, PageRank [5] teleports randomly to each page with
probability 1/n. Therefore, the more spam pages the crawler
has visited, the larger their combined teleportation mass and
the more the support to their target pages. In fact, a spammer

may not need to attract many external links if the crawler
covers its spam farm with sufficient diligence.

By altering the collected graph using a prioritization scheme
‘P, the crawler can reduce the weight of undesirable pages
preemptively and provide a much cleaner input to the ranking
algorithm used later by the search engine. However, very little
evidence exists about what nodes dominate Gp» among the
existing crawlers [4], [5], [10], [12], [19], [20], [27], [28],
[30], [31], [33], and no evaluation standard exists. Therefore,
we first design a framework for understanding what domains
are most prominent in Gp and then examine whether IRLbot’s
ranking function can be improved using other low-overhead
agnostic techniques.

B. Manual Spam Evaluation

Evaluating any web-ranking algorithm is challenging for
two reasons. The first problem is the absence of a common
algorithm by which to measure ranking results in spam-
avoidance applications. Related work [3], [6], [18], [37] usu-
ally selects a small random sample of the graph and manually
classifies it to determine if each page is good or spam. Then,
the entire ranking list is split into K buckets and the algorithms
are compared against one another based on how many of the
identified spam pages are contained within each bucket.

Due to our interest only in the most reputable PLDs, we
offer a different approach. We first assign reputation scores to
all nodes, sort the graph by the score, and then scrutinize the
top-1K PLDs in each ranking for spam.> For each domain,
we first attempt the PLD itself (e.g., http://amazon.com) and,
if unsuccessful, then consult the list of hostnames seen by
IRLbot from that PLD to determine the shortest alive website,
which is then used as the representative for that domain. We
follow all redirects and end up excluding 56 PLDs for which
none of the websites are alive.

The second obstacle in comparing ranking is that there is no
consensus on the definition of web spam. Some researchers in
the field classify all pornographic pages as spam [6], while
others define a site as spam if it employs techniques in-
tended to trick search engines into ranking some pages higher
than they deserve [17]. While we generally aim to identify
the latter types of PLDs, it is impossible to detect through
manual inspection cloaking, hidden links, and high-density
farms/alliances pointing to some target page. We therefore
rely on a subjective determination of what constitutes spam
using two factors — attempts to perform malicious activities
upon visit (e.g., install malware or viruses) and overwhelming
presence of links whose main purpose is to create revenue
from click-throughs (i.e., no immediately useful content can
be discerned in the PLD).

In addition to classifying each PLD as spam or not, we
also record the Google Toolbar Rank (GTR) for each opened
page, which we use to estimate the relative value of each
PLD and achieve an additional level of granularity in the

2While the top-1K domains in SUPPy ranking represent only 0.001% of
the graph, they are responsible for 18% of Google’s index (i.e., 5.5B pages).



TABLE I

Topr 15 RANKED PLDs (‘S’ 1S SPAM, ‘Q’ 1S QUESTIONABLE)

IN PageRank WIN SUPP;
PLD GTR | PLD GTR | PLD GTR | PLD GTR
microsoft.com 9 microsoft.com 9 microsoft.com 9 google.com 10
google.com 10 adobe.com 10 information.com (S) 5 microsoft.com 9
yahoo.com 9 google.com 10 google.com 10 yahoo.com 9
adobe.com 10 information.com (S) 5 adobe.com 10 adobe.com 10
blogspot.com 9 macromedia.com 10 macromedia.com 10 macromedia.com 10
wikipedia.org 9 yahoo.com 9 yahoo.com 9 wikipedia.org 9
w3.org 10 sedoparking.com (S) - sedoparking.com (S) - blogspot.com 9
geocities.com 9 googlesyndication.com - miibeian.gov.cn 9 msn.com 8
msn.com 8 w3.org 10 googlesyndication.com - apple.com 9
amazon.com 9 miibeian.gov.cn 9 w3.org 10 geocities.com 9
aol.com 8 downloadrings.com (S) 1 ndparking.de (Q) - w3.org 10
myspace.com 9 chestertonholdings.com (Q) - statcounter.com 9 sourceforge.net 9
macromedia.com 10 juccoholdings.com (Q) - searchnut.com (S) - youtube.com 9
youtube.com 9 statcounter.com 9 revenuedirect.com (Q) 4 bbc.co.uk 9
tripod.com 7 linkz.com (Q) 3 myspace.com 9 netscape.com 8

comparison. Recall that Google offers a toolbar [15] that can
be installed as a plugin to a user’s web browser to provide,
among other things, a rank between 0 — 10 for each visited
page that reflects Google’s opinion of the browsed document.
The toolbar returns no GTR for some pages, which occurs for
resources that Google has not crawled, pages/domains that no
longer exist or generate not-found/forbidden HTTP errors, and
content purposely removed from the index. With the exception
of [36] that studied a handful of GTRs for select Fortune-500
companies in 2003, no ranking in the literature has involved
GTR-based comparison.

IV. MANUAL ANALYSIS
A. Dataset

Our data is obtained from an IRLbot web crawl that took
place between June 9 and August 3, 2007. During these 41
days, IRLbot attempted to crawl 8.2B pages, issued 7.6B
requests, and successfully downloaded 6.3B 200-OK HTML
pages. The resulting webgraph has 41B nodes and 310B
edges. The corresponding host graph contains 641M unique
sites and 6.8B edges, while the PLD graph G, which we
study in this paper, consists of 89M nodes and 1.8B edges.
To prevent spammers from getting a boost from an unlim-
ited number of duplicate inter-domain hyperlinks, graph G
is unweighted (i.e., duplicate edges between the PLDs are
removed). The average degree in G is 20.2, with the maximum
in-degree 2,948, 085 (microsoft.com) and the maximum out-
degree 1,496,327 (snngr.com). While 89M nodes have non-
zero in-degree, only approximately 30M PLDs (out of the 33M
crawled) have non-zero out-degree.

Verification activities reported in this paper took place in
August 2008 and have not been repeated to remain as close
to the date of the original crawl as possible.

B. Top-Ranked PLDs

Table I shows the top 15 ranked PLDs for each candidate
algorithm. The first part of the table shows that IN’s top
results are all well-known reputable domains and that 12 of
them exhibit a GTR at least 9. The next two lists, belonging

to PageRank and WIN, show a great deal of similarity —
both rank sedoparking.com in position 7 and information.com
in the top 4. After much scrutiny of these two domains,
we label them both as spam (the former heavily promotes
spam sites and is absent from Google’s index; the latter
is a revenue-marketing search engine hosting predominantly
spam). Going down these ranking lists, one finds additional
examples of spam — downloadrings.com and searchnut.com.
Further examination of the two PageRank algorithms reveals
at least five other suspicious PLDs with low or missing GTRs,
raising serious doubts about the ability of these two methods
to prevent undesirable PLDs from achieving high ranks in our
(as well as any other) large domain-level dataset.

The last part of the table shows the top domains ranked
by SUPP,. There is a substantial overlap with the IN list,
but SUPP, is even more impressive with 13 PLDs with a
GTR at least 9 and all 15 with a GTR at least 8. In general,
one expects that a good ranking algorithm would place only
unquestionably reputable domains near the top of the list.
From the data in Table I, it is clear that IN and SUPP5 both
satisfy this requirement, while the other two methods by far
do not.

This drastic difference stays virtually the same as we manu-
ally inspect the remaining 985 PLDs in each list. Considering
the number of PLDs with GTRs no larger than 3, we find that
WIN has the most with 54, followed by PageRank with 50,
then IN with 5, and finally SUPP; with only 1 in position 624.

C. Spam Avoidance

The next part of our analysis compares the amount of spam
found in the top-1K list of each algorithm during manual
inspection. Define u, to be the number of spam PLDs in
position [1,7] in a given ranked list. Figure 1(a) plots u, vs
r for each of the four techniques. As before, PageRank and
WIN are significantly inferior to the other two methods, but
it is also interesting that spam is discovered at approximately
the same rate for these two algorithms as 7 increases. In total,
PageRank and WIN admit respectively 49 and 39 spam PLDs
in their top-1K lists, where the latter slightly outperforms the
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former despite its much lower complexity.

Interestingly, the figure shows that IN does considerably
better than either of the PageRank-style techniques. It allows
only 9 spam PLDs into the top-1K, the first being the same
information.com in position 25. The real winner in this com-
parison, however, is SUPP, whose entire list contains only one
spam PLD, which is linksynergy.com in position 718.

D. GTR and Spam

We finish this section by examining how well GTR values
predict the occurrence of spam in the total 2,100 domains
verified manually. Figure 1(b) shows the percentage of PLDs
with a given GTR that are spam according to our manual
analysis. In the figure, the peak occurs at 43% for GTR-
0 PLDs; however, it is also likely that this number should
be higher given the rather conservative definition of spam
used in our decisions. What can be clearly stated based on
manual inspection of GTR-0 PLDs is that none of them are
well-known, reputable domains. In fact, many of them are
suspicious (e.g., related to gambling or pharmaceutical sales),
while others are simply obscure. Similarly, PLDs not ranked
by Google, which are responsible for the second largest point
(i.e., 32%) in Figure 1(b), are again predominantly either spam
or very obscure sites.

Following the rest of the curve in the figure, notice that it
monotonically decays and becomes zero for GTRs larger than
7. In fact, almost no spam (i.e., less than 0.6%) is contained
in PLDs with a GTR 5 or higher. Our general conclusion from
this activity is that on average toolbar ranks accurately reflect
overall domain value, despite occasional outliers. Since bulk
GTR information is publicly available in certain portals on
the web, we next leverage these findings to create an unbiased

automated method for comparing ranking algorithms.

V. AUTOMATED ANALYSIS

We first look at the running average of GTRs up to position
R = 10K. We then switch to avoidance of GTR-0, no-GTR,
and PLDs blacklisted by a well-known email spam project.

A. Average GTR

Our first goal is to determine the ability of each ranking
algorithm to place the most valuable PLDs at the top of the
list. Figure 2(a) plots a moving average of the numeric GTR
for each algorithm. The graph shows that SUPP, maintains
the highest average rank, while IN follows closely until
approximately position 4K. PageRank and WIN track each
other closely as well, although the latter takes hits from
information.com and a few other questionable PLDs near the
top of its ranking. All averages begin to converge around 10K,
which can be considered inconsequential as we are interested
in the separation only up to that point, where a web crawler
is most impacted.

The sharp drop for IN’s average GTR around position 4K
comes from a large number of domains related to worldnews.
com that have a zero GTR. These pages contain links to valid
news articles and appear legitimate on the surface, except for
their odd linking structure. Instead of using a single PLD with
several subdirectories or multiple hosts to organize the site,
this content is divided among hundreds of PLDs, all of which
link to one another in a virtually complete graph. This tight
link structure may appear as spam to Google and may be the
reason they are all ranked with GTR 0.

The authors in [13] observe a similar case that arises from
link exchanges (i.e., each user j buries links to N — 1 other
member sites within its directory structure, while each of
the other users in return hosts a single link back to j).
Link exchanges sometimes involve thousands of unique PLDs,
which accumulate high PLD-level in-degree and successfully
manipulate certain ranking schemes such as IN. While this
does occur in practice, we found only one such example in
the top-10K list. The SUPP; algorithm aims to overcome these
exact problems and remains very resilient to manipulation
since creating a large-enough link-exchange structure to be
competitive with reputable sites at distance D = 2 hops
requires much more resources (i.e., not thousands, but millions
of unique PLDs).



B. Unreputable GTR

Figure 2(b) plots the cumulative distribution of GTR-0
PLDs found in each list. Again, observe that SUPP, does
the best at suppressing undesirable sites, where its first zero-
ranked PLD (home.net, a link-spam site) does not appear
until position 1,422. Furthermore, this method admits only
11 GTR-0 PLDs in the top-10K. IN initially does an ex-
cellent job of suppressing unwanted domains, with only
home-equity-loans-1.org in the top-1K at position 843; how-
ever, around 2K, worldnews.com-related PLDs quickly add up
and after about 5K, IN performs the worst in this comparison,
allowing 448 GTR-0 domains in the top-10K. WIN and
PageRank are again very similar, with the former slightly out-
performing the latter. Both have zero-ranked PLDs very high
in their list — everytihng.com in position 32 for PageRank and
home-equity-loans-1.org in position 35 for WIN.

Figure 2(c) plots the cumulative distribution of PLDs with
no GTR in each list. SUPPy is again the clear winner, with
the first no-GTR domain bfast.com in position 469, while
allowing only 5 unranked PLDs in the top-1K and only 115
in the top-10K. The WIN and PageRank curves are very
similar, both pushing 4 unranked PLDs in the top 15 (see
Table I), and respectively admitting 39/54 no-GTR PLDs in
their top-1K and 329/556 in their top-10K. IN initially splits
the difference in performance between SUPP; and WIN with
just 17 unranked PLDs in the top-1K; however, it eventually
loses its advantages and finishes the top-10K slightly worse
than PageRank.

C. Blacklisted Domains

In addition to PLDs with a zero or missing GTR, there
are also publicly available blacklists that contain domains
considered to be related to email spam (e.g., PLDs that
originate email spam, host phishing content, distribute scams
or viruses). The PLDs in this blacklist may or may not contain
the kinds of link spam we commonly encounter for parked
domains, but the fact that they rely on unsolicited bulk email
suggests that they may also employ other unethical techniques
such as web spamming or rank manipulation aimed to increase
the visibility of their site.

We use a SpamAssassin blacklist [32] with 496,698 do-
mains that contains 60,701 PLDs seen (not necessarily
crawled) by IRLbot. We find the occurrence of these domains
in each ranking and plot their count below each position r
in Figure 2(d). SUPPy again does the best job of avoiding
blacklisted domains, maintaining a clear separation from the
other lists up through R = 100K. The first blacklisted PLD in
the SUPP;, list is topmeds10.com in position 4,459 and only
7 appear in the top-10K. IN and WIN show the next-best per-
formance with their first blacklisted PLDs yourmedpharm.info
and naughty.com in positions 1,246 and 1, 334, respectively.
PageRank finishes last with webclients.net in position 852.
However, by around r = 5K, it catches up to the other two
methods and they stay together up to 100K.

D. High GTR

To understand whether any good domains have ended up
at the bottom of our lists, we next examine the ranking
produced by SUPP; to see if it might have missed anything
important. We found 470 PLDs with a GTR 9 or 10 beyond
the top-10K list and examined them manually. All of these
cases can be classified into the following four categories: 1)
redirects, which include a) misspelled names of famous com-
panies (e.g., amozon.com, verisgn.com); b) unknown PLDs
that redirect to Google, Adobe, Yahoo or some equally famous
PLD (e.g., hospitalquality.org, defytherules.com, vknn.org,
floralartbyamy.com); ¢) country versions of famous sites (e.g.,
reuters.cz); 2) mirrors that do not redirect through HTTP
301/302, but visually look identical to their main site (e.g.,
columbiauniversity.net, compap.com, cnn.co.il); 3) sites re-
lated to .gov and .edu, whose GTR is commonly inflated
by Google based on their TLD; and 4) GTR anomalies that
have since been corrected by Google and whose current
GTR is much lower, usually 2 — 5 or no GTR at all (e.g.,
laraweb.com.ar, absearecruitment.com, baileychevy.com).

Considering that IRLbot did not utilize static promotion of
certain TLDs, redirect consolidation, or duplicate detection,
we found no obviously mis-ranked GTR 9/10 sites. Having
these features in a crawler might be a good idea as they help
reduce bandwidth wastage on mirrors and various duplicates.

E. Depth of Supporters

We next address the issue of whether D = 2 is the correct
choice for Internet-wide PLD graphs. Exploring SUPP3, we
found it to be a poor indicator of site reputation due to the
rapid explosion of supporter counts for popular PLDs and the
lack of nodes for them to reach at depth 3. While the average
in-degree FE[d;,] is only 20, the average level-2 supporter
count E[SUPP,] is a massive 21K per node. This drastic
difference comes from the fact that E[SUPP,;] ~ E[d?],
which can be much larger than E?[d;,] if variance Var[d;,]
is huge (which it is).

As one example, google.com is a reputable site that is
ranked highly by all of the algorithms we considered. It has
15.5M level-2 supporters, but only 6.2M level-3 supporters.
Now consider hotsiteskey.info, a low value site that is ranked
in position 192,056 by SUPP,. However, it manages to come
up with 15.6M level-3 supporters, placing it above google.com
and many other highly reputable PLDs. Additionally, the
complexity of performing BFS walks from each node and
counting unique supporters at distance D > 3 make these
extensions extremely burdensome, even for offline simulations
(see below).

This suggests that SUPPp with D > 3 may be appropri-
ate for slowly-branching graphs and those with much larger
average distances, but clearly not the Internet PLD graph.

VI. ESTIMATING TOP SUPPORTERS

From the previous section, it is easy to see that SUPP;
produces the best ranked PLD lists. However, calculating
supporters directly does not scale well to large graphs because



of the enormous amount of CPU processing required to
perform a limited-scope BFS flood from each node in the
graph. However, the good news is that one often does not
require SUPP; counts for nodes at the bottom of the list;
instead, a high-performance crawler is interested in a fast,
accurate, and scalable technique for estimating supporters at
the top of its ranking list. We offer such an approach below.

A. Analysis

To understand the infeasibility of SUPP5, we start by
analyzing its basic complexity under the assumption that the
graph fits in RAM. We later extend this to external-memory
scenarios. As shown in Fig. 3(a), SUPP; for each node x must
count the number of unique nodes z whose shortest path to
x is exactly two hops, which is usually accomplished by a
BFS along the in-links. To calculate the overhead of SUPPs,
we need to define a new metric we call Quick-Visit Supporters
(QVS), which counts the number of link traversals during BFS:

> diny). 3)

y:(y,x)EE

In Fig. 3(a), SUPPy(x) = 1 but QVS(z) = 3 since
it counts yo once and z twice. It then follows that a full-
graph BFS requires n(E[QV S(x)] + E[SUPPy(x)]) non-
sequential RAM hits to mark all visited nodes and then clear
the set bits. Since in our PLD graph E[QV S(z)] = 34.4K
and E[SUPP,(z)] = 21K, we obtain that SUPP, issues
almost 5 trillion random RAM lookups, which using 60-ns
memory latency amounts to 82 hours (usually a little less due
to caching). One may be tempted to approximate SUPP; using
QVS, which runs a lot faster and obtains the estimates in just
nE[d;,] = 1.8B lookups. However, its performance is rather
poor, keeping the average error above 200% throughout the
top-1K list. The resulting ranking (using spam, no-GTR, GTR-
0, and blacklisted domains) splits the difference between IN
and SUPP,, which we do not show for brevity.

Another method [2] that estimates SUPPs is Bit Vector
(BV), in which nodes iteratively receive bit strings from their
in-degree neighbors and apply a bitwise OR operation to
them. Since OR is not additive, this process avoids the main
pitfall of QVS (i.e., multiple counts of the same node z). BV
requires 2rnE[d;,] lookups in RAM, the same number of
OR operations, and generation of rbn random numbers, where
b = 64 is the number of bits in each vector, r = logy(Smaz)
is the number of performed rounds [2], and S,,4; is the
maximum SUPP; count. In our dataset, the original BV
converges in 25 rounds and provides estimates for the entire n
domains. However, since we are only interested in the top list,
BV can be adapted to terminate earlier by performing only the
last few rounds (i.e., 2 for the top-1K and 3 for the top-10K).

QVS(x) =

B. Top Supporters (TSE)

We next develop a new method called Top Supporters
Estimation (TSE), which allows very efficient computation of
SUPP;, counts for nodes with a large base of supporters. First
intuition suggests to visit all in-neighbors y; of x and then
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Fig. 3. BFS-based SUPPy and estimation error.

randomly subsample their in-neighbors z; with probability p,
which can be done efficiently by skipping through neighbor
lists using a geometric random variable. This approach per-
forms almost as fast as QVS; however, there unfortunately is
no good way to reconstruct the number of unique supporters
from the collected samples. It is well-know that given a
multiset I' (i.e., a set of items with repetition), a p-percent
blind subsample of I' cannot be used to accurately determine
the number of unique items in I'. This problem has been
studied extensively in databases [7] and network flow sampling
[11], without much promise for a solution. Of course if one is
allowed to examine each item in I' before deciding whether to
sample it or not, accurate estimators exist; however, in such
cases BFS has the same CPU overhead and there is no need
for an estimator’. Instead, we use a novel two-pass technique
that leverages both in/out-degree graphs.

Using the notation of Fig. 3(a), the first phase scans the out-
graph and randomly retains in RAM a p-fraction of all nodes
z with their entire out-neighbor adjacency lists {w;}. This
produces an unbiased random sample of all supporters z that =
will later count. Then, the second phase reads sequentially the
in-degree graph, examining each node x with its in-neighbors
{y;}. Assuming = # z and = ¢ {w;}, any overlap between
sets {w;} and {y;} indicates that z supports z at level-2.
This detection is accomplished using hash-tables with efficient
multi-CPU parallelization. Due to limited space, we do not
dwell on the implementation. If z discovers that it supports z,
it increments x’s supporter counter by 1.

After all sampled PLDs z have been processed, the sup-
porter counter of x is scaled by 1/p, the result is written to
disk, and the next node is read from the in-degree file (in prac-
tice, the file is read and written in chunks large enough to keep
the I/O efficient). Neglecting certain small terms, TSE requires
RAM lookup overhead pn(E[QV S(z)] + E[SUPP:(z)]),
which is a p-fraction of that of full BFS. It should be noted
that since the crawler first builds the out-degree PLD graph
as it parses pages, which is later inverted to obtain the in-
degree PLD graph (used by all the other methods), there is
no additional cost to obtain the two graphs needed for TSE’s
operation.

3Typical reasons for subsamping I" are memory-related restrictions. In our
problem, just building set I' incurs prohibitive CPU overhead.



C. Comparison

We now compare the various RAM-only algorithms in
terms of accuracy and run time. For these experiments, we
use 64 bits for each node in BV and the adaptive approach
recommended in [2]. We also retain level-1 BV vectors and
remove any overlap with level-2 supporters so as to exclude
immediate neighbors of each node x. For this comparison,
the PLD graph is processed offline to re-write its 8-byte
hashes using sequential 4-byte labels. After this procedure,
it occupies approximately 8 GB in RAM. Non-sequential,
larger IDs result in higher RAM consumption, less CPU cache
locality, and more overhead for each algorithm. Such cases are
not considered here, but they are straightforward extensions of
our results below.

Figure 3(b) shows a sliding-window average of relative error
for each estimation technique as a function of the node’s rank
(we use SUPPy’s order of ranking). Observe in the figure that
QVS exhibits enormous error (i.e., over 1,000%) for the very
top PLDs, which gradually reduces to about 200% near rank
1K. BV is second best with its error averaging 6.5% in this
range, which is quite a bit better than the 15—17% error found
in [2]. However, TSE’s error is even lower, ranging from about
1% for p = 10™* to 0.1% for p = 10~ 2.

Table II shows the theoretical number of random RAM
hits and various CPU operations (e.g., additions, ORs, random
numbers generated) in each method. It also displays the actual
running time of these algorithms on a quad-core AMD Opteron
server, as well as the speedup factor compared to SUPP,
(disk I/O is excluded). Each algorithm is optimized and multi-
threaded to run on a quad-CPU server with enough memory
to hold the entire PLD graph and each algorithm’s other data
structures. SUPP; runs for 70 hours, occupying all 4 CPUs at
100% utilization. This is over 35 times slower than 50-iteration
PageRank. The default BV method (which requires 25 rounds)
runs for 47 minutes; however, its scaled version that produces
ranking only for the top-1K nodes (two rounds) terminates
in 3.8 minutes, which is about 3 times faster than the most
accurate version of TSE considered here (i.e., p = 10~2). The
other two TSE configurations in the table run much quicker,
with p = 10~* being even faster than QVS.

Interestingly, TSE with p = 10~* is more accurate than
BV not just for the top-1K, but also for the top-10M PLDs.
Thus, if estimates for such a large top-list are needed for some
reason, TSE can be a more impressive alternative to BV since
the latter now requires 13 iterations to obtain convergence for
the top-10M, placing its running time at roughly 25 minutes.
Despite these findings, BV has merit in its ability to tackle
D > 3 with little additional overhead, while TSE may require
significantly lower p as D increases to control the explosion
of BFS. As we encounter future graphs that require SUPPp
estimation at D > 3, we will revisit this issue and study TSE’s
accuracy in those settings against BV’s.

D. External Memory

We finish by briefly discussing handling large graphs that
do not fit in RAM, where the main performance metric is

TABLE II
MEMORY HiITS, CPU OPERATIONS, AND RUNNING TIME ON THE PLD
GRAPH (2.8 GHZ QUAD-CORE OPTERON)

Algorithm Hits Ops Time Speedup
SUPP, 49T 1.9T 70 hrs -
TSE (p = 10~2) 49B 19B 11 min 381
Bit Vector (r =2) | 7.1B 11B | 3.8 min | 1,113
TSE (p = 1073) 4.9B 1.9B 70 sec 3,600
Quick Visit 1.8B 1.8B 55 sec 4,581
TSE (p = 10~%) 490M  190M | 7.5sec | 33,600

the amount of disk I/O performed (i.e., CPU overhead is
neglected). The most straightforward SUPP, method, which
we call SUPP5-A, loads a sequential chunk of vectors
(,y1,Y2,...) from the in-graph into some buffer @ and then
re-scans the entire in-graph to check all in-neighbors of level-
1 supporters {y;} € Q. After one full pass, the method
accumulates all unique supporters z of each node x € Q.

Assuming F' is the size of the in-graph in bytes and
RAM size is 2, the total I/O overhead in SUPP5-A consists
of read-only operations and equals (certain straightforward
manipulations omitted):

F%(Eld;n) + E[SUPP,))
E[d;n])Q ’

Another approach, which we call SUPP»-B, performs much
better when 2 is small. It scans simultaneously both in/out
graphs (assumed to be in sorted order) and writes out all pairs
(z, z), where z is x’s level-2 supporter. Assuming £ is the node
hash size, this method initially writes D = 2nhE[QV S(x)]
bytes to disk, which represent m = D/ sorted blocks that
need to be k-way merged to remove duplicates. Using M =
256 KB per buffer for each open file handle, SUPP;-B uses
k = Q/M concurrent handles and [log;, m| merge phases.

QVS reads the file twice (i.e., D = 2F) and stores the
last two vectors of in-degree counts and hashes in RAM (i.e.,
2 = 2(h+m)n, where m = 4 the number of bytes needed for
each supporter counter). BV has been proposed [2] under the
assumption that entire bit vectors from the last two iterations
and all supporter counts fit in RAM. Its RAM consumption is
therefore {2 = (2b 4+ m)n and its disk overhead is D = 2rF.
Finally, TSE reads D = 2F bytes and maintains = pF,
without ever requiring that all supporter counts fit in RAM.
Note that since both BV and QVS are iterative methods similar
to PageRank, their 2 can be reduced at the expense of certain
offline pre-processing on the graph [8]. We do not consider
this in our comparison.

Table III shows the resulting I/O complexity for all stud-
ied methods using the PLD graph with 8-byte hashes (i.e.,
F = 15.8 GB). We ignore the small memory needed for
one or two file handles (SUPP5-A, QVS, BV, TSE) and the
buffer through which each graph is sequentially scanned (all
methods). SUPP5-A in the table with 8 GB of RAM (i.e., half
the graph fits in memory) requires a surprising 32 TB of disk
I/O (i.e., it reads the graph 2,000 times). As even less RAM
becomes available, its performance dramatically reduces and
reaches 2.6 PB for {2 = 100 MB. While 70 hours of CPU time

D= “4)



TABLE III
DiSK I/O AND RAM FOR EXTERNAL-MEMORY PROCESSING

Algorithm Disk read | Disk write RAM Phases
SUPP2-A 32 TB - 8 GB -
130 TB - 2 GB -
2.6 PB - 100 MB -
SUPP2-B 49 TB 49 TB 8 GB 1
98 TB 98 TB 2 GB 2
147 TB 147 TB 100 MB 3
Bit Vector (r = 2) 63 GB - 1.9 GB -
Quick Visit 31.4 GB - 2.1 GB -
TSE (p = 10~2) 31.4 GB - 157 MB -
TSE (p = 10~3) 31.4 GB - 16 MB -
TSE (p = 10~%) 31.4 GB - 1.6 MB -

in the previous section may seem excessive, reading petabytes
from disk is even worse.

For small ), SUPP5-B maintains much better scalability
(see the 100-MB case in the table), but requires enough disk
space to write 49 TB of pairs (x, z) and then perform a 3-
phase merge with 294 TB of combined read/writes. Both BV
and QVS perform well, scanning the graph just 2 — 4 times
and maintaining 2 GB in RAM. TSE lowers their {2 by an
additional 1 — 3 orders of magnitude (depending on p) and
clearly represents the most scalable solution.

VII. CONCLUSIONS

This paper compared various agnostic algorithms for rank-
ing the web at the PLD level using manual analysis and Google
Toolbar Ranks (GTRs). As SUPP;, decisively outperformed the
other methods, but was infeasible in practice, we proposed a
fast, scalable, and accurate estimator for its top-ranked PLDs.
It is shown to achieve a 1% error in the top-1K list with 4 —5
orders of magnitude less overhead than SUPPs.

Future work involves studying the host graph and oracle-
based extension of SUPP; to fight spam.
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